

CHEMISTRY

BOOKS - S DINESH & CO CHEMISTRY (HINGLISH)

THE P-BLOCK ELEMENTS

Problem 1

1. Calculate the volume of 0.1 M NaOH solution required to neutralise the solution produced dissolving 1.1 g of P_4O_6 in water.

Watch Video Solution

Problem 2

1. Calculate the weight of HI obtained by the reaction of 62 g of red phosphorus with iodine in presence of water.

Problem 3

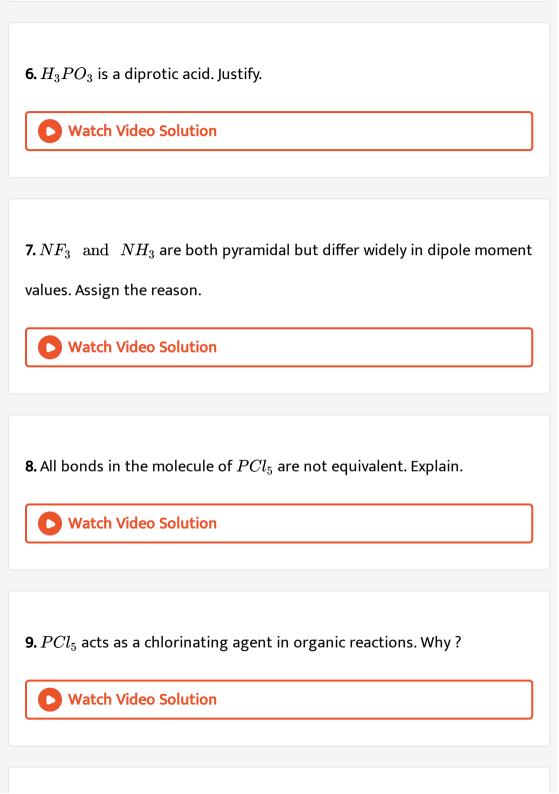
1. How many grams of CaO are required to neutralise 852 g of P_4O_{10} ? Draw structure of P_4O_{10} molecule.

Concept Based Questions

1. PF_5 is known but NF_5 is not known. Discuss.

2. Molecular nitrogen is very inert chemically. Why?

3. The experimentally determined N-F bond length in NF_3 is greater than the sum of the covalent radii of N and F. Assign reason.

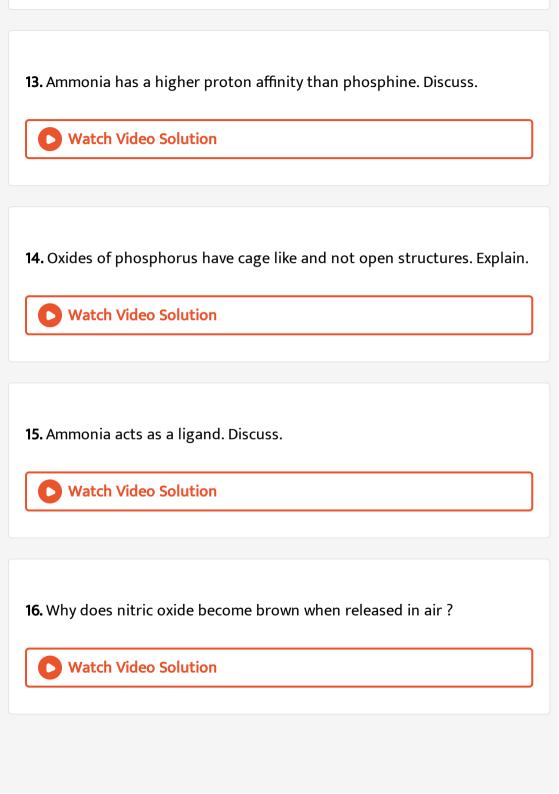


4. NF_3 is not hydrolysed while NCl_3 can be readily hydrolysed. Explain.

5. Nitrogen and chlorine have same electronegativity (3.0). Molecular nitrogen is inert at room temperature while chlorine is highly reactive. How will you account for it ?

10. Boiling point of phosphine is less than that of ammonia though its molecule size is more. Assign reason.

11. On heating, $(NH_3)_2Cr_2O_7$ gives rise to a gas which on treatment with Mg ribbon gives a white solid. On dissolving white solid in water another gas (X) is evolved. It gives white fumes when a rod dipped in conc. HCl is brought in its contact. Identify the gas X.



12. Phosphorus acid can act both as oxidising agent as well as reducing agent while phosphoric acid is only an oxidising agent. Explain.

Or

Phosphorus acid undergoes disproportionation reaction but phosphoric acid does not. Explain.

17. There is a small increase in atomic radius in moving from P to As in group 15 elements as compared to large increase in atomic radius in moving from N to P in the same group. Explain.

Watch Video Solution

18. H_3PO_2 and H_3PO_3 act as good reducing agents while H_3PO_4 does not. Discuss.

- 19. Give reasons for the following:
- (a) CN^- ion is known but CP^- ion is not known
- (b) NO_2 dimerises to form N_2O_4

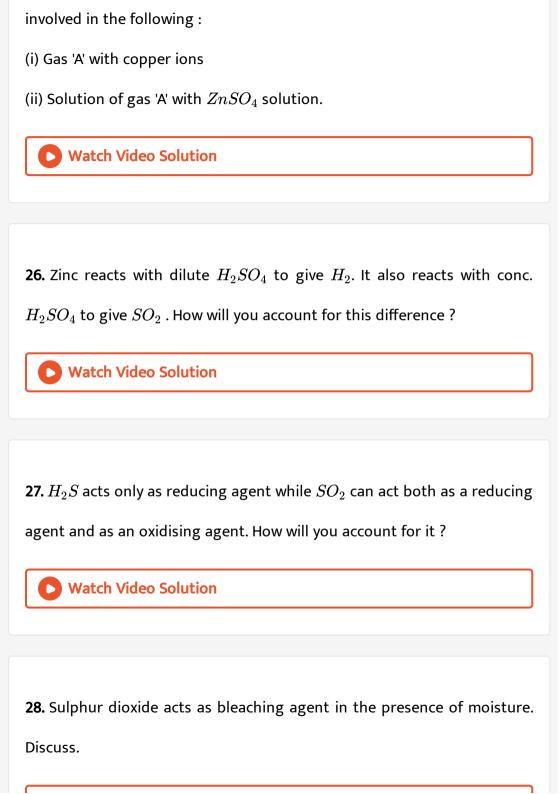
20. Explain why both N and Bi do not form pentahalides while phosphorus does.

21. MgN_2 when reacted with water gives NH_3 and HCl. However, $MgCl_2$ does not give HCl when treated with water at room temperature. Assigne reason.

22. A water soluble compound of a posisonous element M when heated with Zn/H_2SO_4 gives a colourless and extremely posisonous gaseous compound N which when passed through a heated tube gives a silvery mirror of element M. Identify M and N.

23. (SiH_3) is a weaker base than $(CH_3)_3$ N. Explain.

Watch Video Solution


24. When conc. H_2SO_4 was added to an unknown salt present in a test which was heated, a brown gas (A) was evolved. The gas intenstified when copper turning were also added into the test tube. On cooling, the gas (A) changed into a colourless liquid (B).

- (a) Identify the gases A and B
- (b) Write equations for the reactions involved.

Watch Video Solution

25. A colourless gas 'A' with a pungent odour is highly soluble in water and its aqueous solution is weakly basic. As a weak base, it precipitates the hydroxides of many metals from their salt solution. Gas 'A' finds application in detection of metal ions. It gives a deep blue colouration with copper ions. Identify the gas 'A' and write the chemical equations

Watch Video Solution

29. Sulphur is a solid while oxygen is a gas at room temperature. Why?

30. SF_6 is a well known compound while SH_6 does not exist. Explain.

31. Oxygen does not show oxidation states of +4 and +6 like sulphur.

Explain.

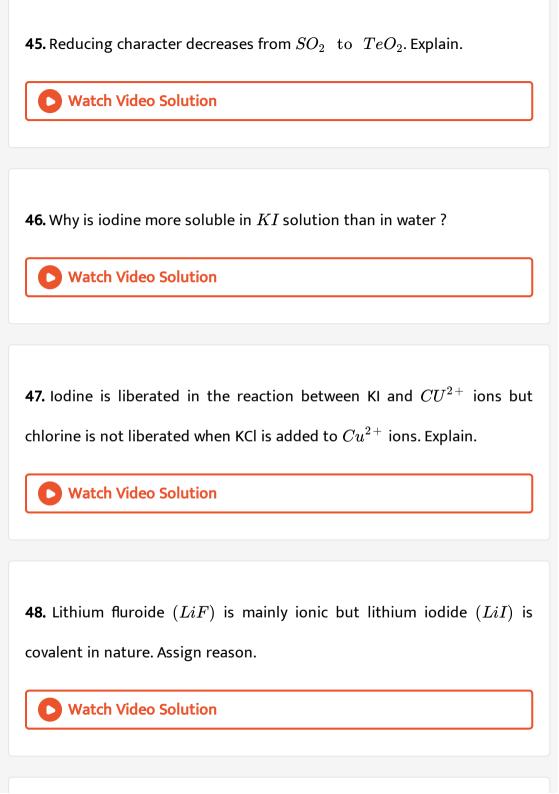
32. H_2O is liquid while H_2S is a gas at room temperature. Explain.

33. Sulphur dioxide is a more powerful reducing agent in the alkaline medium than in the acidic medium. Assign reason.

34. Bond angle in H_2S is lower than in H_2O . Justify.

35. Hydrogen sulphide cannot be dried by passing through conc. H_2SO_4 .

Why?



36. H_2S is a stronger acid than H_2O . Explain

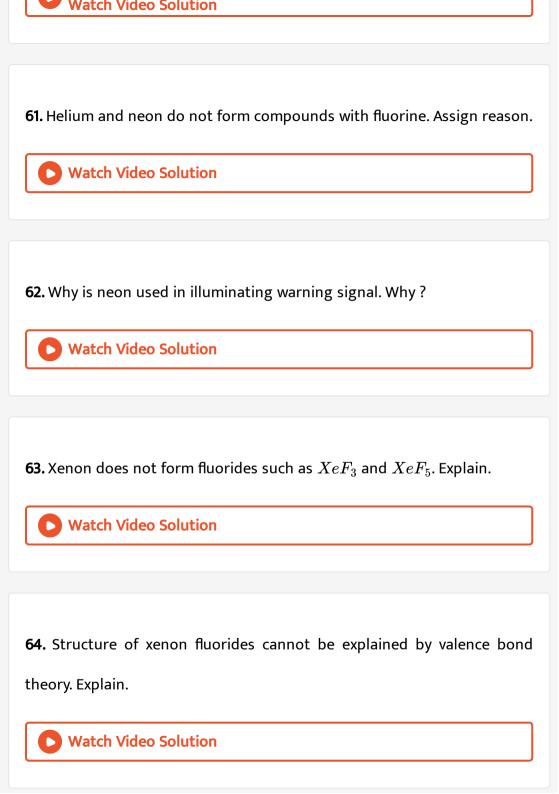
37. Sulphur vapours exhibit some paramagnetic behaviour. Explain. Watch Video Solution **38.** SF_6 is not easily hydrolysed whereas SF_4 can be. Assign reason. **Watch Video Solution 39.** Bond dissociation enthalpy of F-F bond is less than that of Cl-Cl bond. Explain. **Watch Video Solution** 40. Sulphur disappears when boiled with aqueous solution of sodium sulphite. Assign reason. **Watch Video Solution**

41. Chlorine water has both oxidising as well as bleaching properties? Explain. **Watch Video Solution 42.** Oxygen molecule has the formula O_2 while sulphur is S_8 . Why? Watch Video Solution **43.** Why is H_2S less acidic than H_2Te ? **Watch Video Solution** 44. Why does burning Mg continue to burn in a jar containing NO but burning S gets extinguished? **Watch Video Solution**

49. Interhalogen compounds are more reactive than halogens. Why?
Watch Video Solution
50. ClF_3 exists but FCl_3 does not. Why ?
Watch Video Solution
51. Ferric iodide is very unstable but ferric chloride is stable. Explain. Watch Video Solution
52. HF is not stored in glass bottles but is kept in wax bottles. Assign reason.
Watch Video Solution

53. KHF_2 is a well known compound whereas $KHCl_2$ does not exist. Why?

54. Fluorine does not show variable oxidation states while other members of the halogen family exhibit variable oxidation states. Why?


55. Chlorine water has both oxidising as well as bleaching properties properties? Explain.

56. On addition of ozone gas to KI solution, violet vapours are obtained.

Why?

Watch Video Solution
57. Despite having greater polarity, hydrogen fluoride boils at a lower
temperature than water. Elaborate.
Watch Video Solution
58. The conjugate base of $HClO_4$ is a weaker base than H_2O . Explain.
Watch Video Solution
59. The group of noble gas elements is called zero group. Why?
Watch Video Solution
60. Noble gas elements form compounds only with fluorine and oxygen.
Explain.

N.C.E.R.T In-Text Questions

1. Why are pentahalides more covalent than trihalides in the members of the nitrogen family ?

2. Why is BiH_3 the strongest reducing agent amongst all the hydrides of group 15 elements ?

3. Why is N_2 less reactive at room temperature ?

4. Mention the conditions required for the maximum yield of ammonia.

Market Video Coloutes

watch video Solution
F. How does ammonia react with blue solution boying C_{2}^{2+} ions 2
5. How does ammonia react with blue solution having Cu^{2+} ions ?
Watch Video Solution
6. Valency and oxidation number of nitrogen in $N_2 O_5$
Watch Video Solution
7. Why is bond angle in PH_4^{+} ion higher than in PH_3 ?
Watch Video Solution
8. What happens when white phosphorus is heated with concentrated
$NaOH$ solution in an inert atmosphere of CO_2 ?
Watch Video Solution

9. What happens when PCl_5 is heated ?
Watch Video Solution
10. Write the balanced equation for the hydrolytic reaction of PCl_5 in heavy water.
Watch Video Solution
11. What is the basicity of H_3PO_4 ?
Watch Video Solution
12. What happens when phosphorus acids (H_3PO_3) is heated ?
Watch Video Solution

13. List the important sources of sulphur. Watch Video Solution 14. Write the order of the thermal stability of the hydrides of group 16 elements. Watch Video Solution **15.** Why is H_2O a liquid and H_2S a gas ? **Watch Video Solution** 16. Which of the following does not react with oxygen directly? Zn, Ti, Pt, Fe.**Watch Video Solution**

17. Complete the following reactions :

- (i) $C_2H_4+O_2
 ightarrow$
- (ii) $Al+O_2
 ightarrow$
 - Watch Video Solution

18. Why does O_3 act as a powerful oxidising agent ?

19. How is O_3 estimated quantitatively?

20. What happens when sulphur dioxide gas is passed through an aqueous solution of Fe(III) salt ?

21. Comment on the nature of two S-O bonds formed in SO_2 molecule. Are the two bonds in the molecule equal?

Watch Video Solution

22. How is the presence of SO_2 detected?

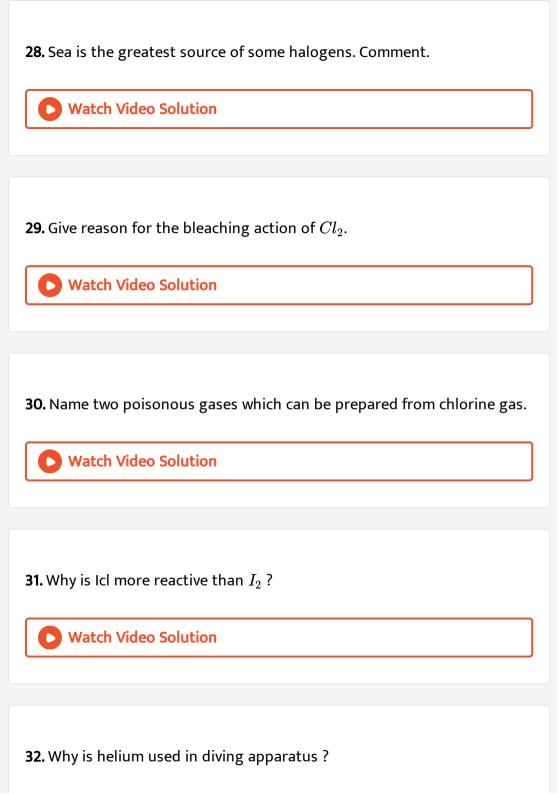
Watch Video Solution

23. Mention three areas in which H_2SO_4 plays an important role.

24. Write the conditions to maximise the yield of H_2SO_4 by contact process.

25. If osmotic pressure of 1M aqueous solution of H_2SO_4 at 500K is 90.2 atm. Calculate K_{a2} of H_2SO_4 . Give your answer after multiplying 1000 with K_{a2} . (Assuming ideal solution).

(Given: K_{a1} of H_2SO_4 is $\infty, R=0.082lt-atm/mol-K$).

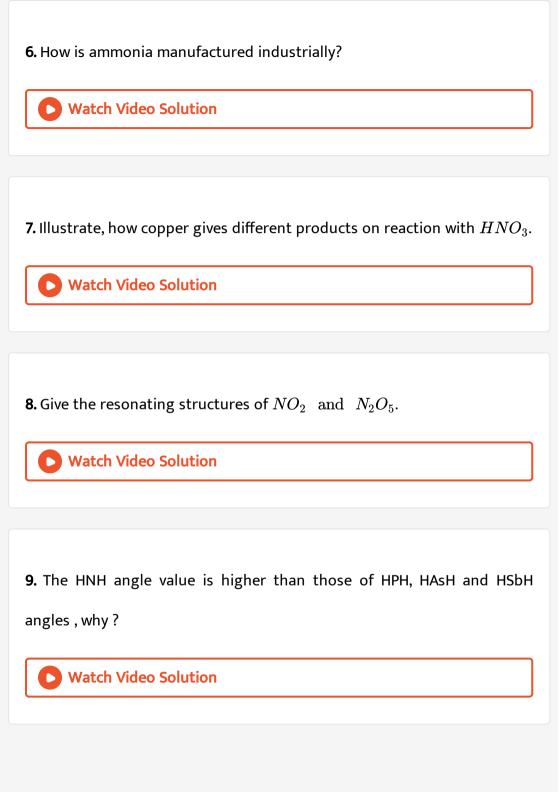


26. Considering the parameters such as bond dissociation enthalpy, electron gain enthalpy and hydration enthalpy, compare the oxidising power of F_2 and Cl_2

27. Give two examples to show the anomalous behaviour of fluorine.

33. Balance the equation : $XeF_6 + H_2O
ightarrow XeO_2F_2 + HF$

34. Why has it been difficult to study the chemistry of radon?



N.C.E.R.T. Exercise

1. Discuss the general characteristics of Group 15 elements with reference to their electronic configuration, oxidation state, atomic size, ionisation enthalpy and electronegativity.

2. Why is the reactivity of nitrogen different from that of phosphorus?
Watch Video Solution
3. Discuss the trends in chemical reactivity of group 15 elements.
Watch Video Solution
4. Why does NH_3 form hydrogen bonding while PH_3 does not ?
Watch Video Solution
5. How is nitrogen prepared in the laboratory? Write the chemical
equations of the reactions involved.
Watch Video Solution

10. Why does $R_3P={\it O}$ exist but $R_3N={\it O}$ does not (R is an alkyl group)?

11. Explain why is NH_3 basic while PH_3 is feebly basic in nature.

12. Nitrogen exists as diatomic molecule (N_2) while phosphorus as tetraatomic molecule (P_4) . Why ?

13. Write main differences between the properties of white phospghorus and red phosphorus.

14. Why does nitrogen show catenation properties less than prosphorus.

15. Give one disproportionation reaction of phosphorus acid (H_3PO_3) .

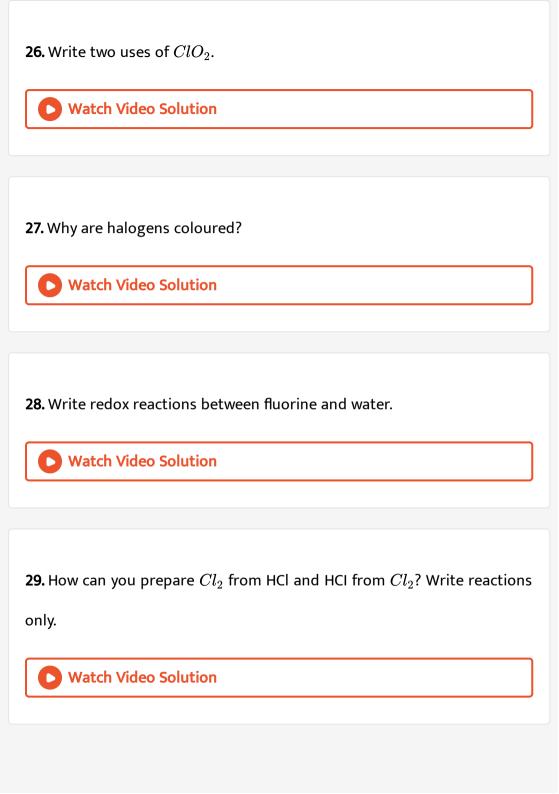
16. Can PCl_5 act as oxidising as well as reducing agent ? Justify.

17. Justify the placement of O, S, Se, Te and Po in the same group of the periodic table in terms of electronic configuration, oxidation states and hydride formation.

18. Why is dioxygen a gas but sulphur a solid?

Watch Video Solution

19. Knowing the electron gain enthalpy values for $O o O^-$ and $O o O^{2-}$ as $-141~{\rm kJ~mol^{-1}}$ and $702~{\rm kJ~mol^{-1}}$ respectively, how can you account for the formation of a large number of oxides having O^{2-} species and not O^- ?


20. Which aerosols deplete ozone?

21. The catalyst used in the manufacture of H_2SO_4 by contact process is

watch video Solution
22. How is SO_2 an air pollutant ?
Watch Video Solution
23. Why are halogens strong oxidising agents?
Watch Video Solution
24. Explain why does fluorine form only one oxoacid (HOF).
Watch Video Solution
25. Explain why inspite of nearly the same electronegativity, nitrogen
forms hydrogen bonding while chlorine does not.
Watch Video Solution

30. What inspired N. Bartlett for carrying out reaction between Xe and

 PtF_6 ?

Watch Video Solution

31. What are the oxidation states of phosphorus in the following:

- (i) H_3PO_3 , (ii) PCl_3 , (iii) Ca_3P_2
- (iv) Na_3PO_4 , (v) POF_3

Watch Video Solution

- **32.** Write balanced equation for the following:
- (i). NaCl is heated with sulphuric acid in the presence of MnO_2 .
- (ii). Chlorine gas is passed into a solution of NaI in water.

33. Xenon does not form fluorides such as XeF_3 and XeF_5 . Explain.

Watch Video Solution

34. With which neutral molecule is ClO^- isoelectronic? Is this molecule

Lewis acid or base?

35. How are XeO_3 and $XeOF_4$ prepared ?

Watch Video Solution

36. Arrange the following in the order of property indicated for each set:

- (i). F_2, Cl_2, Br_2I_2 increasing bond dissociation enthaply.
- (ii). HF, HCl, HBr, HI- increasing acid strength.
- (iii). NH_3 , PH_3 , AsH_3 , SbH_3 , BiH_3 increasing base strength.

- **37.** Which one of the following does not exist?
- $(i) XeOF_4(ii) NeF_2(iii) XeF_2(iv) XeF_6. \\$
 - Watch Video Solution

38. Give the formula and describe the structure of a noble gas species which is isostructural with :

$$(i)ICI_4^-(ii)Ibr_2^-(iii)BrO_3^-$$

39. Why do noble gases have comparatively large atomic sizes?

40. List the uses of neon and argon gases.

Watch Video Solution

Short Answer Type Questions

- 1. In the preparation of H_2SO_4 by Contact process, why is SO_3 not absorbed directly in water to form H_2SO_4 ?
 - Watch Video Solution

- **2.** Write a balanced chemical equation for the reaction showing catalytic oxidation of NH_3 by atmosoheric oxygen.
 - Watch Video Solution

3. Write the structure of pyrophosphoric acid.

Watch	Video	Solution	
Traccii	Video	Solution	

4. PH_3 forms bubbles when passed slowly in water but NH_3 dissolves.

Explain why?

5. In PCl_5 , phosphorus is in sp^3 d hybridised state but all its five bonds are not equivalent. Justify your answer with reason.

6. Why is nitric oxide paramagnetic in gaseous state but the solid obtained on cooling it is diamagnetic?

8. Out of H_2O and H_2S , which one has higher bond angle and why?

9. SF_6 is known but SC_6 is not. Why?

10. On reaction with Cl_2 phosphorus forms two types of halides 'A' and 'B'. Halide 'A' is yellowish- white powder but halide 'B' is colourless oily liquid. Identify A and B and write the formulae of their hydrolysis products.

11. In the ring test of NO_3^- ion, Fe^{2+} ion reduces nitrate ion to nitric oxide, which combines with Fe^{2+} (aq) ion to form brown complex .

Write the reactions involved in the formation of brown ring.

Watch Video Solution

12. Explain why the stability of oxoacids of chlorine increases in the order given below.

 $HClO < HClO_2 < HClO_3 < HClO_4$

Watch Video Solution

13. Explain why ozone is thermodynamically less stable then oxgen?

14. P_4O_6 reacts with water according to equation $P_4O_6 o 4H_3PO_3$. Calculate the volume of 0.1MNaOH solution required to neutralise the acid formed by dissolving 1.1g of P_4O_6 in H_2O .

Watch Video Solution

15. White phosphorus reacts with chlorine and the product hydrolyses in the presence of water. Calcualte the mass of HCl obtained by the hydrolysis of the product formed by the reaction of 62 g of white phosphorus with chlorine in the presence of water.

Watch Video Solution

16. Name three oxoacids of nitrogen . Write the disproportionation reaction of that oxoacid of nitrogen is in +3 oxidation state.

17. Nitric acid forms an oxide of nitrogen on reaction with $P_4O_{10}.$ Write the reaction involved . Also write the resonating structures of the oxide of nitrogen formed.

Watch Video Solution

18. Phosphorus has three allotropic forms __

(i) white phosphorus (ii) red phosphorus and (iii) black phosphorus. Write the difference between white red and black phosphorus on the basis of their structure and reactivity.

19. Given an example to show the effect of concentration of nitric acid on the formation of oxidation product.

20. PCl_5 reacts with finely divided silver on heating and a white silver salt is obtained , which dissolves on adding excess aqueous NH_3 solution. Write the reactions involved to explain what happens.

Watch Video Solution

21. Phosphorus forms a number of oxoacids. Out of these oxoacids, phosphinic acid has strong reducing property. Write its structure and also write a reaction its reducing behaviour.

Watch Video Solution

Long Answer Type Questions

1. An amorphous soild A burns in air to form a gas B which turns lime water milky. The gas is also produced as a by - product during roasting of sulohide ore. This gas decolourises acidified aqueous $KMnO_4$ solution

and reduces $Fe^{3\,+}$ to $Fe^{2\,+}$. Identify the solid A and the gas B and write the reactions involved.

2. On heating lead (II) nitrate gives a brown gas " A". The gas " A" on cooling changes to colourless solid "B" . Solid B on heating with NO changes to a blue solid 'C . Identify ' A', 'B' and' C and also write reactions involved and draw the structures of 'B' and 'C' .

This gas when treated with 3 moles of hydrogen (H_2) in the presence of a catalyst gives another gas (C) which is basic in nature. Gas C on further oxidation in moist condition gives a compound (D) which is a part of acid

3. On heating compound (A) gives a gas (B) which is a constituent of air.

rain. Identify compounds (A) to (D) and also give necessary equations of all the steps involved .

Questions From Board Examinations

- **1.** In solid state, PCl_5 is a......
 - Watch Video Solution

2. Why does ethyne (acetylene) burn with a sooty flame?

Watch Video Solution

3. Why is ICI more reactive than I_2 ?

Watch Video Solution

4. Reaction of phosphoric acid with $Ca_5(PO_4)_3F$ yields a fertiliser 'triple superphosphate'. Represent the same through balanced chemical

equations.

Watch Video Solution

5. Which of the following ion is spectator ion in the reaction given below:

$$Zn + 2H^{+} + 2Cl^{-}
ightarrow Zn^{2+} + 2Cl^{-} + H_{2}$$

Watch Video Solution

6. SF_6 is a well known compound while SH_6 does not exist. Explain.

Watch Video Solution

The correct decreasing order of the acidic strength 7. $HClO, HClO_2, HClO_3, HClO_4$ is

8. Why is nitric oxide paramagnetic in gaseous state but the solid obtained on cooling it is diamagnetic?

9. NF_3 is not hydrolysed while NCl_3 can be readily hydrolysed. Explain.

10. All bonds in the molecule of PCl_5 are not equivalent. Explain.

11. Assertion: $HClO_4$ is a stronger acid than $HClO_3$.

Reason: Oxidation state of Cl in $HClO_4$ is +VII and in $HClO_3+V$.

12. Bleaching powder is prepared by passing chlorine into

13. Addition of $Cl_2 o KI solution give its a brown colour but excess of <math>cl_2$ turns it colourless. Why?

14. Why does H_3PO_3 act as a reducing agent but H_3PO_4 does not ?

15. The compound which could not act both as oxidising and reducing agent is

16. Phosphorus acid can act both as oxidising agent as well as reducing agent while phosphoric acid is only an oxidising agent. Explain.

" " Or

Phosphorus acid undergoes disproportionation reaction but phosphoric acid does not. Explain.

17. Assertion: Fluorine is the strongest oxidising agent in halogens.

Reason: It displaces other halogens from its aqueous solution.

18. What happen when Cl_2 is passed through a hot concentrated solution of a base like $Ba(OH)_2$?

19. XeF_4 on partial hydrolysis produces				
Watch Video Solution				
20. PH_3 has lower boiling point that NH_3 . Why ?				
Watch Video Solution				
21. Why does PCl_3 fumes in air ?				
Watch Video Solution				
22. Which set of elements have strongest tendency to form anions?				
Watch Video Solution				
23. Molecular shape of SF_4,CF_4 and XeF_4 are				

Watch Video Solution				

24. Write the balanced equation for the following chemical reaction:

 ${\rm Hydrogen} + {\rm Chlorine} \, \to \, {\rm Hydrogen} \; {\rm chloride}$

25. Write the balanced chemical equations for the following.

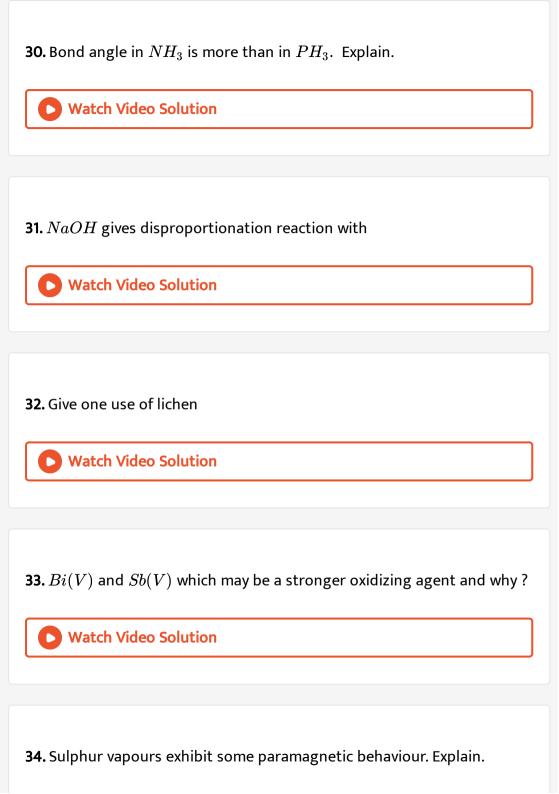
- (i)Hypophosphorous acid is heated.
- (ii) Sodium chlorate reacts with sulphur dioxide in dilute sulphuric acid medium.

26. The oxidation states exhibites by hydrogen in its various compounds are :

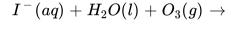
27. Arrange the following acids in the decreasing order of their acid strength:

HF, HCl, HBr, HI

28. When the first electron gain enthalpy $\left(igtrianglelow{igcep}_{eg} H \right)$ of oxygen is


-141kJ/mol, its second electron gain enthalpy is :

29. Give the formula and describe the structure of a noble gas species which is isostructural with :


$$(i)ICI_4^-(ii)Ibr_2^-(iii)BrO_3^-\\$$

35. Complete the following chemical equations :

$${\sf (i)} P_4(s) + NaOH(aq) + H_2O(l) \rightarrow$$

36. In the structure of HNO_3 , why is N-O bond (121 pm) shorter than N-OH bond (140 pm) ?

37. XeF_2 has linear structure and not a bent structure , Given reason .

38. Red phosphorus is less reactive than yellow phosphorus because

Watch Video Solution

39. On the basis of VSEPR theory, prefict the shapes of the following molecules ions:

$$(i)ClF_3 \hspace{0.5cm} (ii)BrF_5 \hspace{0.5cm} (iii)IF_7 \hspace{0.5cm} (iv)H_3O^+ion.$$

40. Why helium and neon do not form compounds with florine?

Watch Video Solution

41. Ka_1, Ka_2 and Ka_3 are the respective constants for the following reactions

 $H_2S \Leftrightarrow H^+ + HS^-$

$$egin{aligned} HS^-&\Leftrightarrow H^++S^{2-}\ &H_2S&\Leftrightarrow 2H^++S^{2-} \end{aligned}$$

The correct relationship between $Ka_1,\,Ka_2$ and Ka_3 is

- **42.** Give the decreasing order of dipole moments of HF, HCI, HBr, and HI.
- Watch Video Solution

- **43.** (a) Why does NO_2 dimerise ?
- (b) In what way can it be proved that PH_3 is basic in nature?
 - Watch Video Solution

44. Red phosphorus isreactive than white phosphorus as red phosphorus is polymeric and consists of the of P_4 units.

45. NF_3 is not hydrolysed while NCl_3 can be readily hydrolysed. Explain.

46. Among $CIF_3,\,BF_3\,$ and $\,NH_3\,$ molencules the one with non-planar geometry is

47. Complete the following equations :

- (i) $NaOH(aq) + Cl_2(g)
 ightarrow \ ext{(hot and conc.)}$
- (ii) $XeF_6(s) + H_2O(l)
 ightarrow$
- (iii) $P_4(s) + SO_2Cl_2(l)
 ightarrow$
- (iv) $XeF_4(g)+H_2O(l)
 ightarrow$

48. The stability of +5 oxidation state decreases down the group 15 of the periodic table. Explain this observation giving appropriate reasons.

49. The negative value of electron gain enthalpy is less for fluorine than for chlorine . Why?

50. Which of the following correct about $\left[Icl_4
ight]^-$ and iCl_4 compound

51. Why does H_3PO_3 act as a reducing agent but H_3PO_4 does not ?

52. (a) Write the balanced chemical equation for the reaction of Cl_2 with hot and concentrated NaOH. Is this reaction a disproportion reaction? (b) when HCl reacts with finely powdered iron, it forms ferrous chloride and not ferric chloride. why?

Deduce the molecular shape of BrF_3 on the basis of VSEPR theory.

Watch Video Solution

53. find the total numbers of compounds which contain S-S linkage.

 $H_2S_2O_3, H_2S_2O_5, H_2S_4O_6, H_2S_2O_7, H_2S_2O_8, H_2S_2O_6$

54. Arrange the following in order of decreasing N - O bond length NO_2^-, NO_2^-, NO_3^-

55. Give reasons for the following observations:

Why SF_4 undergoes hydrolysis but not SF_6 ?

Or SF_6 is inert towards hydroysis.

 SF_6 is much less reactive than SF_4 .

Or (i) SF_4 is easily hydrolysed whereas SF_6 is not easily hydrolysed.

- (ii) Sulpher exhibits greater tendency for calenation than selenium.
- (iii) Sulpher has a higher tendency for catenation than oxygen.

56. Although flurorine is more electronegative than oxygen, but the ability of oxygen to stabilize higher oxidation states exceeds that of fluorine. Why?

Watch Video Solution

57. Which element of chalcogens has maximum tendency to show catenation?

58. Group 16 element (except polonium) are called chalcogens because

59. Structure of xenon fluorides cannot be explained by valence bond theory. Explain.

60. Predict the shape and the asked angle (90° or more or less) in each of the following cases :

- $(i)SO_3^{2\,-}$ and the angle O-S-O
- $(ii)ClF_3$ and the angle F-Cl-F
- (iii) XeF_2 and the angle F-Xe-F.

61. Draw the structure of the following molecules

(i) $H_3PO_2(ii)H_2S_2O_7(iii)XeOF_4$.

62. what happens if conc H_2SO_4 is used in preparing hydrogen by its reaction with a metal?

63. Why phosphorus is more reactive than nitrogen?

64. The stability of ± 5 oxidation state decreases down the group 15 of the periodic table. Explain this observation giving appropriate reasons.

65. Arrange the following in order of decreasing N - O bond length NO_2^-, NO_2^-, NO_3^-

66. Which is a stronger reducing agent , SbH_3 or BiH_3 and why ?

67. Explain why all bonds in SF_4 molecule are not equivalent.

68. Despite lower value of its electron gain enthalpy with negative sign, fluorine (F_2) is a stronger oxidising agent than chlorine (Cl_2) . Explain.

69. Why are halogens coloured?

Watch Video Solution

70. Complete the reactions

(i)
$$Cu + HNO_3(ext{Conc.})
ightarrow (ii) XeF_4 + O_2F_2
ightarrow$$

Watch Video Solution

71. Although hydrogen bonding in HF is stronger than in water, yet water has much higher boiling point than HF. Explain.

Watch Video Solution

72. Complete the following reactions:

(i)
$$NH_4Cl(aq) \stackrel{
m heat}{\longrightarrow} (ii)P_4 + NaOH + H_2O
ightarrow$$

(iii)
$$Xe(g) + F_2(g) \stackrel{673K}{\underset{1 ext{ bar}}{\longrightarrow}} (iv) Sn + PCl_5 \stackrel{ ext{heat}}{\longrightarrow}$$

(v)
$$HgCl_2 + PH_3
ightarrow$$

73. Write balanced chemical equations for the following reactions:

- (a) Hypophosphorus acid is added to $AgNO_3$ solution
- (b) Chlorine gas is passed through hot and concentrated solution hydroxide.
- (c) XeF_2 undergoes hydrolysis.

74. Write balanced chemical equation for the following:

- (a) NaCl is heated with sulphuric acid in the presence of MnO_2
- (b) Iodine is treated with Conc. HNO_3 .

75. Give two allotropes of oxygen. Give one method of preparation and two uses of each.

76. Which xenon compound has distorted octahedral shape?

- **77.** How will you account for the following :
- (i) HI is a stronger acid than HF.
- (ii) The electron affinity of fluorine is less than that of chlorine.
 - Watch Video Solution

78. How are interhalogen compounds formed ? Write general compositions that can be assigned to them.

atti video solution

79. What happens when:

(i) PCl_5 , is heated (ii) H_3PO_3 is heated

80. Bleaching of flowers by Cl_2 is permanent while bleaching by SO_2 is temporary, why ?

81. Arrange HClO, HBrO, HIO decreasing order of acidic strength.

82. Complete the equation

 $XeF_6 + H_2O \rightarrow ? + ?$

Watch Video Solution				

83. Draw the shapes of the following molecules :

- (i) $XeOF_4(ii)H_2SO_4$
 - Watch Video Solution

Watch Video Solution

and red phosphorus.

Watch Video Solution

85. The two O-O bond lengths in ozone molecule are equal. Assign reason.

84. Write main differences between the properties of white phospghorus

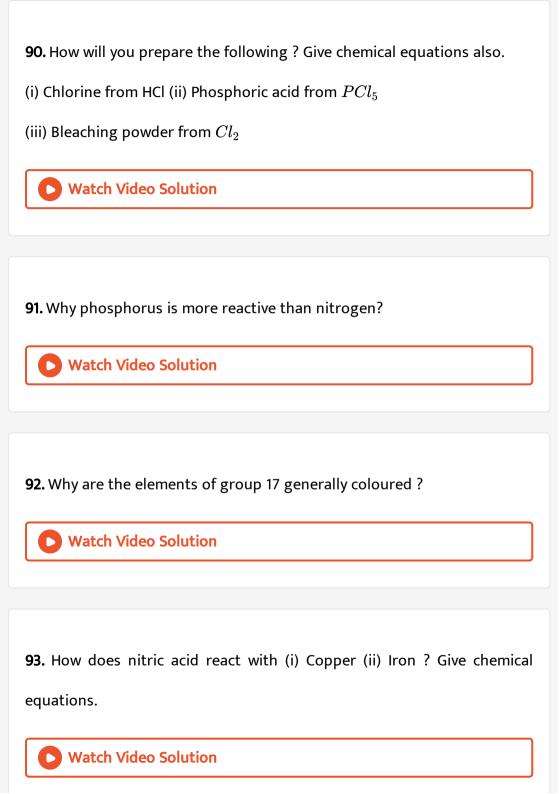
Watch Video Solution

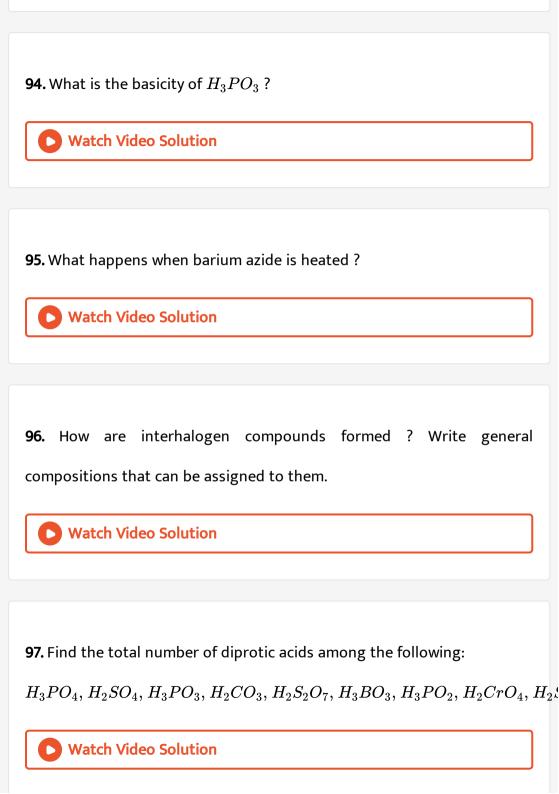
86. Why is PCl_5 more covalent than PCl_3 ?

87. How will you prepare PH_3 from

(i) Metal phosphides (ii) $H_3PO_2(iii)H_3PO_3$?

Draw the structure of PH_3 .




88. Explain why nitrogen exists as a diatomic molecule and phosphorus at P_4 molecule.

89. Why are halogens strong oxidising agents?

98. Why does NH_3 act as a good complexing agent ? **Watch Video Solution** 99. Which allotropic form of sulphur is most stable? **Watch Video Solution 100.** Why is bond angle in NH_4^+ ion higher than in NH_3 ? **Watch Video Solution 101.** Why is the BiH_3 strongest reducing agent amongst all the hydrides of group 15? **Watch Video Solution**

102. Which poisonous gas is evolved when white phosphorus is heated with conc. NaOH solution? Write the chemical equations involved.

Watch Video Solution

103. (i) Which allotrope of phosphorus is more reactive and why?

(ii) How are the supersonic jet aeroplanes responsible for the depletion

of ozone layers ?

(iii) F_2 has lower bond dissociation enthalpy than Cl_2 . Why ?

(iv) While noble gas is used in filling balloons for meterological observations?

104. Give reason for the following:

- (i) Chlorine water loses its colour on standing.
- (ii) The is more acidic than H_2S .

Watch Video Solution

105. Draw the structures of $(i)H_2S_2O_8(ii)XeO_4$.

Watch Video Solution

106. On heating copper turnings with conc. HNO_3 , a brown coloured gas is evolved which upon cooling dimerises. Identify the gas.

Watch Video Solution

107. Give reasons :

- (i) PCl_5 is more volatile than PCl_3 .
- (ii) O-O bond has lower bond dissociation enthalpy than S-S bond.
- (iii) F_2 is stronger oxidising than Cl_2 .

Watch Video Solution

108. Assign reason for the following:

- (i) H_3PO_2 is a stronger reducing agent than H_3PO_4 .
- (ii) Sulphur shows more tendency for catenation than oxygen.
- (iii) Reducing character increases from HF to HI.

109. ON adding NaOH to ammonium sulphate, a colourless gas with pungent odour is evolved which forms a blue coloured complex with Cu^{2+} ions. Identify the gas.

110. Considering the parameters such as bond dissociation enthalpy, electron gain enthalpy and hydration enthalpy, compare the oxidising power of F_2 and Cl_2

111. Write the conditions to maximize the yield of H_2SO_4 by contact process.

112. Arrange the following in increasing order of the property indicated:

- (a) $H_3PO_3, H_3PO_4, H_3PO_2$ (Reducing Character)
- (b) $NH_3,\,PH_3,\,AsH_3,\,SbH_3,\,BiH_3$ (Basic Strength)

113. (a) Write the laboratory method for the preparation of HNO_3 .

(b) Write the structure of three oxoacids of phosphorus.

114. Describe the manufacture of sulphuric acid by contact process on the basis of the following points:

(i) Theory and chemical reaction (ii) Labelled diagram (iii) Any two uses.

Watch Video Solution

115. (i) Why is concentrated H_2SO_4 always diluted by adding H_2SO_4 to water with constant stirring and not water to acid?

(ii) Arrange $HClO_4$, $HClO_3$, $HClO_2$, HClO inorder of decreasing acidic strength.

Watch Video Solution

116. What happens when

- (i) Orthophorus acid is heated?
- (ii) XeF_6 undergoes complete hydrolysis?

Watch Video Solution

117. Write the disproportionation reaction of that oxoacid of nitrogen in which nitrogen is in ± 3 oxidation state.

$$3H\overset{+3}{NO_2} o H\overset{+5}{NO_3} + 2\overset{+2}{NO_2} + H_2O$$

Give reasons for the following:

- (i) Fluoride ion has higher hydration enthalpy than chloride ion.
- (ii) Thermal stability, decreases from H_2O to H_2Te .

118. Electron gain enthalpies of halogens are largely negative. Explain.

119. Why is N_2O_5 more acidic than N_2O_3 ?

120. H_3PO_2 acts as a monobasic acid. Explain.

Watch Video Solution

121. Give reasons :

- (a) H_3PO_3 undergoes disproportination reaction but H_3PO_4 does not
- (b) Dioxygen is a gas while sulphur is a solid
- (c) When ${\it Cl}_2$ reacts with excess of ${\it F}_2$ compound formed is

 CiF_3 and not FCl_3 .

Watch Video Solution

122. (i) white phosphorus (ii) red phosporus and (iii) balck phosphorus.

Write the difference between white red and black phosphorus on the

basis of their structure and reactivity.

Phosphorus has three allotropic forms __

Watch Video Solution

Higher Order Thinking Skills

1. Some farmers feel that lightening helps in producing a better crop. What is the scientific reason behind this?

Watch Video Solution

2. You are given an inorganic mixture with the information that the cations of group II are absent. However, on passing H_2S gas through the mixture solution acidified with dilute HCl, yellowish turbidity apperas. Explain.

Watch Video Solution

3. A greenish yellow gas 'X' is passed through water to form a saturated solution. The aqueous solution on treatment with silver nitrate solution gives a white precipitate. The saturated aqueous solution also dissolves magnesium ribbon with the evolution of a colourless gas 'Y'. Identify gases 'X' and 'Y'.

Watch Video Solution

4. Concentrated sulphuric acid is added followed by heating in each of the following test tubes labelled (i) to (v):

Identify in which of the above test tubes, the following changes will be observed. Support your answer with the help of a chemical equation.

- (a) formation of black substance
- (b) evolution of brown gas
- (c) evolution of colourless gas
- (d) formation of brown subtance which on dilution becomes blue.
- (e) disappearance of yellow powder along with the evolution of a colourless gas.

View Text Solution

- 5. An aqueous solution of gas 'A' gave the following reactions:
- (i) It decolourised an acidified $KMnO_4$ solution.
- (ii) On boiling with H_2O_2 followed by cooling and then adding an aqueous solution of $BaCl_2$, a white precipitate insoluble in dilute HCl was obtained.

(iii) On passing H_2S through the solution of the gas, white turbidity was obtained. Identify the gas and give equations for steps (i), (ii) and (iii).

- **6.** An inorganic compound 'A' gives a brick red flame on performing flame test. The compound gives the following tests also.
- (a) It smells of chlorine when placed in moist air.
- (b) If KI and CH_3COOH are added to the suspension of the compound in water, a violet colour is noticed. Identify the compound 'A' and write the equations for the tests (a) and (b).

7. A translucent white waxy solid (A) on heating in an inert atomosphere is converted to its allotropic form (B). The solid (A) on reaction with very dilute aqueous KOH liberates a highly poisonous gas (C) having rotten fish smell. With excess of chlorine, (A) forms (D) which hydrolyses to compound (E). Identify compounds (A) to (E).

Watch Video Solution

8. An element 'A' exists as a yellow solid in standard state. It forms a volatile hydride 'B' which is a foul smelling gas and is extensively used in qualitative analysis of salts. When treated with oxygen, 'B' forms an oxide 'C' which is a colourless and pungent smelling gas. The gas when passed through acidified $KMnO_4$ solution, decolourises it. 'C' gets oxidised to another oxide 'D' in the presence of heterogeneous catalyst. Identify A, B, C, D and also give the chemical equations of reaction of 'C' with acidified $KMnO_4$ solution and for conversion of 'C' into 'D'.

9. Element 'A' burns in nitrogen to give an ionic compound 'B' which reacts with water to give 'C' and 'D'. The solution of 'C' becomes milky on bubbling carbon dioxide gas. Identify the compounds A, B, C and D.

10. A colourless inorganic salt (A) decomposes completely at about $25^{\circ}\,C$ to give only two products, (B) and (C), leaving no residue. The product (C) is a liquid at room temperature and neutral to moist litmus paper while the gas (B) is a neutral oxide. White phosphorus burns in excess of (B) to produce a strong white dehydrating agent. Write balanced equations for the reactions involved in the above process.

- _ _ _
- (a) It turns red litmus blue.
- (b) When added in excess to a copper sulphate solution, a deep blue coloured solution is obtained.

11. An aqueous of a gas (X) shows the following reactions :

(c) On addition to $FeCl_3$ solution, a brownish precipitate is formed, which is solution in HNO_3 . Identify (X) and give an explanation for step (a), (b) and (c). **Watch Video Solution Problems For Practice 1.** Name the gas evolved when ammonium dichromate $(NH_4)_2Cr_2O_7$ is heated. **Watch Video Solution** 2. Why is ammonia highly soluble in water?

3. Is nitrogen gas poisonous in nature?

Watch Video Solution
4. Name a compound of N, H and O which upon heating evolves nitrogen gas.
Watch Video Solution
5. What is the formula of nitrolim? Watch Video Solution
6. What happens when mixture of NH_3 and air is passed over heated platinum gauze ?
Watch Video Solution
7. Why does NH_3 act as a good complexing agent ?

Watch Video Solution
8. Nessler's reagent is
Watch Video Solution
9. Which oxide of nitrogen is coloured ?
Watch Video Solution
10. Which of the following is a nitric acid anhydride?
Watch Video Solution
11. The composition of aqua-regia is
Watch Video Solution

12. Name one metal which becomes passive in conc. HNO_3 .				
View Text Solution				
13. Which oxide of nitrogen is paramagnetic and coloured ?				
Watch Video Solution				
14. What are the neutral oxides of nitrogen?				
Watch Video Solution				
15. Name the product when zinc is reacted with very dilute HNO_3 acid.				
Watch Video Solution				
16. Name the product when iodine is heated with concentrated HNO_3 .				

17. Name the compound of N with oxidation state -3 and +2.

- **18.** Identify the group 15 elements (s) which correspond to the following description.
- (a) exists mainly in +3 oxidation state.
- (b) is a gas at room temperature

(c) forms a basic oxide

- (d) is the most abundant element in the atmosphere.
 - Watch Video Solution

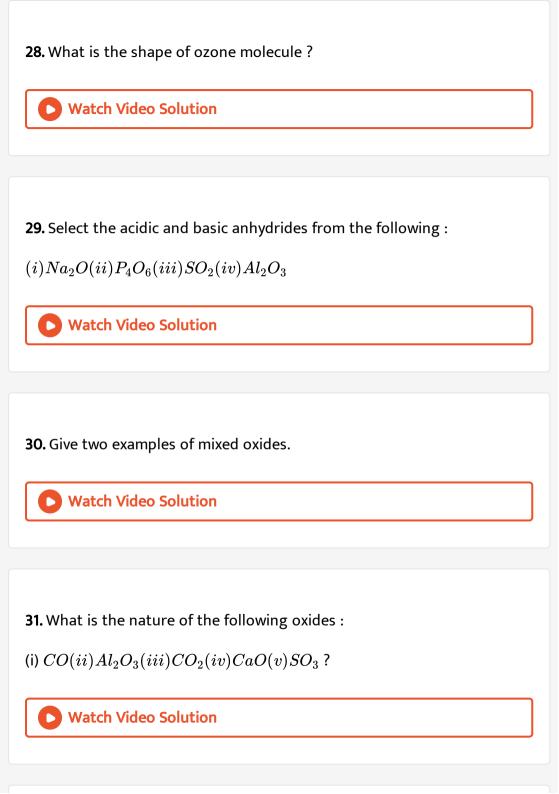
19. In the ring test for NO_3^- ion, what is the chemical formula of the brown coloured ring ?

Watch video Solution
20. Which oxide of nitrogen becomes brown when released in air ?
View Text Solution
21. What are the shapes of PH_3 molecule and PH_4^+ ion ?
Watch Video Solution
22. What is the maximum oxidation state shown by nitrogen in its compounds? Watch Video Solution
23. What is the nature of N^{3-} ion ?
Watch Video Solution

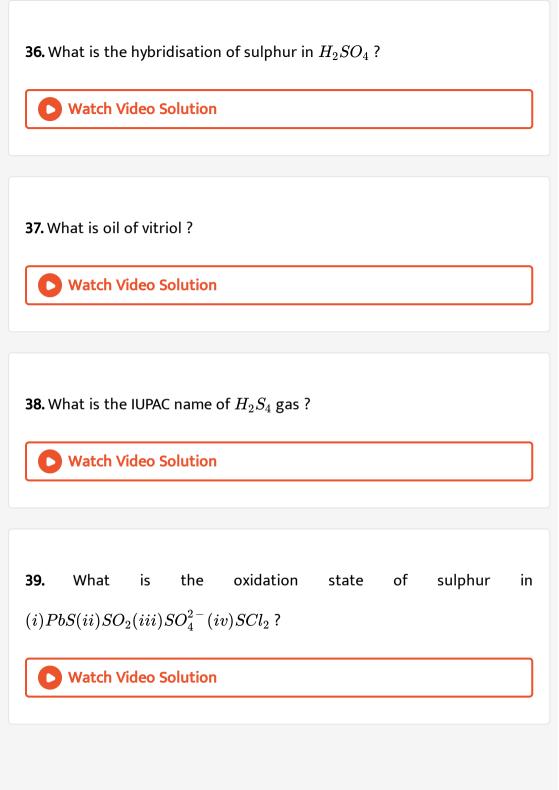
24. Apart from N_2O which other colourless gas supports combustion ?

25. What is the nature of the following reaction?

$$P_4 + 3NaOH + 3H_2O
ightarrow PH_3 + 3NaH_2PO_2$$



26. How many (P-O) bonds are present in (i) $P_4O_6(ii)P_4O_{10}$?

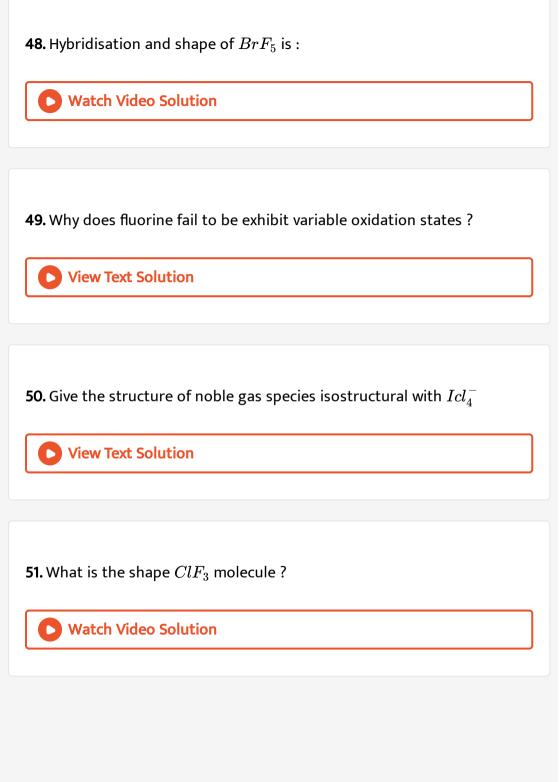


27. Out of O_2 and O_3 which is a better oxidising agent?

32. What happends when water is dropped over Na_2O_2 ?
Watch Video Solution
33. Why is O_3 more reactive than O_2 ?
Watch Video Solution
34. Name two compounds in which oxygen has oxidation states different
from-2.
Watch Video Solution
35. How does sulphur normally exist ?
Watch Video Solution

40. What happens to sugar when conc. H_2SO_4 is dropped on it ?
Watch Video Solution
41. Which allotropic form of sulphur is not sharp melting?
Watch Video Solution
42. Which chemical is used to remove a fresh iodine stain ?
Watch Video Solution
43. What are the colours of the following sulphides?
(i) CoS (ii) CuS (iii) MnS (iv) CdS.
View Text Solution

44. Out of 1 M H_2SO_4 and 1 N H_2SO_4 , which is more concentrated and why?



46. Name the halogens that can form true chemical bonds with noble gases?

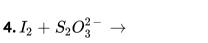
47. Give two compounds in which iodine behaves as a cation.

52. Give one example each in which halogens display positive oxidation states from +1 to +7.

53. Name a neutral molecule isoelectronic with $ClO^-\,$ ion.

halogens ?

54. What is the state of hybridisation of halogen atom in the Oxoacids of


Complete the following equations

1. $I_2 + NaClO_3 ightarrow$

2. $Br_2 + NaI$ →

3. $IO_3^- + I^- + H^+
ightarrow$

5. $BrO_3^- + F_2 + 2OH^-
ightarrow$

6.
$$XeF_2+H_2O
ightarrow$$

7.
$$XeF_6+PF_5
ightarrow$$

8. $XeF_6 + NaF
ightarrow$

9. $XeF_6 + HF
ightarrow$

Watch	Video	Solution	

11. $Xe + O_2F_2 \stackrel{155K}{\longrightarrow}$

12.
$$4As+Cl_2
ightarrow$$

13. $HNO_3 \xrightarrow[\text{Heat}]{P_4O_{10}}$

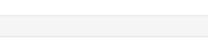
Availanda agaila

14. $H_3PO_3 \stackrel{\mathrm{Heat}}{\longrightarrow}$

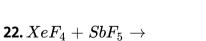
15.
$$SCl_2 + NaF
ightarrow$$

16.
$$NH_4NO_3 \stackrel{\mathrm{Heat}}{\longrightarrow}$$

17. $FeSO_4 + NO + H_2O
ightarrow$



18. $Ca_3(PO_4)_2 + H_2SO_4
ightarrow$


0	Watch	Video	Solution	

20. $SCl_4 + AgF
ightarrow$

21. $HPO_3 \xrightarrow{\mathrm{Heat}}$

23. $SO_2 + NaClO_3 \stackrel{H^+}{\longrightarrow}$

24. $SO_2 + H_2S
ightarrow ext{ Product.}$ The final product is

25.
$$CaP_2 + H_2O
ightarrow$$

26. $XeF_4 + H_2O \rightarrow$

27. $Cu^+ + NH_3 \rightarrow$

29. $F_2(g) + H_2O(l) \rightarrow$

30. $PH_3 + HgCl_2
ightarrow$

31. $P_4 + SO_2Cl_2
ightarrow$

32. $XeF_6 + H_2O
ightarrow$

33.
$$NaOH + Cl_2
ightarrow {
m hot, conc.}$$

34. $XeF_4 + O_2F_2 \rightarrow$

35. $Cl_2 + F_2(\text{excess}) \rightarrow$

36. $Cu + 4HNO_3(\mathrm{Conc.}) \rightarrow$

38.
$$NH_4Cl(aq) + NaNO_2(aq) \stackrel{\mathrm{heat}}{\longrightarrow}$$

39. $Sn+PCl_5
ightarrow$

40. $P_4 + NaOH + H_2O
ightarrow$

41. $XeF_4 + O_2F_2 \rightarrow$

42. $(NH_4)_2 Cr_2 O_7 \stackrel{\mathrm{heat}}{\longrightarrow}$

43. $P_4 + HNO_3(\mathrm{Conc.}) \rightarrow$

44. $(NH_4)_2SO_4+NaOH
ightarrow$

45. $CaF_2 + H_2SO_4
ightarrow$

1. On addition of con. H_2SO_4 to a chloride salt, colourless fumes come out. This is because

A. H_2SO_4 reduces HI to I_2

B. HI is of violet colour

C. HI gets oxides to I_2

D. HI changes to HIO_3

Answer: C

Watch Video Solution

2. In qualitative analysis when H_2S is passed through an aqueous solution of salt acidified with dil. HCl, a black precipitate is obtained. On boiling the precipitate with dil. HNO_3 , it forms a solution of blue colour. Addition of excess of aqueous solution of ammonia to this solution gives

A. deep blue precipitate of $Cu(OH)_2$

B. deep blue solution of $\left[Cu(NH_3)_4
ight]^{2+}$

C. deep blue solution of $Cu(NO_3)_2$

D. deep blue solution of $Cu(OH)_2$. $Cu(NO_3)_2$

Answer: B

Watch Video Solution

3. In a cyclotrimetaphosphoric acid molecule, how many single and double bonds are present?

A. 3 double bonds, 9 single bonds

B. 6 double bonds, 6 single bonds

C. 3 double bonds, 12 single bonds

D. Zero double bonds, 12 single bonds

Answer: A

- **4.** Which of the following elements can be involved in $p\pi-d\pi$ bonding ?
 - A. Carbon
 - B. Nitrogen
 - C. Phosphorus
 - D. Boron

Answer: C

- **5.** Which of the following pairs of ions are isoelectronic and also isostructural?
 - A. CO_3^{2-} , NO_3^-
 - $\operatorname{B.}ClO_3^-,CO_3^{2-}$
 - $\mathsf{C.}\,SO_3^{2\,-}\,,NO_3^{\,-}$

D.
$$ClO_3^-$$
 , $SO_3^{2\,-}$

Answer: A

Watch Video Solution

6. Affinity for hydrogen decreases in the group from fluorine to iodine. Which of the halogen acids should have highest bond dissociation enthalpy?

A. HF

B. HCl

C. HBr

D. HI

Answer: A

7. Bond dissociation enthalpy of E- H (E = element) bonds is given below.

Compound NH_3 PH_3 AsH_3 SbH_3

 $\Delta_{
m diss}(E-H)\,/$

 $kJmol^{-1}389$ 322 297 255

Which of the following compounds will act as strongest reducing agent?

A. NH_3

B. PH_3

C. AsH_3

D. SbH_3

Answer: D

Watch Video Solution

8. On heating with concentrated NaOH solution in an inert atmosphere of CO_2 , white phosphorus gives a gas. Which of the following statements is incorrect about the gas ?

A. It is highly poisonous and hass smell like rotten fish.

B. Its solution in water decomposes in the presence of light.

C. It is more basic than NH_3 .

D. It is less basic than NH_3

Answer: C

Watch Video Solution

- **9.** Which of the following acids forms three series of salts?
 - A. H_3PO_2
 - B. H_3BO_3
 - $\mathsf{C}.\,H_3PO_4$
 - D. H_3PO_3

Answer: C

10. Strong reducing behaviour of H_3PO_2 is due to

A. Low oxidation state of phosphorus

B. Presence of two $-{\cal OH}$ gorups and one P-H bond

C. Presence of one $-\mathit{OH}$ group and two P-H bonds

D. High electron gain enthalpy of phosphorus

Answer: C

11. On heating lead nitrate forms oxides of nitrogen and lead. The oxides formed are :

A. N_2O , PbO

 $\operatorname{B.}NO_2, PbO$

C. NO, PbO

D. NO, PbO_2
Answer: B
Watch Video Solution
12. Which of the following elements does not show allotropy?
A. Nitrogen
B. Bismuth
C. Antimony
D. Arsenic
Answer: A

13. The maximum covalency of nitrogen is

- A. 3
- B. 5
- C. 4
- D. 6

Answer: C

Watch Video Solution

- 14. Which of the following statements is wrong?
 - A. Single N-N bond is stronger than the single P- P bond.
 - ${
 m B.}\,PH_3$ can act as a ligand in the formation of coordination compound with transition elements.
 - C. NO_2 is paramagnetic in nature.
 - D. Covalency of nitrogen in $N_2{\cal O}_5$ is four.

Answer: A

15. A brown ring is formed in the ring test for NO_3^- ion. It is due to the formatin of

A.
$$igl[Fe(H_2O)_5(NO)igr]^{2\,+}$$

B. $FeSO_4$. NO_2

C.
$$\left[Fe(H_2O)_4(NO)_2\right]^{2+}$$

D. $FeSO_4HNO_3$

Answer: A

Watch Video Solution

16. Elements of group 15 form compounds in ± 5 oxidatin state. However, bismuth forms only one well characterised compound in ± 5 oxidation state. The compound is

- A. Bi_2O_5
- B. BiF_5
- C. $BiCl_5$
- D. Bi_2S_5

Answer: B

Watch Video Solution

- 17. On heating ammonium dichromate and barium azide separately we get
 - A. N_2 in both cases
 - B. N_2 with ammonium dichromate and NO with barium azide
 - C. N_2O with ammonium dichromate and N_2 with barium azide
 - D. N_2O with ammonium dichromate and NO_2 with barium azide

Answer: A

18. In the preparation of HNO_3 , we get NO gas by catalytic oxidation of ammonia. The moles of NO produced by the oxidation of two moles of NH_3 will be.

- A. 2
- B. 3
- C. 4
- D. 6

Answer: A

 NaH_2PO_2 will be.

Watch Video Solution

19. The oxidation state of central atom in the aniom of compound

D.-3**Answer: C** Watch Video Solution 20. Which of the following is not tetrahedral in shape? A. $NH_4^{\ +}$ B. $SiCl_4$ C. SF_4 $\operatorname{D.}SO_4^{2\,-}$ **Answer: C Watch Video Solution**

A. + 3

B. + 5

C. + 1

21. Which of the following are peroxoacids of sulphur?

A. H_2SO_5 and $H_2S_2O_8$

 $\mathsf{B.}\,H_2SO_5 \ \ \mathrm{and} \ \ H_2S_2O_7$

 $\mathsf{C}.\,H_2S_2O_7$ and $H_2S_2O_8$

 $\mathsf{D.}\,H_2S_2O_6 \ \ \mathrm{and} \ \ H_2S_2O_7$

Answer: A

22. Hot conc. H_2SO_4 acts as moderately strong oxidising agent. It oxidises both metals and non-metals. Which of the following elements is oxidised by conc. H_2SO_4 into two gaseous products ?

A. Cu

B. S

C. C

D. Zn

Answer: C

Watch Video Solution

23. A black compound of manganese reacts with a halogen acid to give greenish yellow gas . When excess of this gas reacts with NH_3 an unstable trihalide is formed. In this process, the oxidation state of nitrogen changes from

A. -3 to +3

B.-3 to O

C. -3 to +5

D. 0 to -3

Answer: A

24. In the preparation of compounds of Xe, Bartlett had taken $O_2^+ PtF_6^-$ as a base compound. This is because

A. both O_2 and Xe have same size.

B. both ${\cal O}_2$ and Xe have same electron gain enthalpy.

C. both O_2 and Xe have almost same ionisation enthalpy.

D. both Xe and O_2 are gases.

Answer: C

Watch Video Solution

25. In solid state PCl_5 is a

A. covalent solid

B. octahedral structure

C. ionic solid with $[PCl_6]^+$ octahedral and $[PCl_4]^-$ tetrahedra

D. ionic solid with $[PCl_4]^+$

Answer: D

Watch Video Solution

26. Reduction potentials of some ions are given below. Arrange them in decreasing order of oxidising power.

lon
$$CiO_4^ IO_4^ BrO_4^-$$

Reduction $E^{\,\Theta} = 1.19 V$ $E^{\,\Theta} = 1.65 V$ $E^{\,\Theta} = 1.74$

$$D_1O_4$$

A.
$$ClO_{\scriptscriptstyle A}^{-}>IO_{\scriptscriptstyle A}^{-}>BrO_{\scriptscriptstyle A}^{-}$$

potential E^{Θ}/V

B.
$$IO_{\scriptscriptstyle A}^{-} > BrO_{\scriptscriptstyle A}^{-} > ClO_{\scriptscriptstyle A}^{-}$$

C.
$$BrO_4^- > IO_4^- > ClO_4^-$$

D. $BrO_{\scriptscriptstyle A}^{-} > ClO_{\scriptscriptstyle A}^{-}IO_{\scriptscriptstyle A}^{-}$

Answer: C

27. Which of the following is isoelectronic pair?

A. Icl_2 , ClO_2

 $\mathrm{B.}\,BrO_2^-,BrF_2^{\,+}$

C. ClO_2, BrF

D. CN^-, O_3

Answer: B

Multiple Choice Questions

1. If chlorine gas is passed through hot NaOH solution, two changes are observed in the oxidation number of chlorine during the reaction. These are ___ and ___

A. 0 to +5

B. 0 to +3

C. 0 to -1

D. 0 to +1

Answer: A::C

Watch Video Solution

- 2. Which of the following options are not in accordance with the property mentioned against them?
 - A. $F_2 > C l_2 > B r_2 > l_2$ Oxidising power.
 - B. MI > MBr > MCl > MF Ionic character of metal halide.
 - C. $F_2 > Cl_2 > Br_2 > l_2$ Bond dissociation enthalpy.
 - D. HI < HBr < HCl < HF Hydrogen-halogen bond strength.

Answer: B::C

3. Which of the following is correct for P_4 molecule of white phosphorus

?

A. It has 6 lone pairs of electrons.

B. It has six P-P single bonds.

C. It has three P-P single bonds.

D. It has four lone pairs of electrons.

Answer: B::D

Watch Video Solution

4. Which of the following statements are correct ?

A. Among halogens, radius ratio between between iodine and fluorine

is maximum.

- B. Leaving F-F bond, all halogens have weaker X-X bond than X-X in interhalogens.
- C. Among interhalogen compounds maximum number of atoms are present in iodine fluoride.
- D. Interhalogen compounds are more reactive than halogen compounds.

Answer: A::C::D

- **5.** Which of the following statements are correct for SO_2 gas ?
 - A. It acts as bleaching agent in moist conditions.
 - B. Its molecule has linear geometry.
 - C. Its dilute solution is used as disinfectant.

D. It can be prepared by the reaction of dilute H_2SO_4 with metal sulphide.

Answer: A::C

6. Which of the following statements are correct?

A. All the three N-O bond length in HNO_3 are equal.

B. All P-Cl bond lengths in PCl_5 molecule in gaseous state are equal.

C. P_4 molecules in white phosporus have angular strain therefore white phosphorus is very reactive.

D. PCl_5 is ionic in solid state in which cation is tetrahedral and anion is octahedral.

Answer: C::D

7. Which of the following order are correct as per the properties mentioned against each ?

A.
$$As_2O_3 < SiO_2 < P_2O_3 < SO_2$$
 Acid strength.

B. $AsH_3 < PH_3 < NH_3$ Enthalpy of vapourisation

 ${\sf C.}\ S < O < Cl < F$ More negative electron gain enthalpy.

D. $H_2O>H_2S>H_2Se>H_2Te$ Thermal stability.

Answer: A::D

Watch Video Solution

8. Which of the following statements are correct ?

A. S-S bond is present in $H_2S_2O_6$.

B. In peroxosulphuric acid (H_2SO_6) sulphur is in $+\,6$ oxidation state.

C. Iron powder along with Al_2O_3 and K_2O is used as a catalyst in the preparation of NH_3 by Haber's process.

D. Change in enthalpy is positive for the preparation of SO_3 by catalytic oxidation of SO_2 .

Answer: A::B

Watch Video Solution

9. In which of the following reactions conc. H_2SO_2 is used as an oxidising reagent?

A.
$$CaF_2 + H_2SO_4
ightarrow CaSO_4 + 2HF$$

B.
$$2HI+H_2SO_4
ightarrow I_2+SO_2+2H_2O$$

C.
$$Cu+2H_2SO_4
ightarrow CuSO_4+SO_2+2H_2O$$

D.
$$NaCl + H_2SO_4
ightarrow NaHSO_4 + HCl$$

Answer: B::C

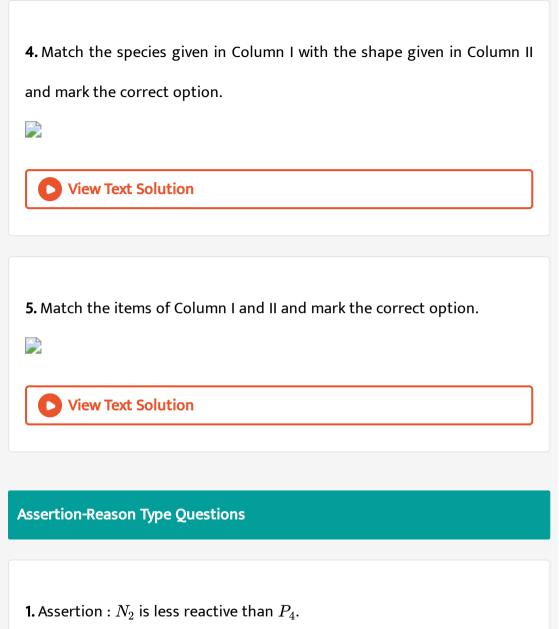
10. Which of the following statements are true?

A. Only type of interactions between particles of noble gases are due to weak dispersion forces.

B. Ionisation enthalpy of molecular oxygen is very close to that of xenon.

C. Hydrolysis of XeF_6 is a redox reaction.

D. Xenon fluorides are not reactive.


Answer: A::B

Watch Video Solution

Matching Type Questions

Reason: Nitrogen has more electron gain enthalpy than phosphorus.

2. Assertion : HNO_3 makes iron passive.

Reason : HNO_3 forms a protective layer of ferric nitrate on the surfae of iron.

Watch Video Solution

3. Assertion : HI cannot be prepared by the reaction of KI with concentrated H_2SO_4

Reason: HI has lowest H-X bond strength among halogen acids.

Watch Video Solution

4. Assertion : Both rhombic and monoclinic sulphur exist as S_8 but oxygen exists as O_2 .

Reason : Oxygen forms $p\pi-p\pi$ multiple bond due to small size and small length but $p\pi-p\pi$ bonding is not possible in sulphur.

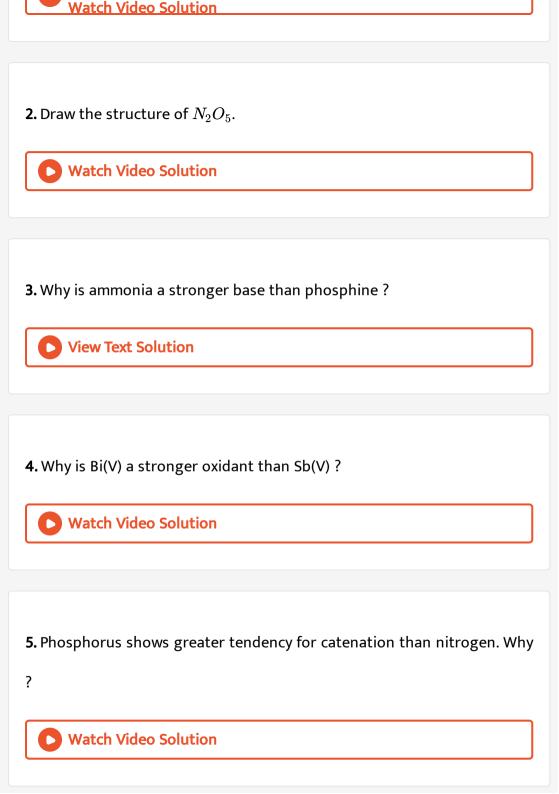
5. Assertion : NaCl reacts with concentrated H_2SO_4 to give colourless fumes with pungent smell. But on adding MnO_2 the fumes become greenish yellow.

Reason : MnO_2 oxidises HCl to chlorine gas which is greenish yellow.

View Text Solution

6. Assertion:- SF_6 cannot be hydrolysed but SF_4 can be.

Reason:- Six F atoms in SF_6 prevent the attack of H_2O on sulphur atom of SF_6


Watch Video Solution

Assignment

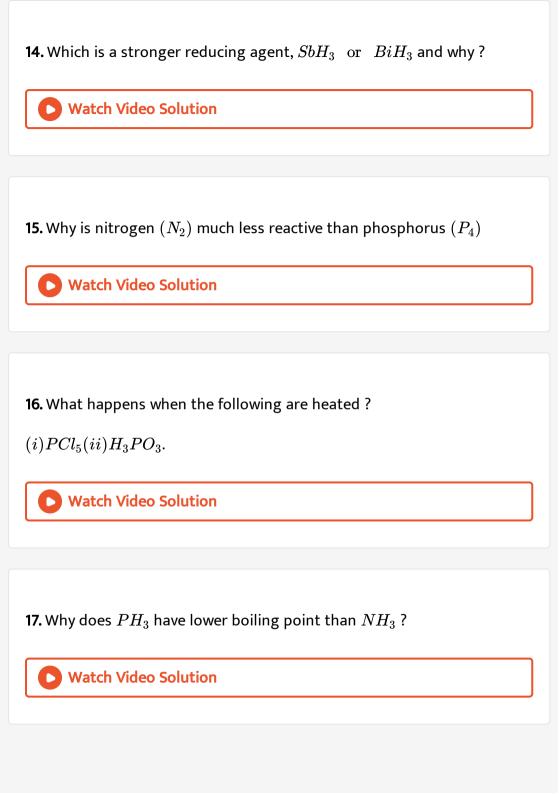
1. Why does phosphorus exist as PCl_5 but nitrogen cannot exist as NCl_5

?

6. Why is the bond angle in PH_3 molecule lesser than that in NH_3 molecule? **Watch Video Solution 7.** All bonds in the molecule of PCl_5 are not equivalent. Explain. **Watch Video Solution 8.** Why is NH_3 a stronger base than PH_3 ? **Watch Video Solution 9.** In the structure of HNO_3 , why is N-O bond (121 pm) shorter than N-OH bond (140 pm)? **Watch Video Solution**

10. H_3PO_2 and H_3PO_3 act as good reducing agents while H_3PO_4 does not. Discuss.

11. Why is bond angle in PH_4^+ ion higher than in PH_3 ?

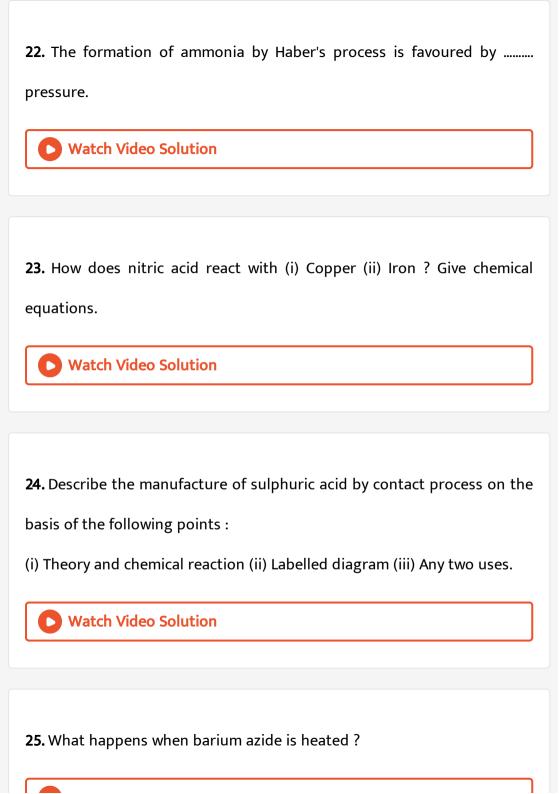


12. Why phosphorus is more reactive than nitrogen?

13. H_3PO_3 is diprotic (or dibasic). Why?

18. Write main differences between the properties of white phospshorus and red phosphorus.

19. Why is PCl_5 molecule more covalent than PCl_3 molecule ?



20. The basicity of phosphorus acid (H_3PO_3) is

21. Why is H_3PO_2 a stronger reducing agent than H_{3PO_3} ?

Watch Video Solution
26. Why is NH_3 a good complexing agent ?

Watch Video Solution

27. Copper turnings upon heating with conc. HNO_3 evolve a brown gas which dimerises upon cooling. Identify the gas.

(b) Write the structure of three oxoacids of phosphorus.

28. (a) Write the laboratory method for the preparation of HNO_3 .

30. What is the basicity of H_3PO_4 ?

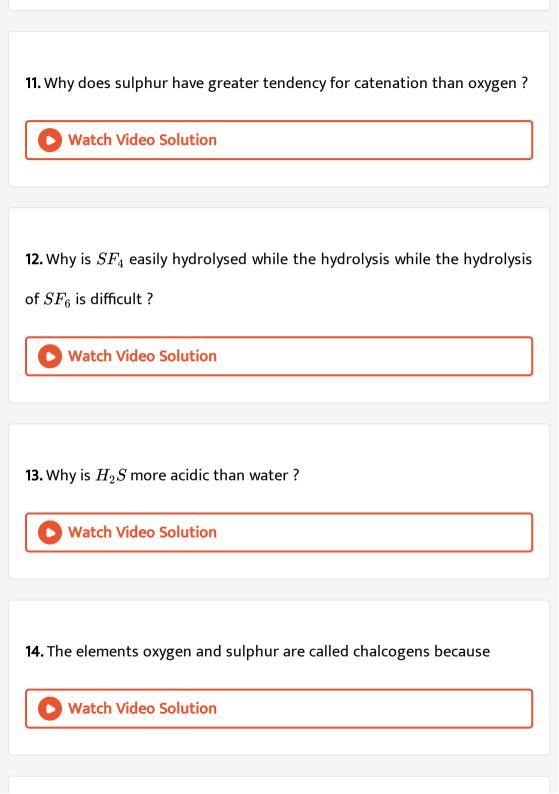
Oxygen Family (Group 16)

1. Oxygen exhibits an oxidation state of - 2 while the other members of the family show oxidation states of +2, +4 and +6. Explain.

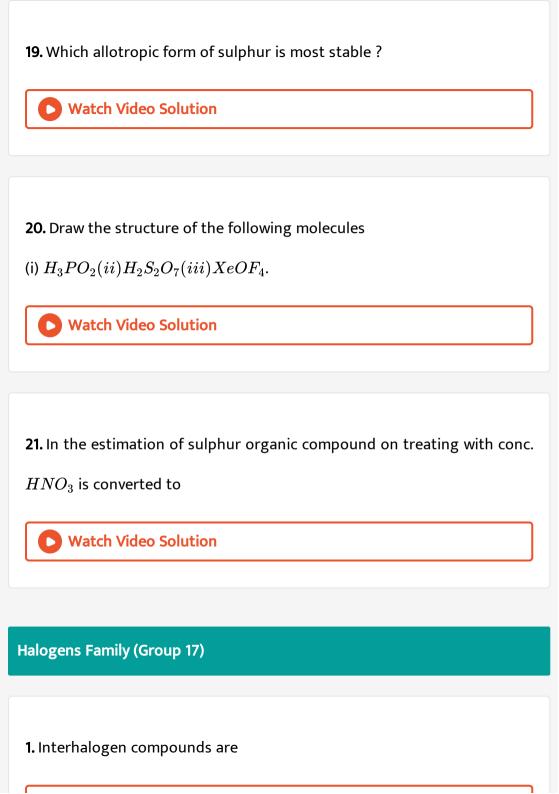
2. Amongest $H_2O,\,H_2S,\,H_2Se$ and H_2Te the one with highest boiling point is :

3. Account for the fact that SO_2 can act as an oxidising and reducing agent while SO_3 is only oxidising agent.

4. Sulphur is a solid while oxygen is a gas at room temperature. Why?



5. Among the hydrides of oxygen family, water is anomalous. Explain.



- **6.** Draw the structure formula of the following:
- (i) Thiosulphuric acid.
- (ii) Peroxodisulphuric acid.
- (iii) Sulphurous acid.
- (iv) Linear chain form of solid SO_3 .

Watch Video Solution
7. Sulphur vapours exhibit some paramagnetic behaviour. Explain.
Watch Video Solution
8. Sulphur disappears when boiled with an aqueous solution of sodium sulphite. Why?
Watch Video Solution
9. Give two examples of chalocgens.
Watch Video Solution
10. Draw the shape of XeF_4 .
Watch Video Solution

16. Describe contact process (equations only) for the manufacture of sulphuric acid. 17. Draw the shape of sulphuric acid. Watch Video Solution Watch Video Solution
sulphuric acid. Watch Video Solution 17. Draw the shape of sulphuric acid.
sulphuric acid. Watch Video Solution 17. Draw the shape of sulphuric acid.
sulphuric acid. Watch Video Solution 17. Draw the shape of sulphuric acid.
Watch Video Solution 17. Draw the shape of sulphuric acid.
17. Draw the shape of sulphuric acid.
Watch Video Solution
18. The two O-O bond lengths in ozone molecule are equal. Assign reason.
Watch Video Solution

Watch Video Solution
2. Bond dissociation enthalpy of F-F bond is less than that of Cl-Cl bond
Explain.
• Watch Video Caladian
Watch Video Solution
3. Out of $HClO_3$ and $HClO_4$ which has lower pk_a value and why ?

4. Draw the structure of BrF_3 .

5. Assertion: Fluorine is the strongest oxidising agent in halogens.

Reason: It displaces other halogens from its aqueous solution.

Watch Video Solution
6. Which halogen has tendency to form cation ?
Watch Video Solution
7. Why do halogens have low melting points ?
Watch Video Solution
8. Out of HI and HCl, which is a stronger acid in aqueous solution?
Watch Video Solution
9. Arrange $HOCl, HClO_2, HClO_3$ and $HClO_4$ in order of (i) acidic
strength and (ii) oxidising power. Give reason.
Watch Video Solution

- 10. Explain the following:
- (a) More metal fluorides are ionic in nature than metal chlorides.
- (b) Perchloric acid is a stronger acid than sulphuric acid.
- (c) Fluorine does not undergo disproportionation reactions but other halogens do.

11. Chlorine acts as a bleaching agent only in the presence of

12. Give the decreasing order of dipole moments of HF, HCI, HBr, and HI.

13. How is chlorine prepared from HCl ? What happens when chlorine is treated with (i) Sulphur (ii) Slaked lime (iii) HCl (iv) Turpentine oil.

14. Oxidation states of O in OF_2 and O_2F_2 respectively are

15. Despite lower value of its electron gain enthalpy with negative sign, fluorine (F_2) is a stronger oxidising agent than chlorine (Cl_2) . Explain.

- **16.** How will you account for the following:
- (i) HI is a stronger acid than HF.
- (ii) The electron affinity of fluorine is less than that of chlorine.

Watch Video Solution
17. Bond dissociation enthalpy of F-F bond is less than that of Cl-Cl bond.
Explain.
Watch Video Solution

temporary, why?

watch video Solution

Watch Video Solution

19. Why are halogens strong oxidising agents?

20. Why are the elements of group 17 generally coloured?

18. Bleaching of flowers by Cl_2 is permanent while bleaching by SO_2 is

watch video Solution
21. Interhalogen compounds are
A. covalent molecules
B. Diamagnetic in nature
C. Volatile solids/liquids at 298K except Cl,F
D. All of the above
Watch Video Solution
22. Write the formulae of any two oxyacids of phosphorus.
Watch Video Solution
23. Why does chlorine act as a bleaching agnet ?
D Wetch Video Colution

___ \ /:

watch video Solution	
Johle Gases (Group 18)	

1. What are noble gases? Why are they so named?

of xenon with PtF_6 ?

3. Account for the fact that noble gases exhibit low chemical reactivity.

2. What was the reason applied by Bartlett for carrying out the reaction

4. How is XeO_3 prepared ? Draw its structure.

$$XeF_4 + H_2O
ightarrow$$

 $XeF_2 + PF_5 \rightarrow$

$$XeF_6 + NaF
ightarrow$$

6. Give the molecular structures of :

$$XeF_2, XeF_4, XeF_6$$

 $XeOF_4$ and XeO_3

7. How are XeF_2 and XeF_4 prepared ? Give their structures and also mention the state of hybridisation involved.

Watch Video Solution
8. Give two reactions to show that xenon hexafluoride acts as fluoride ion
6. Give two reactions to show that xenon nexamboride acts as indonde ion
donor.
Watch Video Solution
O Vanon has closed shell configuration but gives compounds with
9. Xenon has closed shell configuration but gives compounds with
fluorine. Explain.
Watch Video Solution
10. How is XeF_2 prepared ?
io. How is Morg prepared:
Watch Video Solution
11. Explain hybridisation in XeF_2 . Also draw its molecular structure.
O Watch Video Calvition

Water video solution
12. Draw the structure of XeF_2 molecule.
Watch Video Solution
13. Draw the structure of $XeOF_4$.
Watch Video Solution
14. Draw the shape of XeF_4 .
Watch Video Solution
15. Among noble gases, only xenon reacts with flourine to form stable
xenon fluorides, because xenon
Watch Video Solution

16. How are xenon fluorides, XeF_2 , XeF_4 and XeF_6 prepared ? Describe their molecular shapes. **Watch Video Solution 17.** XeF_2 has linear structure and not a bent structure, Given reason. Watch Video Solution **18.** Why are zero group elements chemically inert? **Watch Video Solution** 19. Structure of xenon fluorides cannot be explained by valence bond theory. Explain. **Watch Video Solution**

20. Which xenon compound has distorted octahedral shape?
Watch Video Solution
21. Xenon is a noble gas element but it forms compounds? Draw the
structures of any two compounds of it.
A wash yellor estaton
Watch Video Solution
22. Why do noble gases have low boiling points ?
Watch Video Solution
23. What inspired N. Bartlett for carrying out reaction between Xe and
PtF_6 ?
Watch Video Solution

Miscellaneous Questions

- 1. Account for the following:
- (i) Ammonia is a stronger base than phosphine.
- (ii) H_3PO_3 is a diprotic acid.
 - Watch Video Solution

- 2. (a) Draw the molecular structure of peroxomono sulphuric acid.
- (b) Name the compounds in which iodine shows positive oxidation states.

- **3.** (a) Draw the molecular structures of :
- (i) Peroxodisulphuric acid
- (ii) Iodine pentafluoride
- (b) Complete and balance the following equations :

- (i) $NH_3 + NaOCl
 ightarrow$
 - (ii) $XeF_4 + SbF_5
 ightarrow$
 - Watch Video Solution
- **4.** Draw the molecular structures of XeF_2 , XeF_4 and XeO_2F_2 , indicating the location of lone pair(s) of electrons.
 - Watch Video Solution

- **5.** Oxides of nitrogen have open chain structures while those of phosphorous have closed chain or cage structures. Why?
 - Watch Video Solution

- **6.** Complete the following equations :
- (i) $HNO_3 + P_4O_{10}
 ightarrow$
 - (ii) $IO_3+I^-+H^+
 ightarrow$

7. (a) Give reasons for the following:

- (i) SF_6 is a well known compound but SCl_6 is not known
- (ii) In aqueous solution, HF is a weaker acid than HCl
- (iii) Addition of ${\it Cl}_2$ to KF solution gives it a brown colour but excess of

 ${\it Cl}_2$ turns it colourless

- (b) Draw the structures of
- (i) Peroxodisulphuric acid
- (ii) bromine trifluoride.

- 8. Write the structures of:
- (i) $H_4P_2O_6$ $(ii)H_2SO_5$ $(iii)XeF_4$
 - **Watch Video Solution**

 $H_{3}PO_{2} \quad (ii)H_{2}SO_{5} \quad (iii)H_{2}SO_{3} \quad (iv)H_{2}SO_{4} \quad (v)H_{2}S_{2}O_{7}.$

structures

(i)

of

the

Draw

9.

- **10.** Write chemical equations for the following processes :
- (i) Chlorine reacts with hot concentrated solution of NaOH
- ·

(ii) Orthophosphoric acid is heated.

(iii) PtF_6 and Xenon are mixed together.

11. Complete the following equations:

$$Ca_3P_2(s) + H_2O(l)
ightarrow$$

$$Cu^{2+}(aq)+NH_3(aq)
ightarrow$$

$$F_2(g) + H_2O(l) \to$$

Draw the structures of (i) $H_2S_2O_7(ii)BrF_3 \quad (iii)XeF_2.$

Water video Solution

12. Predict the shape and the asked angle $(90\,^\circ\,$ or more or less) in each of the following cases :

- $S(i)SO_3^{2-}$ and the angle O-S-O
- $(ii)CiF_3$ and the angle F-Cl_F
- (iii) XeF_2 and the angle F-Xe-F.

- 13. Complete the following reactions:
- (i) $NH_4Cl(aq) \stackrel{
 m heat}{\longrightarrow} (ii)P_4 + NaOH + H_2O
 ightarrow$
- (iii) $Xe(g) + F_2(g) \stackrel{673K}{\underset{1 \text{ har}}{\longrightarrow}} (iv) Sn + PCl_5 \stackrel{ ext{heat}}{\longrightarrow}$
- (v) $HqCl_2 + PH_3
 ightarrow$

- 14. (i) Which family of compounds is known as chalcogens and why?
- (ii) Except fluorine, other members of the halogen family show variable oxidation states. Why?
- (iii) Give the shape of S_8 molecule in rhombic sulphur.

- **15.** Give reasons for the following:
- (i) Oxygen is a gas but sulpher is a solid.
- (ii) O_3 acts as a powerful oxidising agent.
- (iii) BiH_3 is the strongest reducing agent amongst all the hydrides of Groups 15 elements.

- 16. Account for the following:
- (i) NH_3 has a higherboiling point than PH_3
- (ii) HF is a weaker acid than HI

(iii) Of noble gases, only xenon forms real compounds

(iv) H_3PO_3 is a diprotic acid.

Watch Video Solution

- 17. Complete the following:
- (i) $NaCl + H_2SO_4(ext{conc.})
 ightarrow$
- (ii) $Na_2SO_3 + HCl
 ightarrow$

(iii) $Cl_2 + H_2O \rightarrow$

- (iv) $Cl_2 + NaOH({
 m conc.})
 ightarrow$
 - (v) $Na_2S_2O_3+H_2O+Cl_2
 ightarrow$

- 18. Give reasons:
- (i) PCl_5 is more volatile than PCl_3 .
- (ii) O-O bond has lower bond dissociation enthalpy than S-S bond.
- (iii) F_2 is stronger oxidising than Cl_2 .

Watch Video Solution

19. Assign reason for the following:

- (i) H_3PO_2 is a stronger reducing agent than H_3PO_4 .
- (ii) Sulphur shows more tendency for catenation than oxygen.
- (iii) Reducing character increases from HF to HI.

Watch Video Solution

- 20. (i) Name the scientist who prepared the first compound of noble gases
- (ii) Give chemical reactions of HNO_3 with iodine
- (iii) Why are halogens coloured?

Watch Video Solution

Multiple Choice Questions Bank MCQ

1. The hybridisation of nitrogen in R_2NH is :

- A. sp^3
- $\mathsf{B.}\, sp^2$
- C. sp
- $\mathrm{D.}\, dsp^2$

Answer: A

Watch Video Solution

- **2.** The equivalent weight of phosphoric acid (H_3PO_4) in the reaction
- $NaOH + H_3PO_4
 ightarrow NaH_2PO_4 + H_2O$ is
 - A. 25
 - B. 49
 - C. 59

D. 98

Answer: D

3. When chlorine reacts with cold and dilute solution of sodium hydroxide, the products obtained are

A.
$$Cl^-$$
 and ClO^-

$$B. Cl^-$$
 and ClO_2^-

$$\mathsf{C.}\,\mathit{Cl}^-$$
 and ClO_3^-

$$D. Cl^-$$
 and ClO_4^-

Answer: A

Watch Video Solution

4. Correct order of 1st ionisationpotential (IP) among following elements

Be, B, C, N, O is

$$\mathsf{A.}\,B < Be < C < O < N$$

B.B < Be < C < N < O

C. Be < B < C < N < O

D. Be < B < C < O < N

Answer: A

Watch Video Solution

5. Nitrogen forms N_2 but phosphorous when forms P_2 gets readily converted into P_4 because

A. triple bond is present in phosphorus atoms

B. $p\pi - p\pi$ bonding in phosphorus is weak

C. $P\pi-p\pi$ bonding in phosphorus is strong

D. Multiple bonds are formed easily in phosphorus.

Answer: B

6. The oxidation number of oxygen in H_2O_2 is
A1
B.+1
C.-2
D.+2

Answer: A

7. When chlorine water is exposed to sun light, the colour change which occurs is from :

A. colourless to brwon

B. brown to colourless

C. light blue to colourless

D. greenish yellow to colourless

Answer: D

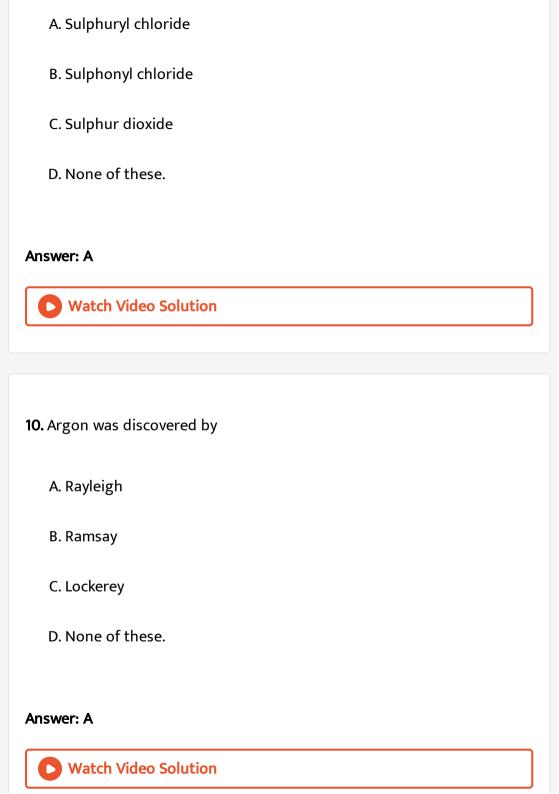
Watch Video Solution

8. Which of the following reaction is not feasible?

A.
$$2KI+Br_2
ightarrow2KBr+I_2$$

B.
$$2KBr+I_2
ightarrow2KI+Br_2$$

C.
$$2KBr+Cl_2
ightarrow 2KCl+Br_2$$


D.
$$2H_2O+2F_2
ightarrow 4HF+O_2$$

Answer: B

Watch Video Solution

9. SO_2 reacts with Cl_2 in the presence of sun light to form.

11. In a regular octahedral molecule MX_6 the number of X-M-X bonds at 180° is

A. three

B. two

C. six

D. four

Answer: A

Watch Video Solution

12. Which is the best description of the behaviour of bromine in the reaction given below

$$H_2O+Br_2 o HOBr+HBr$$

A. proton acceptor only

B. both oxidised and reduced C. oxidised only D. reduced only. **Answer: B Watch Video Solution 13.** Among the following molecules, $(i)XeO_3(ii)XeOF_4(iii)XeF_6$ those having same number of lone pairs on Xe are: A. (i) and (ii) only B. (i) and (iii) only C. (ii) and (iii) only D. (i), (ii) and (iii) only Answer: D

14. The electronegaivity difference between N and F is greater than that between N and H yet the dipole moment of NH_2 (1 .5 D) is larger than that of $NF_3(0.\ 2D)$. This is because :

A. In NH_3 , the atomic dipoles and bond dipoles are in the opposite directions while in NF_3 these are in the same direction

B. in NH_3 and in NF_3 , the atomic dipole and bond dipoles are in the same direction

C. in NH_3 , the atomic dipoles and bond dipole are in the same direction whereass in NF_3 these are in opposite direction

D. in NH_3 as well as in NF_3 , the atomic dipoles and bond dipoles are in opposite direction.

Answer: C

15. Which of the following is not according to the priority stated against it ?

- A. $F_2 > C l_2 > B r_2 > l_2$: bond dissociation enthalpy
- B. $F_2 > C l_2 > B r_2 > I_2$: Oxidising power
- C. HI > HBr > HCl > HF : acidic property in water
- D. $F_2 > C l_2 > B r_2 > I_2$: electronegativity.

Answer: A

- 16. Which type of bond is present in Xe molecule?
 - A. Covalent
 - B. Ion-dipole
 - C. van der Waals
 - D. dipole-dipole

Answer: C

Watch Video Solution

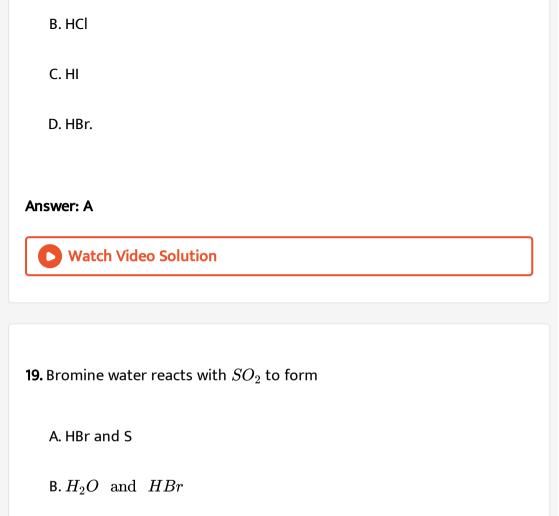
17. Chlorine reacts with excess of ammonia to form.

A. NH_4Cl

B. $N_2 + HCl$

 $\mathsf{C.}\ N_2 + NH_4Cl$

D. $N_2 + NCl_3$


Answer: C

Watch Video Solution

18. Which of the following hydrogen halide is most volatile?

A. HF

 $\mathsf{C}.\,S$ and H_2O

Answer: D

 $D. H_2SO_4$ and HBr

20. In which one of the following species , the central atom has the tuype of hybdridiztion which is not the same as that present in other three?

- A. SF_4
- B. $I_3^{\,-}$
- C. $SbCl_5^{2\,-}$
- D. PCl_5

Answer: B

- **21.** Hydridisation of the central atom in BrF_5 molecule is :
 - A. sp^3
 - B. dsp^2
 - $\mathsf{C.}\, sp^3d^2$
 - D. d^3sp^3

Answer: C

Watch Video Solution

- 22. Which of the following is least likely to behave as Lewis acid?
 - A. H_2O
 - B. NH_3
 - $\mathsf{C}.\,BF_3$
 - D. OH^-

Answer: C

- 23. Which of the following compounds has the lowest boiling point?
 - A. $CaCl_2$

B. $CaBr_2$ C. CaI_2 D. CaF_2

Answer: B

View Text Solution

24. Among the listed molecules : SO_2 , SF_4 , ClF_3 , BrF_5 and XeF_4 which of the following of the following shapes does not describe of any the molecules mentioned ?

A. Bent

B. Trigonal bipyramidal

C. Sea-saw

D. T-shape

Answer: B

25. Which one is the correct observation when Br_2 is treated with NaF,

NaCl and NaI taken in three test tubes labelled as (I), (II) and (III)?

- A. Only I_2 is liberated.
- B. Only Cl_2 is liberated
- C. Only F_2 and Cl_2 are liberated
- D. Only Cl_2 and I_2 are liberated

Answer: A

Watch Video Solution

26. The oxidation state of phosphorus in cyclometaphosphoric acid is:

A. +3

B.+5

 $\mathsf{C.}-3$

D. + 2

Answer: B

Watch Video Solution

27. Which of the following statement is not valid for oxoaids of phosphorus?

A. Orthophosphoric acid is used in the manufacture of triple super phosphate

B. Hypophosphoric acid is diprotic acid

C. All oxoacids contain a tetrahedral four co-ordinated phosphorus

D. All oxoacids contain atleast one P=O unit and one P-OH group.

Answer: B

28. SO_3 can be prepared by which of the following reactions ?

A.
$$CaSO_4C \stackrel{\mathrm{heat}}{\longrightarrow}$$

$$\operatorname{\mathsf{B}}.Fe_2(SO_4)_3 \stackrel{\mathrm{heat}}{\longrightarrow}$$

$$\mathsf{C.}\,S + H_2 SO_4 \stackrel{\mathrm{heat}}{\longrightarrow}$$

D.
$$H_2SO_4 + PCl_5 \xrightarrow{\mathrm{heat}}$$

Answer: B

View Text Solution

29. In which of the following arrangements the given sequence is not strict according to the property indicated against it?

A. HF < HCI < HBr < HI : increasing acidic strength

B. $H_2O < H_2S < H_2Se < H_2Te$: increasing pK_a values

C. $NH_3 < PH_3 < AsH_3 < SbH_3$: increasing acidic character

D. $CO_2 < SiO_2 < SnO_2 < PbO_2$: increasing oxidising power.

Answer: B

Watch Video Solution

30. XeF_2 is isostructural with :

A. $BaCl_2$

 $\mathrm{B.}\,Icl_2^-$

 $\mathsf{C}.\,TeF_2$

D. $SbCl_3$

Answer: B

View Text Solution

31. Which of the following does not give oxygen on heating?

- A. $(NH_4)_2 Cr_2 O_7$
- B. $KClO_3$

 $C. Zn(ClO_3)_2$

D. $K_2Cr_2O_7$

Answer: A

Watch Video Solution

sulphur is

32. The oxyacid of sulphur that contains a lone pair of electrons in

- A. Sulphurous acid
- B. Sulphuric acid
- C. Peroxy disulphuric acid
- D. Pyro sulphuric acid

Answer: A

33. Acidity of diprotic acids in aqueous solutions increases in the order

A.
$$H_2S < H_2Se < H_2Te$$

$$\mathsf{B.}\,H_2SelgH_2S < H_2Te$$

C.
$$H_2Te < H_2S < H_2Se$$

$$\mathsf{D.}\,H_2Se < H_2Te < H_2S.$$

Answer: A

Watch Video Solution

34. The variation of the boiling points of the hydrogen halides is in the order HF>HI>HBr>HCl.

What explains the higher boiling point of hydrogen fluoride?

A. There is strong hydrogen bonding between HF molecules.

- B. The bond energy of HF molecules is greater than in other hydrogen
 - halides.
- C. The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecules
- D. The electronegativity of fluorine is much higher than that of the other elements in the group.

Answer: A

- **35.** Strong reducing behaviour of H_3PO_2 is due to
 - A. high electron gain enthalpy of phosphorus
 - B. high oxidation state of phosphorus
 - C. presence of two $-\mathit{OH}$ groups and one P-H bond
 - D. presence of one $-{\it OH}$ group and two P-H bonds.

Answer: D

Watch Video Solution

36. Which of the following statements is incorrect?

- A. O_3 molecule is bent
- B. ONF is isoelectronic with $O_2N^{\,-}$
- $\mathsf{C.}\ OF_2$ is an oxide of fluorine
- D. Cl_2O_7 is an anhydride of perchloric acid.

Answer: C

Watch Video Solution

37. Which of the following sets of molecules contains the same number of lone pairs of electrons in the central atom ?

A. SO_2 , ClF_3 , BrF_3

C. ClF_3 , XeF_2 , H_2O

B. SF_4 , NH_3 , O_3

D. NH_3 , XeF_2 , O_3

Answer: D

Watch Video Solution

A. NH_3 - Trigonal pyramidal

B. SF_4 - Tetrahedral

38. Which one of the following does not match with respect to the shape

C. H_2S - Bent

of the molecule?

D. ClF_3 - T-shape

Answer: B

39. Which of the following oxides of nitrogen contains N-O-N bond

?

A. Dinitrogen oxide

B. Nitrogen monoxide

C. Dinitrogen pentoxide

D. Dinitrogen trioxide

Answer: C

Watch Video Solution

 $\textbf{40.} \ \textbf{The brown ring rest test for nitrates depends upon:}$

A. reduction of nitrate to nitric acid

B. Oxidation of nitric oxide to nitrogen dioxide

C. reduction of ferrous sulphate ion

D. oxidising action of sulphuric acid

Answer: D

View Text Solution

41. Which of the following statement is correct for the given acids?

A. Phosphininc acid is a monoprotic acids while phosphonic acid is a diprotic acid.

B. Phosphinic acid is a diprotic acid while phosphonic acid is a monoprotic acid

C. Both are diprotic acids.

D. Both are triprotic acids.

Answer: A

42. When copper is heated with conc. HNO_3 it produces?

A. $Cu(NO_3)_2$, NO and NO_2

 $B. Cu(NO_3)_2$ and N_2O

 $C. Cu(NO_3)_2$ and NO_2

D. $Cu(NO_3)_2$ and NO.

Answer: C

Watch Video Solution

43. Among the following, the correct order of acidity is:

A. $HClO_2 < HClO < HClO_3 < HClO_4$

 ${\rm B.}\ HClO_4 < HClO_2 < HClO < HClO_3$

 $\mathsf{C}.\,HClO_3 < HClO_4 < HClO_2 < HClO$

D. $HClO < HClO_2 < HClO_3 < HClO_4$

Answer: A

Watch Video Solution

44. The hybridisatipon of atomic orbitals of nitrogen NO_2^+, NO_3^- and NH_4^+ respectively are

A. sp, sp^3 and sp^2

 $B. sp^2, sp^3$ and sp

 $\mathsf{C}.\,sp,\,sp^2$ and sp^3

 $\mathsf{D}.\,sp^2,\,sp$ and sp^3

Answer: C

45. Hot concentrated sulpuric acis is a moderatly strong oxidizing agent.

Which of the following reaction does not shwo oxidizing behaviour?

A.
$$Cu+2H_2SO_4
ightarrow CuSO_4+SO_2+2H_2O$$

B.
$$S+2H_2SO_4
ightarrow 3SO_2+2H_2O$$

C.
$$C+2H_2SO_4
ightarrow CO_2+2SO_2+H_2O$$

D.
$$CaF_2 + H_2SO_4
ightarrow CaSO_4 + 2HF$$
 .

Answer: D

Watch Video Solution

46. The correct geometery and hybridizationn for XeF_4 are

A. Octahedral , sp^3d^2

B. Trigonal bipyramidal, sp^3d

C. Planar triangle sp^3d^3

D. Square planar, sp^3d^2

Answer: D

Watch Video Solution

- **47.** Among the following ,which one is the wrong statement
 - A. PH_5 and $BiCl_5$ do not exist.
 - B. $p\pi-d\pi$ bonds are present in SO_2
 - C. SeF_4 and CH_4 have same shape.
 - D. $I_3^{\,+}$ has bent geometry.

Answer: C

- **48.** In which pair of ions both the species contains S-S bond?
 - A. $S_4O_6^{2\,-}, S_2O_3^{2\,-}$

- B. $S_2O_7^{2\,-}\,,\,S_2O_8^{2\,-}$
- C. $S_4O_6^{2\,-}, S_2O_7^{2\,-}$
- D. $S_2O_7^{2\,-}\,,\,S_2O_3^{2\,-}$

Answer: A

Watch Video Solution

- **49.** Which of the following is not true for halogens?
 - A. All form monobasic acids
 - B. All are oxidising agents
 - C. All but fluorine show postive oxidation states
 - D. Chlorine has highest negative electron gain enthalpy.

Answer: C

50. Which one is the correct observation when Br_2 is treated with NaF,

NaCl and NaI taken in three test tubes labelled as (I), (II) and (III)?

- A. F_2 is liberated in (I) and Cl_2 in (II)
- B. Only I_2 is liberated in (III)
- C. Only Cl_2 is liberated in (II)
- D. Only F_2 is liberated in (I)

Answer: B

- **51.** Which of the following is true for N_2O_5 ?
 - A. It is paramagnetic
 - B. It is an anhydride of HNO_2
 - C. It is a brown gas
 - D. It exists in solid state in the form $\left[NO_2^+
 ight]\left[NO_3^ight]$

Answer: D

Watch Video Solution

52. Which of the following statements is incorrect?

A. α - Black phosphorus is formed by heating red phosphorus.

B. β - Black phosphorus does not burn in air upto 875 K.

C. White phosphorus readily catches fire in air to give dense fumes of

 P_4O_{10}

D. Red phosphorus does not react with caustic alkalies.

Answer: B

53.
$$MnO_2 + HCl \xrightarrow{\Delta} A_{(g)} + MnCl_2 + 2H_2O$$
 $A_{(g)} + F_2(ext{excess}) \xrightarrow{573K} B_{(g)}$

$$B_{\hspace{1pt}(\hspace{1pt}g\hspace{1pt})} + U((s)) o C_{\hspace{1pt}(\hspace{1pt}g\hspace{1pt})} + D_{\hspace{1pt}(\hspace{1pt}g\hspace{1pt})}$$

The gases A, B, C and D are respectively

- A. Cl_2 , ClF, UF_6 , ClF_3
- B. Cl_2 , ClF_3 , UF_6 , ClF
- $C. O_2, OF_2, U_2O_3, O_2F_2$
- $D. O_2, O_2F_2, U_2O_3, OF_2$

Answer: B

View Text Solution

- 54. Among the following observations, the correct one that differentiates
- between SO_3^{2-} and SO_4^{2-} is
 - A. Both form precipitate with $BaCl_2,\,SO_3^{2-}$ dissoves in HCl but SO_4^{2-}
 - does not
 - B. SO_3^{2-} forms precipitate with $BaCl_2,\,SO_4^{2-}$ does not

C. SO_4^{2-} forms precipitate with $BaCl_2,\,SO_3^{2-}$ does not

D. Both form precipitate with $BaCl_2, SO_4^{2-}$ dissolves in HCl but

 SO_3^{2-} does not.

Answer: A

View Text Solution

55. 1 mol of N_2H_2 loses 14 moles of electrons to from a new compound X.

Assuming that the entire nitrogen appear in the new compound, what is the oxidation state of nitrogen in X?

A. - 1

_

C. - 3

B. + 3

D. + 1

Answer: B

56. In the following compounds of xenon, highest number of lone pairs of electrons is present in :

- A. XeF_6
- $\operatorname{B.}XeF_{4}$
- $\mathsf{C}.\,XeO_4$
- D. XeF_2

Answer: D

Watch Video Solution

57. Identify the correct sequence of increasing of π — bonds in the structure of the following molecules :

$$(I)H_2S_2O_6 \qquad (II)H_2S_2O_3 \qquad (III)H_2S_2O_5$$

- A. I,II,III
- B. II,III,I
- C. II,I,III
- D. I,III,II

Answer: B

Watch Video Solution

58. Among the following statements which one is incorrect?

- A. Nitrogen has the ability to form $p\pi-p\pi$ bonds with itself.
- B. Bismuth forms metallic bonds in elemental state.
- C. Catenation tendency is higher in nitrogen when compared with other elements of the same group.
- D. Nitrogen has higher first ionization enthalpy when compared with other elements of the same group.

Answer: C

View Text Solution

59. A dark violet solid X reacts with NH_3 to form a mild explosive which decomposes to give a violet coloured gas. X also reacts with H_2 to give an acid Y. Y can also be prepared by heating its salt with H_3PO_4 . X and Y are

- A. Cl_2 , HCl
- $\mathsf{B.}\,SO_2, H_2SO_4$
- $\mathsf{C}.\,Br_2,\,HBr$
- D. I_2, HI

Answer: D

60. Consider the following halides:

$$(I)BF_3$$
 $(II)BCl_3$

 $(III)BBr_3$ $(IV)BF_3$

The Lewis acid strength of these halides follows the order:

A.
$$I < II < III < IV$$

B. I < III < II < IV

C.IV < III < II < I

 $\mathsf{D}.\,IV < II < III < I.$

Answer: A

View Text Solution

JEE (Main) & Other Engineering

1. In XeF_2 , XeF_4 and XeF_6 , the number of the lone pairs of Xe respectively are

C. 4,1,2
D. 3,2,1
Answer: D Watch Video Solution
2. Orthophosphoric acid on heating gives :
A. Metaphosphoric acid
B. Phosphine
C. Phosphorus pentoxide
D. Phosphorus acid.
Answer: A
Watch Video Solution

A. 2,3,1

B. 1,2,3

3. Which one of the following substances has the highest proton affinity?
A. H_2S
B. NH_3
C. PH_3
D. H_2O
Answer: B Watch Video Solution
4. In case of nitrogen, NCl_3 is possible but not NCl_5 while in case of phosphorous, PCl_5 are possible. It is due to
A. availability of vacant d-orbitals in P but not in N
B. lower electronegativity of P than N

C. lower tendency of H-bond formation in P than N

D. occurrence of P in solid while N in gaseous state at room temperature.

Answer: A

5. Number of sigma bonds in P_4O_{10} is :

A. 6

B. 7

C. 17

D. 16

Answer: D

6. What may be expected to happen when phosphine gas is mixed with chlorine gas ?

A. PCl_3 and HCl are formed and the mixture warms up

B. PCl_5 and HCl are formed and the mixture cools down

C. PH_3 . Cl_2 is formed with warming up

D. The mixture only cools down.

Answer: B

7. When rain is accompanied by a thunderstorm, the collected rain water will have a pH value

A. slightly higher than that when the thunderstorm is not there

B. uninfluenced by occurrence of thunderstorm

C. which depends on the amount of dust in air

D. slightly lower than that of rain water without thunderstrom.

Answer: D

Watch Video Solution

8. Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. The explanation for it is that :

A. oxygen in air reacts with the emitted HCl gas to form a cloud of chlorine gas

B. strong affinity of HCl gas for moisture in air results in forming of droplets of liquid solution which appears like a cloudy smoke

C. due to strong affinity for water, concnentrated hydrochloric acid pulls moisture of air towards itself. This mositure forms droplets of water and hence the cloud

D. concentrated hydrochloric acid emits strong smelling HCl gas all the time.

Answer: A

9. Which among the following factors is the most important in making fluorine oxidizing halongen?

A. Hydration enthallpy

B. Ionization ethalpy

C. Electron gain enthalpy

D. Bond dissociation enthalpy.

Answer: D

10. The correct order of thermal stability of hydrogen halides (H-X) is :

A.
$$HI > HBr > HCl > HF$$

$$\mathrm{B.}\,HF>HCl>HBr>HI$$

$$\mathsf{C}.\,HCl < HF > HBr > HI$$

$$\mathsf{D}.\,HI > HCl < HF > HBr.$$

Answer: B

Watch Video Solution

11. The number of hydrogen atom(s) attached to phosphorus atom in hypophosphorus acid is

A. zero

B. two

C. one

D. three.

Answer: B

Watch Video Solution

12. The molecular shapes of SF_4, CF_4 and XeF_4 are :

A. the same with 2, 0 and 1 lone pairs of electrons on the central atom respectively

B. the same with 1,1, and 1 lone pair of electrons on the central atom

respectively

C. different with 0, 1 and 2 lone pairs on the central atom respectively

D. different with 1, 0 and 2 lone pairs on the central atom respectively.

Answer: D

Watch Video Solution

13. In which of the following molecules, are all the bonds not equal?

A. SF_4

B. SiF_{4}

 $\mathsf{C}.\,XeF_4$

D. BF_{Λ}^{-}

Answer: A

Watch Video Solution

- **14.** The decreasing order of bond angles from $NH_3(107^{\circ})$ to $SbH_3(91.3^{\circ})$ down the group 15 elements is due to :
 - A. increasing bond pair: bond pair repulsion
 - B. increasing p-orbital character on sp^3 orbital
 - C. decreasing lone pair-bond pair repulsion
 - D. decreasing electronegativity.

Answer: B

15. Which of the following reaction depicts the oxiding behaviour of H_2SO_4 ?

A.
$$2HI+H_2SO_4
ightarrow I_2+SO_2+2H_2O$$

B.
$$Ca(OH)_2 + H_2SO_4
ightarrow CaSO_4 + 2H_2O$$

C.
$$NaCl + H_2SO_4
ightarrow NaHSO_4 + HCl$$

$$\mathsf{D.}\, 2PCl_5 + 2HCl + SO_2Cl_2$$

Answer: A

Watch Video Solution

16. Which of the following statement is true?

A. H_3PO_3 is stronger acid than H_2SO_3

B. IN aqueous medium HF is a stronger acid than HCl

- C. $HClO_4$ is a weaker acid than $HClO_3$
- D. HNO_3 is a stronger acid than HNO_2 .

Answer: D

17. What products are expected from the desproprtionation reactin of hypochorous acid ?

- A. $HClO_3$ and Cl_2O
- $B. HClO_2$ and $HClO_4$
- C. HCl and Cl_2O
- $\mathsf{D}.\,HCl$ and $HClO_3$

Answer: D

18. Which one of the following reaction of xenon compounds is not

Feasible?

A.
$$XeO_3 + 6HF
ightarrow XeF_6 + 3H_2O$$

B.
$$3XeF_4+6H_2O
ightarrow2Xe+XeO_3+12HF+3/2O_2$$

C.
$$2XeF_2+2H_2O
ightarrow2Xe+4HF+O_2$$

D.
$$XeF_6+RbF o Rb[XeF_7].$$

Answer: A

Watch Video Solution

19. Halogens exist in -1, +1, +3, +5 and +7 oxidation states. The only halogen which exists in -1 oxidation state is :

A. F

B. Cl

C. Br

D. I

View Text Solution

- 20. Which of the following contains P-O-P bond?
 - A. Hypophosphorus acid
 - B. Pyrophosphoric acid
 - C. Phosphorus acid
 - D. Orthophosphoric acid

Answer: B

View Text Solution

21. Which of the following statements regarding ozone is not correct?

- A. ozone molecule is angular in shape
- B. ozone molecule is hybrid of two contributing structures
- C. oxygen-oxygen bond length in ozone is identical with that of molecular oxygen
- D. ozone is used as germicide and disinfectant for the purification of air .

Answer: C

22. P_4O_{10} is an anhydride of :

- A. H_3PO_2
- $\mathsf{B.}\,H_3PO_3$
- $\mathsf{C}.\,H_3PO_4$
- $\operatorname{D.}H_4P_2O_7$

Answer: C

View Text Solution

23. Three reactions involving $H_2PO_4^-$ are given below

$$I.\,H_3PO_4+H_2O\rightarrow H_3O^++H_2PO_4^-$$

$$II.\ H_2PO_4^-\ + H_2O o HPO_4^{2-}\ + H_3O^+$$

III.
$$H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2+}$$

In which of the above does $H_2PO_4^-$ act as an acid?

- A. (i) only
- B. (ii) only
- C. (i) and (ii)
- D. (iii) only

Answer: B

24. Which of the following statements is wrong?

A. The stability of hydrides increases from $NH_3 \;\; {
m to} \;\; BiH_3$ in group 15 of the periodic table.

- B. Nitrogen cannot form $d\pi-p\pi$ bond.
- C. Single N N bond is weaker than single P-P bond
- D. N_2O_4 has two resonating strutures.

Answer: A

View Text Solution

- 25. Which of the following statements regarding sulphur is incorrect?
 - A. S_2 molecule is paramagnetic.
 - B. The vapours the $200\,^{\circ}\,C$ consist mostly of S_8 rings.
 - C. At 600° C, the gas mainly consists of S_2 molecules.

D. The oxidation state of sulphur is never less than +4 in its compounds.

Answer: D

Watch Video Solution

26. The types of hybrid orbitals of nitrogen in NO_2^+,NO_3^- and NH_4^+ respectively are expected to be :

A. sp, sp^2, sp^3

 $\mathrm{B.}\,sp^2,\,sp,\,sp^3$

 $\mathsf{C}.\,sp,\,sp^3,\,sp^2$

D. sp^2, sp^3, sp .

Answer: B

27.
$$HNO_3 + P_2O_5 \to A + B$$

'A' is oxyacid of phosphorus and 'B' is an oxide of nitrogen. 'A' and 'B' are respectivley.

- A. $H_3PO_4,\,N_2O_3$
- $\mathsf{B}.\,HPO_3,\,N_2O_3$
- $\mathsf{C}.\,HPO_3,N_2O_5$
- D. H_3PO_3 , N_2O_5

Answer: C

- **28.** P_4O_6 reacts with water to give
 - A. H_3PO_3
 - $\operatorname{B.}H_4P_2O_7$
 - $\mathsf{C}.HPO_3$

D. H_3PO_4

Watch Video Solution

- 29. The molecular having the smaleest bond angle is
 - A. NCl_3
 - B. $AsCl_3$
 - C. $SbCl_3$
 - $\mathsf{D.}\,PCl_3$

Answer: C

30. Nitric acid can be obtained from ammonia via the formation of intermediate compounds

A. Nitric oxide and nitrogen dioxide

B. Nitrogen and nitric oxide

C. Nitric oxide and dinitrogen pentoxide

D. Nitrogen and nitrous oxide

Answer: A

Watch Video Solution

31. Excess of PCl_5 reacts with concentrated H_2SO_4 giving :

- A. Chlorosulphonic acid
- B. Sulphurous acid
- C. Sulphuryl chloride
- D. Thionlyl chloride

Answer: C

32. What is the number of valence electrons in iodine monochloride?

A. 12

B. 14

C. 16

D. 18

Answer: B

Watch Video Solution

33. Which of the followng noble gases has the highest positive electron gain enthalpy?

- A. Helium
- B. Krypton
- C. Argon
 - D. Neon

Answer: D

Watch Video Solution

34. Among the following oxioacids, the correct decreasing order of acid strength is

- A. $HClO_2 > HClO_4 > HClO_3 > HOCl$
- B. $HOCl > HClO_2 > < HClO_3 > HClO_4$
- $C. HClO_4 > HOCl > HClO_2 > HClO_3$
- D. $HClO_4 > HClO_3 > HClO_2 > HOCl$

Answer: D

35. The inter halogen compound having dimeric structure is :

- A. ClF_3
- $\mathsf{B.}\,BrF_3$
- $\mathsf{C}.\,IF_3$
- D. Icl_3

Answer: D

Watch Video Solution

36. In which of the following oxides of nitrogen, the oxidation state of the element is the lowest ?

- A. Nitric oxide
- B. Nitrous oxide

C. Nitrogen dioxide

D. Nitrogen trioxide

Answer: B

Watch Video Solution

37. If Cl_2 is passed through hot aqueous NaOH, the products formed have CI in different oxidation states. These are indicated as

A.
$$-1$$
 and $+1$

B.
$$-1$$
 and $+5$

$$C. + 1 \text{ and } + 5$$

D.
$$-1$$
 and $+3$

Answer: B

38. Which of the following properties is not shown by NO ?
A. It is diamagnetic in the gaseous state
B. It is a neutrla oxide
C. It combines with oxygen to form nitrogen dioxide
D. Its bond order is 2.5.

Watch Video Solution

39. Which among the following is the most reactive gt

A. I_2

B. Icl

 $\mathsf{C}.\,Cl_2$

D. Br_2

Answer: B Watch Video Solution 40. Which has maximum boiling point? A. Kr B. Xe C. He D. Ne **Answer: B View Text Solution 41.** Sulphuryl chloride (SO_2Cl_2) reacts with white phosphorus (P_4) to give:

A.
$$PCl_5, SO_2$$

 $B. OPCl_3, SOCl_2$

 $\mathsf{C.}\,PCl_5,SO_2,S_2Cl_2$

D. $OPCl_3, SO_2, S_2Cl_2$

Answer: A

View Text Solution

42. On heating with concentrated NaOH solution in an inert atmosphere of CO_2 , white phosphorus gives a gas. Which of the following statements is incorrect about the gas ?

A. It is more basic than NH_3

B. Its solution in water decomposes in the presence of light.

C. It is less basic than NH_3

D. It is highly poisonous and has smell like rotten fish.

Watch Video Solution

- 43. The species in which the N-atom is in a state of sp hybridisation is
 - A. NO_2^+
 - B. NO_2^-
 - $\mathsf{C.}\,NO_3^-$
 - D. NO_2

Answer: A

Watch Video Solution

44. The reaction of zinc with dilute and concentrated nitric acid, respectively, produce

- A. N_2ONO_2
- $B. NO_2$ and NO
- C. NO and N_2O
- D. NO_2 and N_2O

+3 is

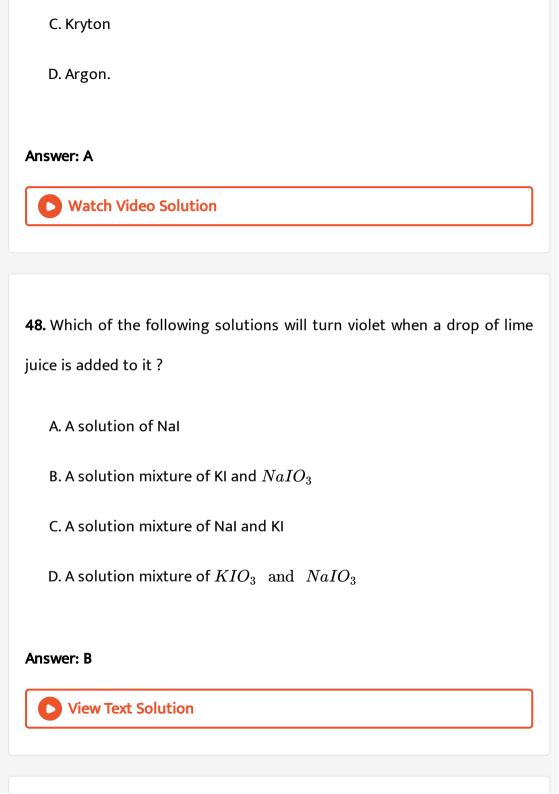
Watch Video Solution

- 45. The pair in which phosphours atoms have a formed oxidation state of
 - A. orthophosphorus and pyrophosphorus acids
 - B. pyrophosphorus and hypophosphoric acids
 - C. orthophosphorus and hypophosphoric acids
 - D. pyrophosphorus and pyrophosphoric acids

Answer: A

46. The acid in which O-O bonding is present in :

- A. $H_2S_2O_3$
- $\operatorname{B.}H_2S_2O_6$
- $\mathsf{C.}\,H_2S_2O_8$
- D. $H_2S_4O_6$


Answer: C

47. Which of the following noble gases has an unusual property of diffusing through the materials such as rubber, glass or plastic?

A. Helium

B. Neon

49. When chlorine reacts with cold and dilute solution of sodium hydroxide, the products obtained are

- A. Cl^- and ClO^-
- $\mathsf{B.}\,Cl^-\quad\mathrm{and}\quad ClO_2^-$
- $C. ClO^-$ and ClO_3^-
- $\operatorname{\mathsf{D}}. \operatorname{\mathit{ClO}}_2^-$ and $\operatorname{\mathit{ClO}}_3^-$

Answer: A

Watch Video Solution

50. The compound that does not produce nitrogen gas upon thermal decomposition is :

- A. $(NH_2)_2SO_4$
- $\mathsf{B.}\,Ba(N_3)_2$
- C. $(NH_4)_2Cr_2O_7$

D	NH_{4}	NO_{2}
υ.	1 V 114	1102

View Text Solution

- **51.** Very pure nitrogen can be obtained by:
 - A. Thermal decomposition of NH_4Cl and $NaNO_2$
 - B. Treating aqueous solution of NH_4Cl and $NaNO_2$
 - C. Liquefication and fractional distillation of liquid air
 - D. Thermal decomposition of sodium azide.

Answer: D

Watch Video Solution

JEE (Joint Entrance Examinatin) Advanced

1. An orange solid (A) on heating gave a green residue (B), colourless gas (C) and water vapour. The dry gas (C) on passing over heated magnesium gave a white solid (D). (D) on reaction with water have a gas (E) which formed dense white fumes with HCl. Indentify (A) to (E) and give the reactions.

A. sodium dichromate

B. potassium dichromate

C. potassium chromate

D. ammonium dichromate.

Answer: D

Watch Video Solution

2. An orange solid (A) on heating gave a green residue (B), a colourless gas (C) and water vapours. The dry gas (C) when passed over heated magnesium, gave a white solid (D) which evolved a gas (E) on reacting

with water. The gas formed dense white fumes with HCl. Identify all the compounds from A to E. Give the reactions involved.

The green residue (B) has the formula

- A. CrO_5
- B. CrO_3
- C. Cr_2O_5
- D. CrO_2

Answer: C

3. An orange solid (A) on heating gave a green residue (B), a colourless gas (C) and water vapours. The dry gas (C) when passed over heated magnesium, gave a white solid (D) which evolved a gas (E) on reacting with water. The gas formed dense white fumes with HCl. Identify all the compounds from A to E. Give the reactions involved.

The white solid (D) is:

B. $MgSO_4$
C. $MgCl_2$
D. Mg_2N_3
Answer: D
View Text Solution
4. The compound (A) is a white solid. When heated strongly, it leaves no
residue. On treating (A) with NaOH solution, a colourless pungent
smelling gas (B) is evolved which is industrially highly useful. When the
compound (A) is acidified with dilute HCl, a reddish brown gas (C) is
evolved.
The compound (A) is :
A. ammonium nitrite
B. ammonium chloride

A. MgO

- C. sodium nitrite
- D. sodium nitrate.

View Text Solution

5. The compound (A) is a white solid. When heated strongly, it leaves no residue. On treating (A) with NaOH solution, a colourless pungent smelling gas (B) is evolved which is industrially highly useful. When the compound (A) is acidified with dilute HCl, a reddish brown gas (C) is evolved.

The pungent smelling gas (B) is

- A. sulphur dioxide
- B. chlorine
- C. hydrogen chloride gas
- D. ammonia.

Answer: D

6. The noble gases have close shell electronic configuration and are monoatomic gases under normal conditions. The low boiling points of the lighter noble gases are due to weak dispersion forces between the atoms and the absence of other inter atomic interactions. The direct reactions of xenon with fluorine leads to a series of compounds with oxidation number +2, +4 and +6. XeF_4 reacts violently with water to give XeO_3 . The compounds of xenon exhibit stereochemistry and their geometries can be deduced considering the total number of electrons in valence shell

Argon is used in are welding because of its.

- A. ability to lower reactivity of metals
- B. ability to lower the melting point of the solid
- C. flammability

D. high calorific value

Answer: A

View Text Solution

7. The noble gases have closed-shell electronic cordigaration and are monatomic gases under normal condition. The low bolling points of the ligher noble gases aree due to the weak dispersion points of the ligher noble gases and due to the weak dispersion forces between the atoms and the alsence of other interalumic interactions.

The direct reaction of xenon with flarine loads to a series of compounds with water oxidation number +2, -4 and $+6, XeF_4$ reactsviolenatly with water to give XeO_2 . The compound of deduced axbibt nci strouchemistry and their goometries can be deduced considering the total number of electron puirs in the valence shell.

The structure of XeO_3 is

A. linear

- B. planar
- C. pyramidal
- D. T-shaped

Answer: C

Watch Video Solution

8. The noble gases have close shell electronic configuration and are monoatomic gases under normal conditions. The low boiling points of the lighter noble gases are due to weak dispersion forces between the atoms and the absence of other inter atomic interactions. The direct reactions of xenon with fluorine leads to a series of compounds with oxidation number +2, +4 and +6. XeF_4 reacts violently with water to give XeO_3 . The compounds of xenon exhibit stereochemistry and their geometries can be deduced considering the total number of electrons in valence shell

 XeF_4 and XeF_6 are expected to be :

- A. oxidising
- B. reducing
- C. unreactive
- D. strongly basic

View Text Solution

- **9.** There are some deposits of nitrated and phosphates in the earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under laboratory conditions but microbes do it easily. Ammonia forms a large number of complexes with transition metal ions. Hybridisation easily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorous. Which of the following statement is correct?
 - A. Phosphates have no biological significance in humans

- B. Between nitrates and phosphates, phosphates are less abundant in earth's crust
- C. Between nitrates and phosphates, nitrates are less abundant in earth's crust
- D. Oxidation of nitrates is possible in soil.

Answer: C

10. There are some deposits of nitrated and phosphates in the earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under laboratory conditions but microbes do it easily. Ammonia forms a large number of complexes with transition metal ions. Hybridisation easily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorous. Which of the following statement is correct ?

A. Between NH_3 and $PH_3,\,NH_3$ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional

- B. Between $NH_3 \quad {
 m and} \quad PH_3, \, PH_3$ is a better electron donor because the lone pair of electrons occupies sp^3 orbital and is more directional .
- C. Between NH_3 and $PH_3,\,NH_3$ is a better electron donor because lone pair of electrons occupies sp^3 orbital and is more directional .
- D. Between NH_3 and PH_3 , PH_3 is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional.

Answer: C

11. There are some deposits of nitrates and phosphates in the earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under laboratory conditions but microbes do it easily. Ammonia forms a large number of complexes with transition metal ions. Hybridisation easily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorous. White phosphorous on reaction with NaOH gives PH_3 as one of the products. This is a.

- A. dimerisation reaction
- B. disproportionation reaction
- C. condensation reaction
- D. precipitation reaction.

Answer: B

12. Noble gases were considered inert before 1962. Prior to this, Bartlett and Lohmann had previously used the highly ionization energy of O_2 is $1165~{
m kJ~mol^{-1}}$, which is almost the same as the value of IE_1 for Xe $\left(1170~{
m kJ~mol^{-1}}\right)$. Experiments showed that when deep red PtE_6 vapours were mixed with an equal volume of Xe, the gases combined immediately at room temperature to produce a yellow solid. Soon after this, it was found that Xe and F react directly to give Xe-fluorides.

Choose the correct answer:

What was the yellow solid obtained by them?

A.
$$\left[XeF_{2}
ight]^{+}\left[PtF_{6}
ight]^{-}$$

B.
$$[XeF]^+[PtF_6]^-$$

C.
$$Xe^+[PtF_6]^-$$

D.
$$[PtF_4][XeF_7]$$

Answer: C

13. Noble gases were considered inert before 1962. Prior to this, Bartlett and Lohmann had previously used the highly ionization energy of O_2 is $1165~{
m kJ~mol^{-1}}$, which is almost the same as the value of IE_1 for Xe $\left(1170~{
m kJ~mol^{-1}}\right)$. Experiments showed that when deep red PtE_6 vapours were mixed with an equal volume of Xe, the gases combined immediately at room temperature to produce a yellow solid. Soon after this, it was found that Xe and F react directly to give Xe-fluorides.

Choose the correct answer:

In what molar ratio must Xe and F_2 combine to give XeF_4 ?

- A.2:1
- B.1:2
- C. 1:5
- D. 1: 20

Answer: C

View Text Solution

14. Noble gases were considered inert before 1962. Prior to this, Bartlett and Lohmann had previously used the highly ionization energy of O_2 is $1165~{
m kJ~mol^{-1}}$, which is almost the same as the value of IE_1 for Xe $\left(1170~{
m kJ~mol^{-1}}\right)$. Experiments showed that when deep red PtE_6 vapours were mixed with an equal volume of Xe, the gases combined immediately at room temperature to produce a yellow solid. Soon after this, it was found that Xe and F react directly to give Xe-fluorides.

Choose the correct answer:

The hybridisation state of Xe in $XeOF_4$ is :

- A. sp^3
- $B. sp^3d$
- $\mathsf{C}.\,dsp^2$
- D. sp^3d^2

Answer: D

View Text Solution

15. Nitrogen forms $p\pi - p\pi$ multiple bonds. Nitrogen exists as triply bonded diatomic gaseous molecule. Bond strength is very high which is responsible for inertness at ordinary conditions. The other members of nitrogen family form $d\pi - p\pi$ bonding .

Choose the correct answer:

Thermal and electrical conductivity is highest in

- A. N
- B. P
- C. As
- D. Bi.

Answer: D

View Text Solution

16. Nitrogen forms $p\pi-p\pi$ multiple bonds. Nitrogen exists as triply bonded diatomic gaseous molecule. Bond strength is very high which is responsible for inertness at ordinary conditions. The other members of nitrogen family form $d\pi-p\pi$ bonding .

Choose the correct answer:

Which is most acidic in nature?

A. Bi_2O_3

B. Bi_2O_4

C. Sb_2O_3

D. Bi_2O_5

Answer: D

17. Nitrogen forms $p\pi-p\pi$ multiple bonds. Nitrogen exists as triply bonded diatomic gaseous molecule. Bond strength is very high which is responsible for inertness at ordinary conditions. The other members of nitrogen family form $d\pi-p\pi$ bonding .

Maximum covalency of Sb will be

Choose the correct answer:

- A. 3
- B. 4
- C. 5
- D. 6

Answer: D

View Text Solution

18. The reactions of CI_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two different oxioacids of chlorine, P and Q, respectively. The CI_2 gas reacts with SO_2 gas, in presence of charocal, to give a product R reacts with white phosphorus to give a compound S. On hydrolysis, S gives an oxoacid of phosphorus.

P and Q, respectively, are the sodium salts of

- A. hypochlorous and chloric acids
- B. hypochlorous and chlorous acids

- C. chloric acid and perchloric acids
- D. chloric and hypochlorous acids.

Answer: A

Watch Video Solution

19. The reactions of CI_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two different oxioacids of chlorine, P and Q, respectively. The CI_2 gas reacts with SO_2 gas, in presence of charocal, to give a product R reacts with white phosphorus to give a compound S. On hydrolysis, S gives an oxoacid of phosphorus.

R, S and T, respectively, are

- A. SO_2Cl_2 , PCl_5 and H_3PO_4
- B. SO_2Cl_2 , PCl_3 and H_3PO_3
- $C. SOCl_2, PCl_3 \text{ and } H_3PO_2$
- D. $SOCl_2$, PCl_5 and H_3PO_4

Answer: D

Watch Video Solution

20. Upon heating $KClO_3$ in presence of catalytic amount of MnO_2 , a gas W is formed. Excess amount of W reacts with white phosphorus to given X. The reaction of X with pure HNO_3 gives Y and Z.

Y and Z are, respectively

A.
$$N_2O_4$$
 and HPO_3

$$B. N_2O_4$$
 and H_3PO_3

$$C. N_2O_3$$
 and H_3PO_4

$$D. N_2O_5$$
 and HPO_3

Answer: D

21. Upon heating $KCIO_3$ in presence of catalytic amount of MnO_2 , a gas

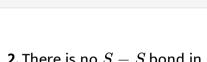
 \boldsymbol{W} is formed. Excess amount of \boldsymbol{W} reacts with white phosphours to given

X. The reaction of X with pure HNO_3 gives Y and Z.

W and X are, respectively

- A. O_2 and P_4O_{10}
- $B. O_2 \quad \text{and} \quad P_4 O_6$
- $C. O_3$ and P_4O_6
- D. O_3 and P_4O_{10}

Answer: A



Watch Video Solution

Straight Objective Type MCQs

1. Oxidation number of P in $Ba(H_2PO_2)_2$ is

B. $S_2O_5^{2-}$ C. $S_2O_3^{2-}$ D. $S_2O_7^{2-}$

Watch Video Solution

A. + 3

B.+2

C. + 1

D. - 1

Answer: C

2. There is no S-S bond in

A. $S_2O_4^{2\,-}$

Watah Vidaa Cal

3. The oxidation states of the most electronegative elements in the products of the reaction between BaO_2 and H_2SO_4 are

A. 0 and 1

B.-2 and -1

C. -2 and 0

D. -2 and +1

Answer: B

- 4. Which compound acts as an oxidising as well as reducing agent?
 - A. SO_2
 - $\mathsf{B.}\,MnO_2$

 $\mathsf{C.}\,Al_2O_3$

D.	CrO_3	
----	---------	--

Answer: A

Watch Video Solution

- **5.** The cyanide ion CN and N_2 are isoelectronic, but in contrast to CN^- , N_2 is chemically inert, because of
 - A. Low bond energy
 - B. Absence of bond polarity
 - C. Unsymmetrical electron distribution
 - D. Presecne of more number of electrons in the bonding orbitals.

Answer: B

6. The halogen which is most easily reduced is :		
A. F_2		
B. Cl_2		
C. Br_2		
D. I_2		
Answer: A		
View Text Solution		
7. The type of hybrid orbitals used by chlorine atom in ClO_2^- is :		
7. The type of hybrid orbitals used by chlorine atom in ClO_2^- is : $ \text{A.} \ sp^3 $		
A. sp^3		
A. sp^3 B. sp^2		

Answer: A

Watch Video Solution

- 8. Charge distribution in iodine monochloride is best represented as :
 - A. I^+Cl^-
 - B. $I^\delta + C l^{\delta+}$
 - C. I^-Cl^+
 - D. $I^{\delta-}Cl^{\delta+}$

Answer: B

View Text Solution

- **9.** The element with maximum ionisation potential is :
 - A. Boron

B. Carbon		
C. Nitrogen		
D. Oxygen.		
Answer: C		
Watch Video Solution		
10 A		
10. Ammonium compound which		

10. Ammonium compound which upon heating does not give ammonia is :

- A. $(NH_4)_2SO_4$
- $\mathsf{B.}\,(NH_4)_2CO_3$
- $\mathsf{C}.\,NH_4NO_2$
- D. NH_4Cl

Answer: C

11. The correct order of increasing acidic strength of CIOH (I), BrOH (II) and IOH (III) is

A.
$$I > II > III$$

$$\mathsf{B}.\,II > I > III$$

$$\mathsf{C}.\,III > II > I$$

Answer: A

12. KF combination with HF to form KHF_2 . The compound contains the species

A.
$$K^+, F^-$$
 and H^+

$$\mathsf{B}.\,K^+,F^- \;\; ext{and} \;\; HF$$

C.
$$K^+$$
 and $[HF_2]^-$

D. $\left[KHF\right]^+$	and	F^{-}
-------------------------	-----	---------

Answer: C

Watch Video Solution

- **13.** The geometry of H_2S and its dipole moment are :
 - A. Angular and non-zero
 - B. Angular and zero
 - C. Linear and non-zero
 - D. Linear and zero

Answer: A

14. The hybridisatipon of atomic orbitals of nitrogen in $NO_2^+, NO_3^- {\rm and} NH_4^+ \ {\rm respectively\ are}$

A. sp, sp^3 and sp^2 respectively

B. sp, sp^2 and sp^3 respectively

 $\mathsf{C}.\,sp^2,\,sp$ and sp respectively

D. sp^2 , sp^3 and sp respectively.

Answer: B

15. Amongest $H_2O,\,H_2S,\,H_2Se$ and H_2Te the one with highest boiling point is :

A. H_2O because of hydrogen bonding

B. H_2Te because of higher molecular mass

C. H_2S because of hydrogen bonding

D. H_2Se because of lower molecular mass

Answer: A

Watch Video Solution

16. The correct order of acidic strength is

A.
$$Cl_2O_7 > SO_2 > P_4O_{10}$$

$$\mathrm{B.}\,CO_2>N_2O_5>SO_3$$

C.
$$Na_2O>MgO>Al_2O_3$$

D.
$$K_2O>CaO>MgO$$

Answer: A

Watch Video Solution

17. The number of S-S bonds in sulphur trioxide trimer (S_3O_9) is

Answer: D Watch Video Solution **18.** The reaction $3ClO^-(aq) o ClO_3^-(aq) + 2Cl^-(aq)$ an example of : A. Oxidation reaction B. Reduction reaction C. Disproportionation reaction D. Decomposition reaction Answer: C **Watch Video Solution**

A. Three

B. two

C. One

D. Zero

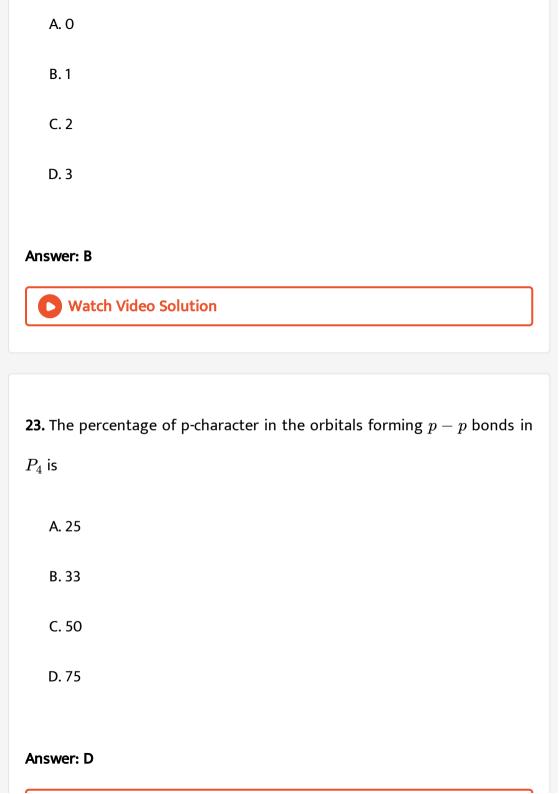
19. Ammonia can be dried by :

- A. Conc. H_2SO_4
- $\operatorname{B.}P_4O_{10}$
- C. CaO
- D. Anhydrous $CaCl_2$

Answer: C

Watch Video Solution

20. For H_3PO_3 and H_3PO_4 the correct choice is


- A. H_3PO_3 is dibasic and reducing
- B. H_3PO_3 is dibasic and non-reducing
- $\mathsf{C}.\,H_3PO_4$ is tribasic and reducing

D. H_3PO_3 is tribasic and non-reducing. Answer: A **Watch Video Solution** 21. The acid having O - O bond is A. $H_2S_2O_3$

- B. $H_2S_2O_6$
- C. $H_2S_2O_8$
- D. $H_2S_4O_6$

Answer: C

24. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen ?

- A. HNO_3 , NO, NH_4Cl , N_2
- B. HNO_3 , NO, N_2 , NH_4Cl
- $\mathsf{C}.\,HNO_3,\,NH_4Cl,\,NO,\,N_2$
- D. NO, HNO_3 , NH_4Cl , N_2

Answer: B

Watch Video Solution

25. Bleaching powder and bleach solution are produced on a large scale and used in several hous-hold products. The effectiveness of bleach solution id often measured by iodometry.

Bleaching powder contains a salt of an oxoacid as one of its components.

The anhydride of that oxoacid is:

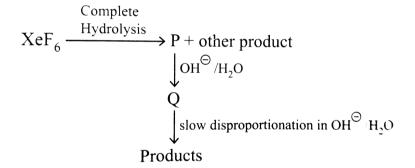
- A. Cl_2O
- B. Cl_2O_7
- $C.ClO_2$
- D. Cl_2O_5

Answer: A

Watch Video Solution

26. Concentrated nitric acid upon long standing turns yellowish-brown due to the formation of:

- A. NO
- B. NO_2
- C. N_2O


D.
$$N_2O_4$$

Answer: B

Watch Video Solution

27. Under ambient condition , the total number of gases released products in the final step of the reaction scheme shown below is

A. 0

B. 1

C. 2

D. 3

Answer: C

Watch Video Solution

28. The order of the oxidation state of the phosphours atom in $H_3PO_2,\,H_3PO_4,\,H_3PO_3$ and $H_4P_2O_6$ is

A.
$$H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$$

$${\rm B.}\,H_3PO_4>H_4P_2O_6>H_3PO_3>H_3PO_2$$

$$\mathsf{C.}\,H_3PO_2>H_3PO_3>H_4P_2O_6>H_3PO_4$$

D.
$$H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$$

Answer: B

Watch Video Solution

Multiple Correct Options Type MCQs

A. stability decreases	
B. reducing activity increases	
C. bond angle HEH decreases	
D. b.p increases.	
Answer: A::B::C	
Watch Video Solution	
2. Nitrozen (i) oxide is produced by	
A. thermal decomposition of ammonium nitrate	
B. disproportionation of $N_2 O_4$	
C. thermal decomposition of ammonium nitrite	
D. interaction of hydroxyl amine and nitrous acid.	

1. For the hydrides of nitrogen family, in going down the group :

Answer: A::D

Watch Video Solution

- 3. Highly pure dilute solution of sodium in liquid ammonia
 - A. shows blue colour
 - B. exhibits electrical conductivity
 - C. produces sodium nitrite
 - D. produces hydrogen gas.

Answer: A::B

- **4.** Sodium nitrate decomposes above $800\,^{\circ}\,C$ to give :
 - A. N_2

В.	O_2
В.	O_2

 $\mathsf{C}.\,NO_2$

D. Na_2O

Answer: A::B::D

Watch Video Solution

5. White phosphorus (P_4) has

A. six P-P single bonds

B. four P-P single bonds

C. four lone pairs of electrons

D. PPP angle of 60°

Answer: A::C::D

6. A solution of colourless salt on boiling with excess NaOH produces a non-flammable gas. The gas evolution ceases after sometime upon addition of Zn dust to the same solution, the gas evolution restarts. The colourless salt (s) is (are).

- A. NH_4NO_3
- B. NH_4NO_2
- C. NH_4Cl
- D. $(NH_4)_2SO_4$

Answer: A::B

Watch Video Solution

7. Which of the following compounds have peroxo linkage?

A. H_2SO_3

B. H_2SO_5

 $\mathsf{C}.\,H_2S_2O_7$

D. $H_2S_2O_6$

Answer: B::D

Watch Video Solution

8. The nitrogen oxide (s) that contain (s) N-N bonds (s) is (are).

A. N_2O

B. N_2O_3

 $\mathsf{C}.\,N_2O_4$

D. N_2O_5

Answer: A::B::C

9. The correct statement(s) about \mathcal{O}_3 is/are

A. O-O bond lengths are equal

B. Thermal decoposition of O_3 is endothermic

 ${\sf C.}\ O_3$ is diamagnetic in nature

D. O_3 has bent structure

Answer: A::C::D

Watch Video Solution

- 10. The correct statement(s) regarding,
- (i) $HClO_{1}$, (ii) $HClO_{2}$, (iii) $HClO_{3}$ and (iv) $HClO_{4}$ is (are)
 - A. the number of CI=O bonds in (ii) and (iii) together is two
 - B. the number of lone pair of electrons on Cl in (ii) and (iii) together is

three

C. the hybridisation of CI in (iv) is sp^3

D. amongst (i) to (iv), the strongest acids is (i)

Answer: B::C

Watch Video Solution

11. The compound(s) with two lone pairs of electron on the central atom

is (are)

A. BrF_5

B. ClF_3

C. XeF_4

D. SF_4

Answer: B::C

Watch Video Solution

12. The nitrogen containing compound produced in the reaction of HNO_3 with P_4O_{10}

A. can be prepared by reaction of $P_4 \quad {
m with} \quad HNO_3$

B. is diamagnetic

C. contains one N-N bond

D. reacts with sodium metal producing a brown gas.

Answer: A::B::D

13. The correct statements about the oxoacids $HClO_4$ and $HClO_3$ is (are):

A. The central in both the cases is sp^3 hybridised

B. $HClO_4$ is formed as a result of reaction between Cl_2 and H_2O .

C. The conjugate base of $HClO_4$ is weaker base more than H_2O

D. $HClO_4$ is more acidic than HClO because of resonance stabilisition of anion.

Answer: A::C::D

Watch Video Solution

14. The compound (s) which generate (s) N_2 upon thermal decomposation is (are) :

A. NH_4NO_3

B. $(NH_4)_2CO_7$

C. $Ba(N_3)_2$

D. Mg_2N_2

Answer: B::C

Watch Video Solution

15. Based on the compounds of group 15 elements, the correct statement (s) is (are)

A. Bi_2O_5 is more basic than N_2O_5

B. NF_3 is more covalent than BiF_3

C. PH_3 boils at a lower temperture than NH_3

D. The N - N single bond is stronger than P - P single bond.

Answer: A::B::C

Watch Video Solution

Assertion - Reason Type Questions

1. Assertion Nitrogen has higher first ionisation energy than oxygen.

Reason Atomic radius of nitrogen is smaller than that of oxygen.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: C

Watch Video Solution

2. Assertion : Noble gases have highest ionisation enthalpies in their respective periods.

Reason: Noble gases have stable closed shell electronic configuration.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct

explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: A

3. Assertion : Pentahalides of phosphorus are known but not those of nitrogen.

Reason: Phosphorus has lower electronegativity than nitrogen.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct

explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

Watch Video Solution

4. Asseration: A fresh stain of iodine is washed with hypo solution.

Reason: Hypo is a bleaching agent and it reduces I_2 to I^- .

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct

explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: A

Watch Video Solution

5. Assertion: Sulphuric acid is more visous than water.

Reason: Concentrated Sulphuric acid has a greater effinity for water.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

Watch Video Solution

6. Assertion : SO_3 has a planar structure.

Reason : S atom in SO_3 is sp^2 hybridised and O-S-O bond angle is 120° .

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: A

View Text Solution

7. Assertion: Cl_2 gas belaches the articles permanently.

Reason: Cl_2 is a strong reducing agent.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct

explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: C

8. Assertion: Helium and beryllium have similar outer electronic configuration of the type ns^2 .

Reason: Both are chemically inert.

A. If both assertion and reason are correct and reason is correct

explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: C

Watch Video Solution

9. Assertion (A) : EA of O is less than that of F but greater than that of N.

Reason (R): IE is as follows: N>O>F.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: C

10. Assertion : Nitride ion $\left(N^{3\,-}\right)$ and magnesium ion $\left(Mg^{2\,+}\right)$ are both isoelectronic species.

Reason : the charge on nitride is different from $Mg^{2\,+}$ ion.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

View Text Solution

11. Asserartion: PCl_5 is covalent in gaseous and liquide states but ionic in solid state.

Reason: PCl_5 in solid state consits of tetrahhedral PCl_4^+ cation and octahedral PCl_6^- anion.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

Watch Video Solution

12. Assertion: HClO is a stronger acid than HBrO.

Reason: Cleavage of ClO-H bond is easier than that of BrO-H bond because Cl is more electronegative than Br.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: A

View Text Solution

13. Assertion: Phosphoric acid is a tribasic acid.

Reason: Three H atoms are directly attached to P atom.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: C

Watch Video Solution

14. Assertion: $HClO_4$ is a stronger acid than $HClO_3$.

Reason: Oxidation state of Cl in $HClO_4$ is +VII and in $HClO_3+V$.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct

explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

Watch Video Solution

15. Assertion: SiF_6^{2-} is known but $SiCl_6^{2-}$ is not.

Reason: Size of fluorine is small and its lone pair of electrons intersects

with d-orbitals of Si strongly.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct

explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: A

Watch Video Solution

16. Assertion: Reaction of SO_2 and H_2S in the presence of Fe_2O_3 catalyst gives elemental sulphur.

Reason: SO_2 is a reducing agent.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: C

17. Assertion (A) :F atom has less electron than $CI^{\,\Theta}$ atom

Reason (R) : Additional electrons are repelled more effectively by 3p electron in CI atom than by 2p electron in F atom

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: C

Watch Video Solution

18. Asseration:Although:Although PF_5, PCl_5 and PBr_5 are known, the pentahalides of nitrogen have not been observed.

Reason: Phosphorus has lower electronegative than nitrogen.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

Watch Video Solution

19. Statement 1: Molecular nitrogen is less reactive than molecular oxygen

Statement 2: The bond length of N_2 is less as compared to that of $\mathcal{O}_2.$

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: A

Watch Video Solution

20. Statement-1 : Sulphur exhibits paramagnetic behaviour in vapour state.

Statement-2 : In vapour state sulphur partly exists as S_2 molecule which

has two unpaired electrons in antibonding $\pi^{\,*}$ orbitals.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: A

Watch Video Solution

21. Assertion : Fluorine (F_2) is a stronger oxidising agent than chlorine.

 ${\it Reason: Fluorine is more electrongegative than chlorine.}$

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

Watch Video Solution

22. Assertion: The compounds of noble gas element neon are not known.

Reason: Neon does not have any vacant orbital in the valence shell of its atom.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: A

23. Assertion: The basicity of hypophorus acid is two.

Reason: Two hydrogen atoms are bonded to phosphorus atoms.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct

C. If assertion is correct but reason is incorrect.

explanation for assertion.

D. If both assertion and reason are incorrect.

Answer: A

View Text Solution

24. Assertion (A): In aqueous solution, SO_2 reacts with H_2S liberating sulphur

Reason (R): SO_2 is an effective reducing agent.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

Watch Video Solution

25. Assertion: Acidity of hydrides of group 16 elements increases down the group.

Reason: Electronegativity of these elements increases down the group.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: C

Watch Video Solution

26. Assertion: He and Ne do no form any clathrates

Reason: Both He and Ne are very small in size

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

Watch Video Solution

27. Statement I Nitrogen and oxygen are the main components in the atmosphere but these do not react to form oxides of nitrogen.

Statement II The reaction between nitrogen and oxygen requires high temperature.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

- C. If assertion is correct but reason is incorrect.
- D. If both assertion and reason are incorrect.

Answer: A

Watch Video Solution

28. Asseration:Although:Although $PF_5,\,PCl_5$ and PBr_5 are known, the pentahalides of nitrogen have not been observed.

Reason: Phosphorus has lower electronegative than nitrogen.

- A. If both assertion and reason are correct and reason is correct explanation for assertion.
- B. If both assertion and reason are correct but reason is not correct explanation for assertion.
- C. If assertion is correct but reason is incorrect.
- D. If both assertion and reason are incorrect.

Answer: B

29. Assertion: Fluorine is the strongest oxidising agent in halogens.

Reason: It displaces other halogens from its aqueous solution.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: A

Watch Video Solution

30. Assertion : All F - S - F angle in SF_4 are greater than 90° but less than

 180° .

Reason :The lone pair -bond pair repulsion is weaker than bond pair -bond pair repulsion

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: C

Watch Video Solution

31. Assertion : Pure N_2 is formed from $Ba(N_3)_2$

Reason : Thermal decomposition of ${\it NaN}_3$ is used to inflate the air bags

used for safety devices in same cases.

A. If both assertion and reason are correct and reason is correct explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.

Answer: B

View Text Solution

32. In the ring test of NO_3^- ion, Fe^{2+} ion reduces nitrate ion to nitric oxide, which combines with Fe^{2+} (aq) ion to form brown complex .

Write the reactions involved in the formation of brown ring.

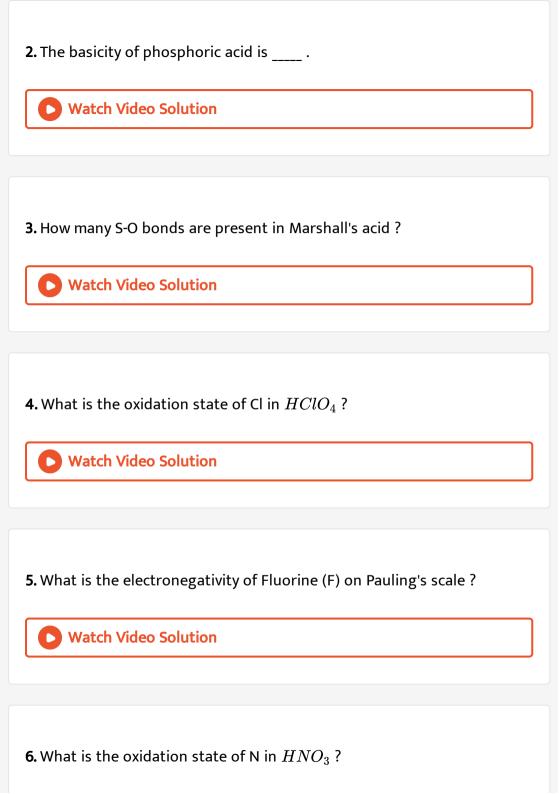
A. If both assertion and reason are correct and reason is correct

explanation for assertion.

B. If both assertion and reason are correct but reason is not correct explanation for assertion.

C. If assertion is correct but reason is incorrect.

D. If both assertion and reason are incorrect.


Answer: C

Interger Answer Type Questions

1. What is the oxidation state of P in hypophosphorus acid?

7. What is the maximum oxidation state of sulphur in its compounds?

8. Based on VSEPR theory, the number of 90 degree F-Br-F angles in BrF_5 , is

9. Among the following, the number of compounds that can react with PCl_5 to give $POCl_3$ is O_2 , CO_2 , SO_2 , H_2O , H_2SO_4 , P_4O_{10} .

11. In the interhalogen compound AB_n , what is the maximum value of n ?

12. What is the basicity of pyrophosphoric acid?

13. How many σ -bonds are present in the structure of N_2O_3 ?

14. The number of P-O-P and P-OH bonds present respectively in pyrophosphoric acid molecule are Watch Video Solution

15. Number of S-O-S bonds in $S_3{\cal O}_9$ is

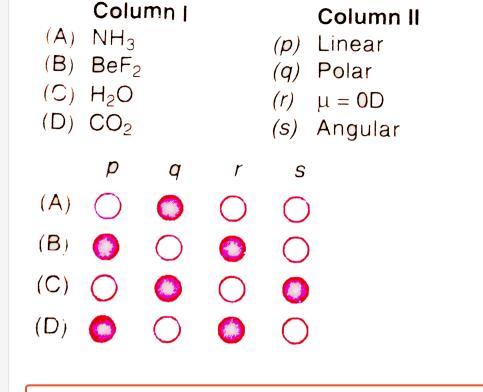
16. Number of lone pair of electrons in XeF_4 is

17. The difference between number of sigma and pi bonds in peroxodisulphuric acid is .

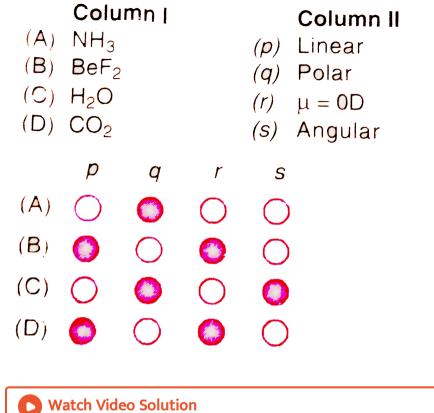
18. The total number of lone pair of electrons in $N_2 O_3$ is

Watch Video Solution

19. What is the total number of compounds having at least one bridging oxo group among the molecules given below ?


 $N_2O_3,\,N_2O_5,\,P_4O_6,\,P_4O_7,\,H_4P_2O_5,\,H_5P_2O_{10},\,H_2S_2O_3,\,H_2S_2O_5.$

View Text Solution


Matrix-Match Type Questions

1. Match the statement (A,B,C,D) in column I with the statement (p,q,r,s) in column II. The answers are to be properly bobbled.

Watch Video Solution

2. Match the statement (A,B,C,D) in column I with the statement (p,q,r,s) in column II. The answers are to be properly bobbled.

Brain Storming Multiple Choice Questions (McQs)

1. Which of the following statements is wrong?

A. Stability of hydrides increases from $NH_3 \;\; {
m to} \;\; BiH_3$ in group 15 of the periodic table

B. Nitrogen cannot form $d\pi-p\pi$ bond.

C. N-N bond is weaker than P-P bond

D. N_2O_4 has two resonating strutures.

Answer: A

View Text Solution

2. There is a very little difference in the acid strength in the acids

 H_3PO_4, H_3PO_3 and H_3PO_2 because :

A. phosphorus in these acids exists in different oxidation states

B. the hydrogen in these acids are not all bound to the phosphorus atom and have same number of unprotonated oxygen

C. phosphorus is highly electronegative element

D. phosphorus oxides are less basic.

Answer: B

3. When chlorine water is added to an aqueous solution of sodium halide
in the presence of chloroform, violet colouration is obtained. When more
of chlorine water is added, the violet colour disappears and the solution
becomes colourless. This confrims that sodium halide is :

A. Chloride

B. fluoride

C. Bromide

D. lodide.

Answer: D

View Text Solution

4. Select the correct order of acidity:

A. HI > HBr > HCl > HF

B. $HClO_4 > HBrO_4 > HIO_4$

C.HClO < HBrO < HIO

D. $HClO_4 > HClO_3 > HClO_2 > HClO$

Answer: A::B::D

View Text Solution

5. Select the correct statements:

A. Cl_2O and ClO_2 are used as bleaching agents and as germicides

B. ClO_2 is the anhydride of $HClO_2$ and $HClO_3$

C. I_2O_5 is used in the quantitative estimation of CO

D. All are coorect.

Answer: D

View Text Solution

6. The xenon compounds that are isostructural with IBr_2^- and BrO_3^- respectively are:

A. linear XeF_2 and pyramidal XeO_3

B. bent XeF_2 and pyramidal XeO_3

C. bent XeF_2 and planar XeO_3

D. linear XeF_2 and tetrahedral XeO_3 .

Answer: A

Watch Video Solution

7. Componds (A) and B are treated with dilute HCl separately. The gases liberated are Y and Z respectively. Y turns acidified $K_2Cr_2O_7$ paper green while Z turns lead acetate paper black. The compounds A and B are respectively:

A. Na_2S and Na_2SO_3

 $B. Na_2SO_3$ and Na_2S

C. NaCl and Na_2CO_3

D. Na_2SO_3 and na_2SO_4

Answer: B

Watch Video Solution

8. One mole of H_3PO_3 on reaction with excess of NaOH gives :

A. one mole of Na_2HPO_3

B. two moles of $Na_2H_2PO_3$

C. two moles of Na_2HPO_3

D. one mole of Na_3PO_3

Answer: A

Watch Video Solution

9. Molecular shapes of SF_4 . $And CF_4$ and XeF_4 are:

A. the same with 2, 0 and 1 lone pairs of electrons on the central atom respectively

B. the same with 1,1, and 1 lone pair of electrons on the central atom respectively

C. different with 0, 1 and 2 lone pairs on the central atom respectively

D. different with 1, 0 and 2 lone pairs on the central atom respectively.

Answer: D

Watch Video Solution