

MATHS

BOOKS - CAREER POINT

MOCK TEST 8

Part C Maths

1. A speaks truth in 605 cases and B speaks truth in 70% cases. The probability that they will say the same thing while describing a single event is 2/19 b. 3/29 c. 17/19 d. 4/29

A. 0.56

B. 0.54

C. 0.38

Answer: B

Watch Video Solution

2. the total number of ways of selecting two number from the set {1,2,3,4,....3n} so that their sum divisible by 3 is equal to -

A.
$$\frac{2n^2-n}{2}$$

B.
$$\frac{3n^2 - n}{2}$$

C.
$$2n^2-n$$

D.
$$3n^2 - n$$

Answer: B

3.
$$(666...6)^2 + (888...8)$$
 is equal to

A.
$$\frac{4}{9}(10^n-1)^2$$

B.
$$\frac{4}{9}(10^n - 1)$$

C.
$$\frac{4}{9} (10^{2n} - 1)$$

D.
$$\frac{4}{9} (10^{2n} - 1)^2$$

Answer: C

Watch Video Solution

4. if a,b,cgt 0 and are $p^{th},\,q^{th},\,r^{th}$ term of a G,P respectivelt then

$$egin{array}{|c|c|c|c|c|} \log a^2, p-1 & 3 \ \log b^4, 2(q-1) & 6 \ \log c^8, 4(r-1) & 12 \ \end{array}$$
 is equal to -

A. -1

B. 1

C. 0

D. none of these

Answer: C

View Text Solution

5. If zis a complex number, then |3z-1|=3|z-2| represents

A. x=0

B.
$$x^2 + y^2 = 3x$$

C. y=0

D. x=7/6

Answer: D

6. If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal then a, b, c will be in

A. A,P

B. G.P

C. H.P

D. none of these

Answer: A

7.
$$\lim_{a \to \infty} \left(\sin \frac{\pi}{2n} \sin \frac{2\pi}{2n} \sin \frac{3\pi}{2n} \dots \sin \frac{(n-1)\pi}{n}\right)^{1/n}$$
 is equal to

c.
$$\frac{1}{4}$$

B. $\frac{1}{3}$

D. none of these

Answer: A

Watch Video Solution

8. the area included between the curve $xy^2=a^2(a-x)$ and y axis is -

A.
$$\frac{\pi a^2}{2}$$

B. $2\pi a^2$

C. πa^2

D. None of these

Answer: C

9. The solution
$$(x+y+1)$$
 dy =dx are-

$$A. x + y + 2 = Ce^y$$

$$\mathtt{B.}\,x+y+4=C\log y$$

$$\mathsf{C.}\log(x+y+2) = Cy$$

D. none of these

Answer: A

10. If two distinct chords, drawn from the point (p, q) on the circle $x^2+y^2=px+qy$ (where $pq\neq q$) are bisected by the x-axis, then $p^2=q^2$ (b) $p^2=8q^2$ $p^2<8q^2$ (d) $p^2>8q^2$

A.
$$p^2=q^2$$

$$\mathrm{B.}\,p^2=8q^2$$

C.
$$p^2 < 8q^2$$

D.
$$p^2>8q^2$$

Answer: D

Watch Video Solution

$$an lpha - i \Big(\sin rac{lpha}{2}$$

11. if $rac{ anlpha-i\Big(\sinrac{lpha}{2}+\cosrac{lpha}{2}\Big)}{1+2i\sinrac{lpha}{2}}$ is purely imaginary then lpha is

A.
$$n\pi + \frac{\pi}{4}$$

B.
$$n\pi=rac{\pi}{4}$$

C.
$$(2n+1)\pi$$

D.
$$2n\pi+rac{\pi}{4}$$

Answer: A

Watch Video Solution

12. If the point $x_1+t(x_2-x_1),\,y_1+t(y_2-y_1)$ divides the join of (x_1,y_1) and (x_2,y_2) internally then locus of t is

A. tlt0

B. Olttlt1

C. tgt1

D. t=1

Answer: B

13. A common tangent to $9x^2-16y^2=144$ and $x^2+y^2=9$, is

A.
$$y = \frac{3}{\sqrt{3}}X + \frac{15}{\sqrt{7}}$$
B. $y = 3\sqrt{\frac{2}{7}}x + \frac{15}{\sqrt{7}}$

C.
$$y=2\sqrt{rac{3}{7}}x+15\sqrt{7}$$

D. None of these

Answer: B

Watch Video Solution

14.
$$f(x)=[x]+\left\lfloor x+rac{1}{3}
ight
floor+\left\lfloor x=rac{2}{3}
ight
floor orall x\in R,$$
 where [.] is G.I.F

then number of points of discontiuity of f(x) in $[\,-1,1]$ is /are

A. 5

B. 4

C. 7

D. none of these

Answer: D

View Text Solution

- **15.** Domain of f $(x)=rac{1}{[X]}+\sqrt{(2-x)x}$ is equal to (if [x] denotes the greastest integer function]
 - A. [0,2]
 - B. [0.1]
 - C. [1,2]
 - D. [1,3]

Answer: C

16. Line 3x + 2y =24 meets x-axis at A and y- axis at B and perpending bisector of AB meets the line passing through (0,1) and parallel to x-axis at C. Area of ΔABC is

- A. 182 sq units
- B. 91 sq units
- C. 48 sq units
- D. none of these

Answer: C

Watch Video Solution

17. The area of the triangle whose vertices are

A(1, -1, 2), B(2, 1-1)C(3, -1, 2) is

A.
$$\sqrt{17}$$

 $\mathsf{B.}\ 13$

C. $\sqrt{13}$

D. None of these

Answer: B

Watch Video Solution

- **18.** Find the derivative of f(an x) w.r.t. $g(\sec x)$ at $x=rac{\pi}{4}$, where f'(1)=2 and $g'\left(\sqrt{2}
 ight)=4$.
 - A. $\sqrt{2}$
 - B. $\frac{1}{\sqrt{2}}$

C. 1

D. none of these

Answer: B

19. G is the centroid of triangle ABC and A_1 and B_1 are the midpoints of sides AB and AC respectively .If Δ_1 be the area of quandrillateral Δ/Δ_1 is equal to -

- A. 3/2
- B. 3
- C. 43468
- D. none of these

Answer: D

View Text Solution

20. The three vectors $\hat{i}+\hat{j},\hat{j}+\hat{k},\hat{k}+\hat{i}$ taken two at a time form three planes. The three unit vectors drawn perpendicular to these three planes form a parallelopiped of volume.

- A. 43468
- B. 4
- C. $\left(3\sqrt{3}\right)4$
- D. $4/\left(3\sqrt{3}\right)$

Answer: C

- **21.** If $an 4 heta = \cot 3 heta$, then general value of heta-
- A. $(2n+1)rac{\pi}{14}, n
 eq 3k$
 - B. $(2n+1)\frac{\pi}{6}$

 $x \in R$.

22.

A.(3,4)

C. $(-\infty, 3)$

 $D.(3,\infty)$

Answer: B

B. $(-\infty,0)$

Answer: C

D. $(2n+1)rac{\pi}{14}, n
eq 8k$

C. $(2n+1)\frac{\pi}{14}$

Watch Video Solution

Find the possible values of a such

 $f(x)=e^{2x}-(a+1)e^x+2x$ is monotonically increasing for

that

23. The equation to the line touching both the parabolas $y^2=4x$ and $x^2=\,-\,32y$ is

A.
$$x + 2y + 4 = 0$$

$$\mathsf{B.}\,2x+y-4=0$$

C.
$$2x + y - 4 = 0$$

D.
$$x - 2y + 4 = 0$$

Answer: C

24. the less interger a, for which

$$1 + \log_5ig(x^2+1ig) \leq \log_5ig(ax^2+4x+aig)$$
 is true for all $x\in \$ R is -

- A. 6
- B. 7
- C. 10
- D. 1

Answer: B

25. A curve with equation of the form $y=ax^4+bx^3+cx+d$ has zero gradient at the point (0,1) and also touches the x- axis at the point (-1,0) then the value of x for which the curve has a negative gradient are: $x\geq -1$ b. x<1 c. x<-1 d.

- $-1 \le x \le 1$
 - A. xgt-I
 - B. xlt1

C. xlarr1

D.
$$-1 \le x \le 1$$

Answer: C

Watch Video Solution

26.

 $\int \!\! x^5 ig(1+x^3ig)^{2/3} dx = Aig(1+x^3ig)^{8/3} + Big(1+x^3ig)^{5/3} + c, \;\; ext{then}$

A. $A = \frac{1}{4}, B = \frac{1}{5}$ B. $A=rac{1}{8}, B=rac{1}{5}$

D. none of these

Answer: B

27. If the relation R : $A \to B$, where A={1,2,3} and B={1,3,5} is defined by

$$R = \{(x,y) : x < y, x \in A, y \in B\}$$
, then-

A.
$$R = \{(1,3), (1,5), (2,3), (2,5), (3,5)\}$$

B.
$$R = \{(1, 1), (1, 5), (2, 3), (3, 5)\}$$

C.
$$R^{-1} = \{(3,1), (5,1), (3,2), (5,3)\}$$

D.
$$R^{-1} = \{(1,1), (5,1), (3,2), (5,3)\}$$

Answer: A

Watch Video Solution

28. Value of $\lim_{a o\infty}~\left(e.~a^2.~e^3.~a^4.~.....~e^{n-1}a^n
ight)^{rac{1}{n^2+1}}$ is

A. 1

C.
$$\sqrt{ab}$$

D.
$$4\sqrt{ae}$$

Answer: D

Watch Video Solution

29. Let $A=\begin{bmatrix}2&q\\0&1\end{bmatrix}$ and $A^8=\begin{bmatrix}x&yq\\0&1\end{bmatrix}$, then x-y is -

- A. 0

B. 1

- C. 2
- D. -1

Answer: B

watch video Solution

30. For a series the value of men deviation is 15. The most likely value of its quartile deviation is -

- A. 12.5
- B. 11.6
- C. 13
- D. 9.7

Answer: A

