

MATHS

BOOKS - CAREER POINT

MOCK TEST 9

Maths

1. OAB is a triangle in the horizontal plane through the foot P of the tower at the middle point of the side OB of the triangle. If $OA=2m, OB=6m, AB=5m \text{ and } \angle AOB$ is equal to the angle subtended by the tower at A, then the height of the tower is

A.
$$\sqrt{rac{11 imes39}{25 imes3}}$$

$$\mathsf{B.}\;\sqrt{\frac{11\times39}{25\times2}}$$

C.
$$\sqrt{rac{11 imes25}{39 imes2}}$$

D. None of these

Answer: 2

Watch Video Solution

- **2.** If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and ABC is a triangle with side lengths a,b and c satisfying (20a-15b) \overrightarrow{x} + (15b-12c) \overrightarrow{y} + (12c-20a) $\overrightarrow{x} \times \overrightarrow{y}$ is:
 - A. an acute angled Delta
 - B. an obtuse angled Delta
 - C. a right angled Delta
 - D. an isosceles Delta

Answer: 3

3. If the volume of tetrahedron ABCD is 1 cubic units, where $A(0,1,2), B(\,-1,2,1) and C(1,2,1), \$ then the locus of point D is a.

$$x+y-z=3$$
 b. $y+z=6$ c. $y+z=0$ d. $y+z=-3$

- A. x+y-z=3
- B. y+z=6
- C. y+z=-3
- D. None of these

Answer: 2

Watch Video Solution

4. The equation of the plane passing through the lines

$$\frac{x-4}{1} = \frac{y-3}{1} = \frac{z-2}{2}$$
 and $\frac{x-3}{1} = \frac{y-2}{-4} = \frac{z}{5}$, is

A. 11x-y-3z=35

C. 11x-y+3z=35

D. None of these

Answer: 4

Watch Video Solution

The 5.

Delta $(x_i,y_i)i=1,2,3$ is inscribed in the $\mathrm{circle} x^2+y^2=a^2.$ The

with

vertices

orthocentre of the Delta is

A. $(-Sigmaxi, -\Sigma yi)$

B. $(Sigmaxi, -\Sigma yi)$

 $\mathsf{C}.\left(\Sigma x_i, \Sigma y_i\right)$

D. $\left(\frac{1}{3}\Sigma xi, \frac{1}{3}\Sigma yi\right)$

Answer: 3

6. If the line px + qy =1 is a tangent to the parabola y^2 =4ax, then

A.
$$p^2 - aq = 0$$

B.
$$p + aq^2 = 0$$

C.
$$p - aq^2 = 0$$

D.
$$p - 2aq^2 = 0$$

Answer: 2

Watch Video Solution

7. If $\int \frac{2 \tan x + 3}{\sin^2 x + 2 \cos^2 x} dx$

$$=1_nig(1+\sec^2xig)+p an^{-1}igg(rac{ an x}{q}igg)+c$$
,then pq is

A. 6

B.3/2

C. 3

D. None of these

Answer: 3

Watch Video Solution

8. If $f'(x^2-4x+3)>0$ for all $x\in(2,3)$ then f(sinx) is increasing on

A. $\bigcup 2n\pi, (4n+1)\pi/2$

B.R

C. $\bigcup (4n-1)\pi/2, 2n\pi$

D. None of theese

Answer: 3

 $\phi(x) = \sqrt{f(f(f(x))) - h(h(h(x)))}$ is -

9. If f(x) is continuous and increasing functin such that the domain of
$$g(x)=\sqrt{f(x)-x}$$
 be R and $h(x)=\frac{1}{1-x}$ then the domain of

D.
$$R^+-\{1\}$$

Answer: 3

Watch Video Solution

10.

$$f(x) = \left\{ lpha + rac{\sin[x]}{x}, x > 0 ext{ and } 2, x = 0 ext{ and } eta + \left\lceil rac{\sin x - x}{x^3}
ight
ceil, x < 0
ight.$$

If

(whlenotes the greatest integer function) if f(x) is continuous at x=0 then eta is equal to

A.
$$lpha-1$$

B.
$$lpha+1$$

C.
$$\alpha+2$$

D.
$$lpha-2$$

Answer: 2

11. Find the greatest value of the term independent of x in the expansion of $\Big(x\sin\alpha+\frac{\cos\alpha}{x}\Big)^{10}$, where $\alpha\in R$

A.
$$2^5$$

B.
$$\frac{10!}{(5!)^2}$$

c.
$$\frac{1}{2^5} \frac{10!}{(5!)^2}$$

D. None of these

Answer: 3

Watch Video Solution

- **12.** The polynomial $f(x)=x^4+ax^3+bx^3+cx+d$ has real coefficients and f(2i)=f(2+i)=0. Find the value of (a+b+c+d).
 - A. 1
 - B. 4
 - C. 9
 - D. 10

Answer: 3

13. If $b^2-ac<0\ {
m and}\ a>0$ then the value of the determinant is

- A. positive
- B. negative
- C. zero
- D. $b^2 + ae$

Answer: 2

View Text Solution

- **14.** The probability that $\sin^{-1}(\sin x) + \cos^{-1}(\cos y)$ is an integer $x,y\in(1,2,3,4)$,is
 - A. $\frac{1}{16}$
 - $\mathsf{B.}\;\frac{3}{16}$
 - $\mathsf{C.}\ \frac{15}{16}$

D. None of these

Answer: 2

Watch Video Solution

15. If the points $P(\alpha,0)$ and $Q(0,\beta)$ always lies inside sthe Delta formed by the lines

2x - 3y - 6 = 0, 3x - y + 3 = 0 and 3x + 4y - 12 = 0 then

A. $\alpha \varepsilon [\,-1,2], \beta \varepsilon [\,-2,3]$

B. $\alpha \varepsilon [\,-1,3], \beta \varepsilon [\,-2,4]$

C. $\alpha arepsilon[\,-2,4], eta arepsilon[\,-3,4]$

D. $lpha arepsilon [\,-1,3], eta arepsilon [\,-2,3]$

Answer: D

16. The equation of the hyperbola whose foci are (6.5), (-4,5) and eccentricity 5/4 is

A.
$$\frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} = 1$$

B.
$$\frac{{{{(x)}^2}}}{{16}} - \frac{{{(y)}^2}}{9} = 1$$
C. $\frac{{{(x - 1)}^2}}{{16}} + \frac{{{(y - 5)}^2}}{{0}} = 1$

D. None of these

Answer: 1

Watch Video Solution

17. The value of the definite
$$\int_0^{3\pi/4} (1+x) \sin x + (1-x) \cos x \, dx$$
 is

integral

A.
$$2\tan\left(\frac{3\pi}{8}\right)$$

B.
$$2\frac{\tan(\pi)}{4}$$

$$\mathsf{C.}\,2\frac{\tan(\pi)}{8}$$

D. 0

Answer: 1

Watch Video Solution

18. The value of the constant 'm' and 'c' for which y = mx + c is a solution of the differential equation D^2y - 3Dy -4y = -4x is:

A. is
$$m = -1, c = 3/4$$

B. is
$$m=1, c=\,-\,3/4$$

C. no such real m,c

D. is
$$m=1,\, c=3/4$$

Answer: 3

19. Through the centriod of an equilateral triangle a line parallel to the base is drawn. On this line, an arbitary point P is taken inside the triangle. Let h denote the distance of P from the base of the triangle. Let h_1 and h_2 be the distance of P from the other two sides of the triangle, then

- A. h is the H.M of $h_1,\,h_2$
- B. h is the G.M of h_1, h_2
- C. h is the A.M of h_1 , h_2
- D. None of these

Answer: 3

Watch Video Solution

20. If the number of ways of selecting 3 numbers out of $1,2,3,\ldots,2n+1$ such that they are in arithmetic progression in

441, then they are in arithemtric progression is 441, then the sum of the divisors of n is equal to

- A. 21
- B. 22
- C. 32
- D. None of these

Answer: 3

Watch Video Solution

21. α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$, then

If

$$x
ightarrow rac{1}{lpha} \sqrt{1 - rac{\cos ex^2 + bx + a}{2\left(1 - lpha x
ight)^2}} =$$

A.
$$\left| rac{c}{2lpha} \left(rac{1}{lpha} - rac{1}{eta}
ight)
ight|$$

C.
$$\left| \frac{c}{2\beta} \left(\frac{1}{\alpha} - \frac{1}{\beta} \right) \right|$$
D. None of these

B. $\left| \frac{c}{2\beta} \left(\frac{1}{\alpha} - \frac{1}{\beta} \right) \right|$

Answer: 1

Watch Video Solution

22. If $\log_2(5.2^x+1), \log_4(2^{1-x}+1)$ and 1 are in A.P,then x equals

$$\text{B.}\,1-\log^5$$

A. \log^5

 $C. \log_5 2$

D. None of these

Answer: 2

23. The matrix $A=\left[egin{array}{ccc} rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \ rac{-1}{\sqrt{2}} & rac{-1}{\sqrt{2}} \end{array}
ight]$ is

A. idempotent

B. orthogonal

C. nilpotent

D. involutory

Answer: 3

Watch Video Solution

24. In
$$\Delta ABC$$
 with usual notation $rac{r_1}{bc}+rac{r_2}{ca}+rac{r_3}{ab}$ is

A.
$$\dfrac{1}{2R}-\dfrac{1}{r}$$

B.2R-r

 $\mathsf{C}.\,r-2R$

D.
$$\frac{1}{r}-\frac{1}{2R}$$

Answer: 4

Watch Video Solution

25. If $\overline{OA}=\hat{i}+3\widehat{J}-2\widehat{K}$, $hen\overline{OC}$ which bisects the angle AOB is given by:

A.
$$\hat{i}-\widehat{J}-\widehat{K}$$

B.
$$\hat{i}+\widehat{J}+\widehat{K}$$

C.
$$\widehat{-i} + \widehat{J} - \widehat{K}$$

D.
$$\hat{i}+\widehat{J}-\widehat{K}$$

Answer: 4

View Text Solution

26. The tangent to the curve $y=e^x$ drawn at the point (c,e^c) intersects the line joining $\left(c-1,e^{c-1}\right)$ and $\left(c+1,e^{c+1}\right)$ (a) on the left of n=c (b) on the right of n=c (c) at no points (d) at all points

- A. on the left of x=c
- B. on the right of x=c
- C. at no point
- D. at all points

Answer: 1

- 27. The system of equation |z+2-2i|=4 and |z|=1 has -
 - A. Two solutions
 - B. No solution

C. Infinite solutions

D. One solution

Answer: 2

Watch Video Solution

28. The sides of a triangle ABC lie the lines on 3x+4y=0, 4x+3y=0 and x=3 . Let (h,k) be the centre of the circle inscribed in $\ \triangle \ ABC$. The value of (h+k) equals

A. 0

B. $\frac{1}{4}$

 $\mathsf{C.}-\frac{1}{4}$

D. $\frac{1}{2}$

Answer: 1

29. y = f(x) is a function which satisfies f(0) = 0, f''(x) = f'(x)and $f^{\,\prime}(0)=1$ then the area bounded by the graph of y=f(x), the lines x=0, x-1=0 and y+1=0 is

A. e

B. e-2

C. e-1

D. e+1

Answer: 3

Watch Video Solution

function $f(x) = \alpha x^2 - \beta(x) - 4x^3 + (\gamma)$ where 30. The alpha,beta,gamma epsilon "R has local minima at"

 $P(\log_2)a, f(\log_2 a)$ "& local maxima at"

 $Q(\log_2 a^2), f(\log_2 a^2).$ "If the graph of" f(x) "changes concavity about the point" $R\frac{3}{4}, \frac{f(3)}{4}$ "then which of the following conic section can have eccentricity" 'a'-

A. circle

B. parabola

C. ellipse

D. hyperbola

Answer: 4

