

MATHS

BOOKS - CAREER POINT

MOCK TEST 3

Maths

1. Least value of the function $f(x)=e^{\sin x-2\sin^2 x}$

is

A.
$$\frac{1}{\sqrt[3]{e}}$$

B.
$$\frac{1}{e^6}$$

$$\mathsf{C.}\,e^3$$

D.
$$\frac{1}{e^3}$$

Watch Video Solution

2. If $f(x)=x^5-20x^3+240x$, then f(x) satisfies which of the following

A. It is decreasing everywhere

B. It is decreasing only in $(0,\infty)$

C. It is increasing everywhere

D. It is incresing only in $(-\infty,0)$

Answer: 3

Watch Video Solution

3. Equation of the tangent to the curve y=

 $e^{-\,|x|}$ at the point where it cuts the line x=1-

A. is ey+x=2

B. is x+y=e

C. is ex+y=1

D. does not exist

Answer: 1

Watch Video Solution

4. If R be a relation from set A to B defined by

xRy \Rightarrow (x-y) is positive than R is. If A={4,3},B=

{2,3,4}

A.
$$R = \{(4,2), (4,3), (3,2)\}$$

B.
$$R = \{(4,3), (3,4)\}$$

C.
$$R = \{(2,3), (2,5)\}$$

D.
$$R=\phi$$

5. If z satisfies
$$|z-1|+|z+1|=2$$
, then locus of z is

- A. A straight line passing through z=1 & z=-1
- B. Circle
- C. A line segment
- D. Ellipse

- **6.** If the extremities of a line segment of length
- I moves in two fixed perpendicular straight

lines, then the locus of the point which divides

this line segment in the ratio 1: 2 is-

- A. a parabola
- B. an ellipse
- C. a hyperbola
- D. None of these

Answer: 2

7. P is a variable points on the hyperbola

$$rac{x^2}{a^2} - rac{y^2}{b^2} = 1$$
 whose vertex is $A(a,0)$ The

locus of the middle points AP is

A.
$$\dfrac{\left(2x-a
ight)^2}{a^2}-\dfrac{2y^2}{b^2}=1$$

B.
$$rac{{{{(2x - a)}^2}}}{{{a^2}}} - rac{{4{y^2}}}{{{b^2}}} = 1$$

C.
$$\frac{(2x-a)^2}{a^2} - \frac{8y^2}{b^2} = 1$$

D. None of these

Answer: 2

8. If $\int \!\! f(x) dx = g(x), then \int \!\! x^{11} f(x^6) dx$ is equal to

A.
$$rac{1}{6}igg[x^6gig(x^6ig)-\int\!\!\!x^5gig(x^6ig)igg]+C$$

B.
$$rac{1}{6}x^6gig(x^6ig)-\int\!\!\!x^5gig(x^6ig)dx+C$$

C.
$$rac{1}{6}\left|x^6g(x^6)-5\int\!\!\!x^5g(x^6)dx
ight|+C$$

D. None of these

Answer: 2

9.
$$\int_{1}^{e} \left\{ \frac{(\log x - 1)}{1 + (\log x)^{2}} \right\}^{2} dx \text{ is equal to}$$

A.
$$\frac{e}{2}$$

$$\mathsf{B.}\;\frac{1}{2}$$

$$\mathsf{C.}\;\frac{e-2}{2}$$

D. None of these

Answer: 3

10. If the Ivalue of the determinants $\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix}$

$$\begin{bmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{bmatrix}$$

is positive then:

A.
$$abc > 1$$

$$B.abc > -8$$

$$\mathsf{C}.\,abc>\,-\,8$$

D.
$$abc>-2$$

Answer: 2

11. If A is 3×4 matrix and B is a matrix such that $A^T B$ and $B A^T$ are both defined. Then, Bis of the type 3×4 (b) 3×3 (c) 4×4 (d) 4×3

A. 3 imes 4

B.3 imes 3

 $C.4 \times 4$

D.4 imes 3

Answer: 1

12. In the expansion of
$$\left(3\sqrt{4}+rac{1}{4\sqrt{6}}
ight)^{20}$$

- A. (i),(iii)
- B. (ii),(iii)
- C. (i),(ii)
- D. All three

13. The number of times the digit 5 will be written when listing the integers from 1 to 100, is

- A. 271
- B. 272
- C. 300
- D. None of these

Answer: 3

14. Salt $A+S\to B \xrightarrow{BaCl_2}$ White precipitate A is paramagnetic in nature and contains about 55% K. Thus, A is

- A. 9
- B. 12
- C. 27
- D. 81

Answer: 3

15. Find the image of the line

$$rac{x-1}{2}=rac{y+1}{-1}=rac{z-3}{4}$$
 in the plane

3x - 3y + 10z - 26 = 0.

A.
$$\frac{x-5/2}{9} = \frac{y-1/2}{-1} = \frac{z-2}{-3}$$

B.
$$\frac{x+5/2}{9} = \frac{y+1/2}{-1} = \frac{z+2}{-3}$$

c.
$$\frac{x-5/2}{9} = \frac{y+1/2}{-1} = \frac{z+2}{-3}$$

D. None of these

Answer: 1

16. The intercept made by the plane $\overrightarrow{r} \overrightarrow{n} = q$

on the x-axis is a.
$$\frac{q}{\hat{i}\overset{\cdot}{n}}$$
 b. $\frac{\hat{i}\overset{\cdot}{n}}{q}$ c. $\frac{\hat{i}\overset{\cdot}{n}}{q}$ d. $\frac{q}{\left|\overset{\cdot}{n}\right|}$

A.
$$\frac{q}{\hat{i}. \overrightarrow{n}}$$

B.
$$\frac{\hat{i}. \overrightarrow{n}}{q}$$

C.
$$\frac{q}{|\overrightarrow{n}|}$$

D. None of these

Answer: 1

17.

 $A(\cos\alpha,\sin\alpha), B(\sin\alpha, -\cos\alpha), C(1,2)$

If

are the vertices of ABC, then as α varies, find the locus of its centroid.

A.
$$x^2 + y^2 - 2x - 4y + 1 = 0$$

B.
$$x^2 + y^2 - 2x - 4y + 3 = 0$$

C.
$$3(x^2+y^2)-2x-4y+1=0$$

D. None

Answer: 3

18. A line passes through (2,2) and cuts a triangle of area 9 square units from the and cuts a triangle of area 9 square units from the first quadrant. The sum of all possible values for the slope of such a line, is-

$$A. - 5/2$$

$$B.-2$$

$$\mathsf{C.}-3/2$$

$$D. -1$$

Watch Video Solution

19. $(-64)^{1/4}$ is equal to-

A.
$$\pm 2(1+i)$$

$$\mathsf{B.}\pm 2(1-i)$$

$$\mathsf{C}.\pm 2(1\pm i)$$

D. None of these

Answer: 3

20. Solution of the equation

$$xdy=\left(y+rac{xf(y/x)}{f'(y/x)}
ight)$$
 dx is-

A.
$$|f(y/x)|=c|x|,c\in R$$

$$\mathsf{B.}\, |f(y/x)| = |x| + c, c > 0$$

C.
$$|f(y/x)|=c|x|,c>0$$

D. None of these

Answer: 3

21. Let u(x) and v(x) be differentiable functions

such that
$$\frac{u(x)}{v(x)}$$
=7. If $\frac{u'(x)}{v'(x)}$ =p and $\left(\frac{u(x)}{v(x)}\right)'$

=q

A. 1

B. 0

C. 7

D. 3

22. If a line passing through the origin touches the circle $(x-4)^2+(y+5)^2=25$, then find its slope.

A.
$$\pm 3/4$$

$$\mathsf{C}.\pm3$$

D.
$$\pm 1$$

23. If the line
$$x+y=a$$
 touches the parabola $y=x-x^2, \,$ then find the value of $a\cdot$

A. 0

B. 1

 $\mathsf{C.}-1$

D. None of these

Watch Video Solution

24. In an A.P the sum of the first n terms bears a constant ratio λ with the sum of the next n terms then λ =

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{3}$$

$$\mathsf{C.}\ \frac{1}{4}$$

$$\mathsf{D.}\,\frac{2}{5}$$

25. If
$$f(x) = x^2 + 2bx + 2c^2$$
,

$$g(x)={}-x^2-2cx+b^2$$
 and

and

$$\min f(x) > \max g(x)$$
 then

A.
$$|b| < 2|c|$$

B.
$$|c| < 2|b|$$

C.
$$|c|>\sqrt{2}|b|$$

D.
$$|b|>\sqrt{2}|c|$$

26. A person goes to office either by car, scooter, bus or train probability of which being $\frac{1}{7}$, $\frac{3}{7}$, $\frac{2}{7}$ and $\frac{1}{7}$ respectively. Probability that he reaches office late, if he takes car, scooter, bus or train is $\frac{2}{9}$, $\frac{1}{9}$, $\frac{4}{9}$ and $\frac{1}{9}$ respectively. Given that he reached office in time, then what is the probability that he travelled by a car?

A.
$$\frac{1}{5}$$

B.
$$\frac{1}{7}$$

$$\mathsf{C.}\;\frac{6}{7}$$

D. None of these

Answer: 2

Watch Video Solution

27. The curve passing through the point (0,1) and satisfying the equation $\sin\left(\frac{dy}{dx}\right)$ = a, is-

A.
$$\cos\left(\frac{y+1}{x}\right) = a$$

$$\mathsf{B.}\cos\!\left(\frac{x}{y+1}\right) = a$$

$$\mathsf{C.}\sin\!\left(\frac{y-1}{x}\right) = a$$

D.
$$\sin\!\left(rac{x}{y-1}
ight)=a$$

28. If the equation
$$cof^4x-2\cos ec^2x+a^2=0$$
 has at least one solution, then the sum of all possible integral values of a is equal to a. 4 b. 3 c. 2 d. 0

- A. 4
- B. 3
- C. 2
- D. 0

Watch Video Solution

29. The standard deviation of 25 numbers is 40. If each of the numbers in increased by 5, then the new standerd deviation will be -

B. 45

C.
$$40 + \frac{21}{25}$$

D. None of these

Answer: 1

Watch Video Solution

30. Circumradius of a ΔABC is 2, 0 is the circumcentre, H is the orthocentre then-

c.
$$\frac{1}{64}$$

