

MATHS

BOOKS - CAREER POINT

MOCK TEST 5

Part C Maths

1. The total number of matrices formed with the help of 6 different numer are-

A. 6!

B.3(6)!

C.2(6)!

D. 4(6)!

Answer: D

- 2. If an integer p is chosen at random in the interval $0 \leq p \leq 5,$ then the probality that the roots of the equation $x^2+px+rac{p}{4}+rac{1}{2}=0$ are real is -

 - A. $\frac{4}{5}$ B. $\frac{2}{3}$ C. $\frac{3}{5}$

D. None of these

Answer: B

Watch Video Solution

3. If p and q are two statements then the truth valueso of compound statemetns

$$p \leftrightarrow (p \wedge -q)$$
 is -

A. F,F,T,T

B. T,T,F,F

C. F,T,T,T

D. None

Answer: C

Watch Video Solution

4.
$$\sum_{r=0}^{10} r.^{10} \, C_r, \, 3^r. \, (\, -2)^{10-r}$$
 is -

- A. 20
- B. 10
- C. 30
- D. 300

Answer: C

5. A cadiadate has to reach the examination centre in time, Probality of him going by bus or scooter or by other means of transport are $\frac{3}{10}$, $\frac{1}{10}$, $\frac{3}{5}$ respectively. The probability of getting late , if the travels by bus is 1/4 ,1/3 if he travells by scooter and 0 for any other medium. But he reaches in time if the uses any mode of transport . He reached late at the centre. The probability that he travelled by bus is -

A.
$$\frac{1}{9}$$

B.
$$\frac{2}{13}$$

C.
$$\frac{9}{13}$$

D. None of these

Answer: C

Watch Video Solution

6. If the slope of chord PQ of $f(x)=x^3-2x^{-3}+10$ is 9, then relation between the AM (A) and GM (G) of abscissae of points P and Q is -

A.
$$9G^2-\left(7A^2-G^2\right)\left(G^6+2\right)=0$$

B.
$$6G^6 - (7A^2 - G^2)(G^6 + 2) = 0$$

$$\mathsf{C.}\, 9G^6 - \left(4A^2 - G^2\right)\left(G^6 + 2\right) = 0$$

D.
$$6G^6 - (4A^2 - G^2)(G^6 + 2) = 0$$

Answer: C

7. Dual of $(x' \wedge y') = x \vee y$ is

A.
$$(x' \wedge y') = x \wedge y$$

$$\mathsf{B.}\left(x\,'\vee y\,'\right)=x\wedge y$$

$$\mathsf{C.}\left(x^{\,\prime}\vee y^{\,\prime}
ight)=xy$$

D. None of these

Answer: B

8. The locus of the centere of a circle which passes through the point (0,0) and cuts off a length 2b from the line x=c is-

A.
$$y^2 + 2cx = b^2 + c^2$$

B.
$$x^2 + cx = b^2 + c^2$$

C.
$$y^2 + 2cy = b^2 + c^2$$

D. none of these

Answer: A

9. Cicles drawn on the diameter as focal distance of any point lying on the parabola $x^2-4x+6y+10=0$ will touch a fixed line whoose equation is -

- A. y=2
- B. y=-1
- C. x+y=2
- D. x-y=2

Answer: B

10. The distance of a point, P,on the ellpise $x^2+3y^2=6$ lying in the first quadrant, form the centre of the ellipse is 2 units. The eccerntric angle of the point P is-

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{6}$

D. none of these

Answer: B

11. Total number of integral values of 'a' so that
$$x^2-(a+1)x+a-1=0$$
 has roots, is equal to :

B. 1

Answer: B

Watch Video Solution

12. If a,b,c,d are such unequal real numbers that

$$ig(a^2+b^2+c^2ig)p^2-2(ab+bc+cd)p+ig(b^2+c^2+d^2ig)\leq 0$$

then a,b,c, d are in -

A. A.P

B. G.P

C. H.P.

D. none of these

Answer: B

Watch Video Solution

13. If (x) donotes the greates integer $\le x$, then the value of $\int_4^{10} \frac{\left[x^2\right]}{\left[x^2-28x+196\right]+\left[x^2\right]}\,\mathrm{dx}$ is -

A. 3

C. 1

D. 0

Answer: A

Watch Video Solution

14. The area of the portion of the circle $x^2+y^2=1$ which lies inside the parabola $y^2=1-x,\,$ is -

A.
$$\frac{\pi}{2}-\frac{2}{3}$$

$$\mathsf{B.}\,\frac{\pi}{2}+\frac{2}{3}$$

C.
$$rac{\pi}{2}+rac{4}{3}$$

D.
$$\frac{\pi}{2}-\frac{4}{3}$$

Answer: C

Watch Video Solution

15. Solution of the differential equation $x \, dy - y \, dx = 0$ represents-

- A. parabala whose vertex is at origin
- B. circle whose centre is at orgin
- C. a rectangular hyperbola
- D. straight line passing through origin

Answer: D

16.
$$k = \lim_{x o \infty} \left[rac{\sum_{k=1}^{1000} \left(x+k
ight)^m}{x^m + 10^{1000}}
ight]$$
 (mgt101) is -

A. 10

 $B. 10^{2}$

 $C. 10^3$

D. 10^4

Answer: C

17. if roots of $ax^2+bx+c=0$ where $\varepsilon R^+,\,\,$ are two positive consecutive even integers, then

- A. $|b| \leq 6a$
- B. $|b| \geq 6a$
- $\mathsf{C.}\left|b
 ight|=6a$
- D. None of these

Answer: B

Watch Video Solution

18. If $\cos^{-1}(\cos x) = \sqrt{1\sin 2x}\, orall x arepsilon(0,2\pi),\,$ then no. of solution =

- A. 2
- B. 4
- C. 3
- D. 5

Answer: A

Watch Video Solution

19. For a what value (s) of a, will the two points (1,a,1) and (-3,0,a) lie on opposite sides of the plane

A.
$$a < -1 \text{ or } a > 1/3$$

3x + 4y - 12x + 13 - 0?

$$D. -1 < a < 1$$

Answer: A

Watch Video Solution

20. The number of integer values of x for which the inequality $\log_{-10}\left(\frac{2x-2007}{x+1}\right) \geq 0$, is true, is

A. 1004

B. 1005

C. 2007

D. infinite

Answer: D

Watch Video Solution

21. If three vectors $(\sec^2 A)\,\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + (\sec^2 B)\,\hat{j} + \hat{k},\,\hat{i} + \hat{j} + \sec^2 \hat{k}$ are complnar, then the value of $\cos ec^2 A + \cos ec^2 B + \cos ec^2 C$ is -

A. 1

B. 2

C. 3

D. None of these

Answer: B

Watch Video Solution

22. Maximum value of the expression

$$\frac{10x^{12}}{x^{24} + 2x^{12} + 3x^{16} + 3x^8 + 1}$$

A. 1

B. 2

C. 10

D. 5

Answer: A

23. if f be a differentiable function such that

$$f(x)=x^2\!\int_0^x\!e^{-t}f(x-t).$$
 dt. Then f(x) =

A. 0

$$\mathsf{B.}\,\frac{x^3}{3} + x^2$$

C. not possible

D. $5x^2$

Answer: B

24. For what values of a, m and b, Lagrange's mean value

theerorem is applicable to the fucntion f(x) for

$$xarepsilon[0,2],f(x)=egin{cases} 3 & x=0 \ -x^2+a & a < x < 1 \ mx+b & 1 \leq x \leq 2 \end{cases}$$

D. No such a, m b exist

Answer: B

value of x for which The

 $f(x) = \left(\sin. rac{\{x\}}{\{x\}} + \cos. rac{\{x\}}{\{x\}}
ight)$ is maximum ({x} and

[x] denots fractiona part and greatest integer part of x respectively)

A.
$$1+rac{\pi}{4}$$

$$\mathsf{B.}\,2+\frac{\pi}{4}$$

$$\mathsf{C.}\,1-\frac{\pi}{4}$$

D. none of these

Answer: A

View Text Solution

26. If $l^r(x)$ means $\log \log \log \ldots x$ being repeated r times, then $\int \left[\left(x l(x) l^2(x) l^3(x) \ldots l^r(x) \right]^{-1} dx$ is equal to :

A.
$$l^{r+1}(x) + c$$

$$\mathsf{B.}\,\frac{l^{r+1}(x)}{r+1}+c$$

$$\mathsf{C}.\,l^r(x)+c$$

D. None of these

Answer: A

27. Consider the non-empty set consisting of children in a family and a relation R defined as aRb, if a is brother of b. Then, R is

- A. Symmetric but not transitive
- B. Transitive but not transitive
- C. Neither symametic nor transitive
- D. Both symmetric and transitive

Answer: B

$${f 28.}\,u_n=egin{array}{cccc} 1&k&&k\ 2n&k^2+k+1&k^2+k\ 2n-1&k^2&&k^2+k+1 \end{array} egin{array}{ccccc} 1&k^2+k&1&k^2+k\ 2n-1&k^2&&k^2+k+1 \end{array}$$
 and ${f \sum}_{n=1}^k u_n=72$ then k=

$$\sum_{n=0}^{k}u_{n}=72$$
 then k=

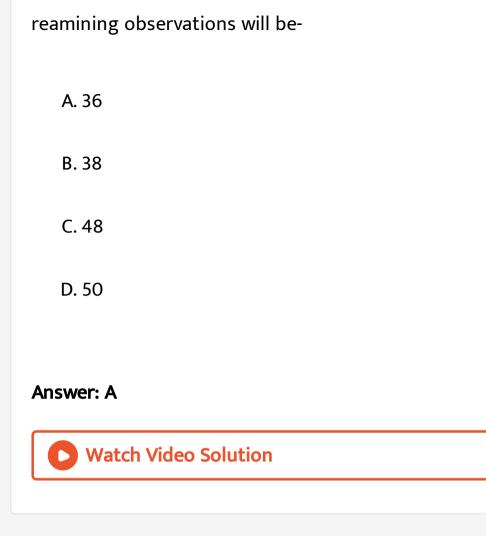
D. none of these

Answer: A

29. Let (p) x be a polynomial of degree 4 having extemum

at x= 1,2 and
$$\lim_{x o o}\left(1-rac{P(x)}{x^2}
ight)=2$$
 then P(2) =

- A. 0
- B. 1/4
- C. -1
- D. None of these


Answer: A

View Text Solution

30. The mean of 50 observation is 36. if two observation

30 and 42 are to be excluded, then the mena of the

