# © 'doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - CAREER POINT

## MOCK TEST 1

## Part A Physics

1. A body is projected up with a velocity equal to $3 / 4$ th of the escape velocity from the surface of the earth. The height it reaches is (Radius of the earth is $R$ )
A. $\frac{3 R}{10}$
B. $\frac{9 R}{7}$
C. $\frac{8 R}{5}$
D. $\frac{9 R}{5}$

## - Watch Video Solution

2. The equation of SHM of a particle is given as $2 \frac{d^{2} x}{d t^{2}}+32 x=0$ where x is the displacement from the mean position. The period of its oscillation (in seconds) is -
A. 4
B. $\frac{\pi}{2}$
C. $\frac{\pi}{2 \sqrt{2}}$
D. $2 \pi$

## Answer: B

3. A long straight wire carrying current of 30 A is placed in an external unifrom magnetic field of induction $4 \times 10^{4} T$. The magnetic field is acting parallel to the direction of current. The maggnetic of the resultant magnetic inuduction in tesla at a point 2.0 cm away form the wire is
A. $10^{-4}$
B. $3 \times 10^{-4}$
C. $5 \times 10^{-4}$
D. $6 \times 10^{-4}$

## Answer: C

## - Watch Video Solution

4. Rate of increment of energy in an inductor with time in series RL circuit getting charged with battery of EMF Eis best represented by:
(1) dt

A.
B.

(3)

C.
(4) $\frac{d u}{d t} \xrightarrow{ }$
D.

Answer: A
5. In a series LR circuit, the voltage drop across inductor is 8 volt and across resistor is 6 volt. Then voltage applied and power factor of circuit respectively are:
A. Volatage of the source will be leading current in the ciruit
B. Volatage drop across each element will be less the appliced voltage
C. Power factor of circuit will be $4 / 3$
D. None of these

## Answer: D

## - Watch Video Solution

6. A gas is found to obey the law $P^{2} \mathrm{~V}=$ constant the innitial temperature and volume are $T_{0}$ and $V_{0}$. If the gas expands to volume $2 V_{0}$, its final temperature becomes-
A. $\sqrt{2} T_{0}$
B. $2 T_{0}$
C. $T_{0} / 2$
D. $T_{0} / \sqrt{2}$

## Answer: A

## - Watch Video Solution

7. Three objects coloured black, gray and white can withstand hostile conditions upto $2800^{\circ} \mathrm{C}$. These objects are thrown into a furance where each of them attains a temperature of $2000^{\circ} \mathrm{C}$. Which object will glow brightest?
A. white object
B. Black object
C. All glow with same brightness
D. Grey object

## Answer: C

## D Watch Video Solution

8. Main scale of a vernier callipser has 100 divisions in 5 cm . Its vernier scale has 25 divisons in one cm . The least count is -
A. 0.01 cm
B. 0.005 cm
C. 0.01 mm
D. None of these

## Answer: A

## D Watch Video Solution

9. In a semi conductor diode, the barrier potential offers opposition to
A. Majority carriers in both regions
B. Minority carriers in both regions
C. Free electrons in the $n$ - region
D. Holes in the p-region

## Answer: A

## - Watch Video Solution

10. A progressive wave $y=A \sin (k x-\omega t)$ is reflected by a rigid wall at $x=0$
. Then the reflected wave can be represented by -
A. $y=A \sin (k x+\omega t)$
B. $y=A \cos (k x+\omega t)$
C. $y=-A \sin (k x-\omega t)$
D. $y=-A \sin (k x+\omega t)$

## Watch Video Solution

11. The frequency of fundamental tone in an open organ pipe of length 0.48 m is 320 Hz . Speed of sound is $320 \mathrm{~m} / \mathrm{sec}$. Frequency of fundamental tone in closed organ pipe will be
A. 153.8 Hz
B. 160.0 Hz
C. 320.0 Hz
D. 143.2 Hz

## Answer: B

## - Watch Video Solution

12. A box contains $N$ molecules of a perfect gas at temperature $T_{1}$ and temperature $P_{1}$. The number of molecule in the box is double keeping
the total kinetic energy of the gas same as before. If the new pressure is $P_{2}$ and temperature $T_{2}$, then
A. $P_{2}=P_{1}, T_{2}=T_{1}$
B. $P_{2}=P_{1}, T_{2}=\frac{T_{1}}{2}$
C. $P_{2}=2 P_{1}, T_{2}=T_{1}$
D. $P_{2}=2 P_{1}, T_{2}=\frac{T_{1}}{2}$

## Answer: B

## - Watch Video Solution

13. A fraction $f_{1}$ of a radioactive sample decays in one mean lie and a fraction $f_{2}$ decays in one half-life
A. $f_{1}=f_{2}$
B. $f_{1}=\frac{f_{2}}{2}$
C. $f_{1}<f_{2}$
D. $f_{1}>f_{2}$

## Answer: C

## - Watch Video Solution

14. The binding enrgy of ${ }_{17}^{35} \mathrm{Cl}$ nucleus is 298 MeV . Find the atomic mass.

Given, mass of a proton $\left(m_{P}\right)=1.007825 \mathrm{amu}$, mass of a neutron $\left(m_{n}\right)=1.008665 \mathrm{amu}$.
A. 24.9 amu
B. 34.9 amu
C. 54.9 amu
D. 35.289 amu

## Answer: B

15. The threshold frequency for a certain metal is $v_{0}$ when light of frequency $v=2 v_{0}$ is incident on it . The maximum velocity of photoelectrons is $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. If the frequency of incident radiation is increase to $5 v_{0}$, the maximum velocity of photo electrons in $\mathrm{m} / \mathrm{s}$ will be .
A. $\frac{4}{5} \times 10^{6}$
B. $2 \times 10^{6}$
C. $8 \times 10^{6}$
D. $2 \times 10^{7}$

## Answer: C

## - Watch Video Solution

16. An $\alpha$-particle and a proton are fired through the same magnetic field which is perpendicular to their velocity vectors. The $\alpha$-partcles and the proton move such that radius of curvature of their paths is same. Find the ratio of their de Broglie wavelengths.
A. $\frac{1}{2}$
B. $\frac{2}{1}$
C. $\frac{1}{4}$
D. $\frac{4}{1}$

## Answer: A

## - Watch Video Solution

17. If the electric potential on the surface of inner most sphere is zero, then the relation between $r_{1}, r_{2}$ and $r_{3}$ is (here $\sigma$ is surface charge
density)

A. $r_{3}=r_{1}+r_{2}$
B. $r_{2}=\sqrt{r_{1} r_{3}}$
C. $r_{2}=r_{1}+r_{3}$
D. $r_{2}=r_{3}-r_{1}$

## Answer: C

18. A small sphere of mass $m$ and carrying a charge $q$ is attached to one end of an insulating thread of length $a$, the other end of which is fixed at $(0,0)$ as shown in figure . There exists a uniform electric field $\vec{E}=-\vec{E}_{0} \hat{j}$ in the region. The minimum velocity which should be given to the sphere at $(a, 0)$ in the direction shown so that it is able to complete the circle around the origin is (There is no gravity )

A. $\sqrt{\frac{5 q E_{0} a}{m}}$
B. $\sqrt{\frac{3 q E_{0} a}{m}}$
C. $\sqrt{\frac{q E_{0} a}{m}}$
D. $2 \sqrt{\frac{q E_{0} a}{m}}$

Answer: B

## - Watch Video Solution

19. In the ciruit shown, the charges on the capacitors $A$ and $B$ are respectively -

A. CV , CV
B. $\frac{C V}{2}, \frac{C V}{2}$
c. $C V, \frac{C V}{2}$
D. $\frac{C V}{2}, C V$

## - Watch Video Solution

20. For a cell, a graph is plotted between the potential difference V across the terminals of the cell and the current I drawn the cell. The emf and the internal resistance of the cell are E and $r$, respectively. Then

A. $2 \mathrm{~V}, 0.5 \Omega$
B. $2 \mathrm{~V}, 0.4 \Omega$
C. $>2 \mathrm{~V}, 0.5 \Omega$
D. $>2 \mathrm{~V}, 0.4 \Omega$

## Answer: B

## - Watch Video Solution

21. A solid cylinder of length I and cross-sectional area $A$ is made of a material whose resistivity depends on the distance $r$ from the axis of the cylinder as $\rho=k / r^{2}$ where k is constant. The resistance of the cylinder is -
A. $\frac{\pi k l}{A^{2}}$
B. $\frac{2 \pi k l}{A^{2}}$
C. $\frac{\pi k l}{A}$
D. None

## Answer: B

22. Which of the following is correct about principle of conservation of momentum?
(1)

A.

B.
C.

D.


## Answer: D

## - Watch Video Solution

23. Two identical billiard balls are in contact on a table. A third identical ball strikes them symmetrically and comes to rest after impact. The

## coefficient of restitution is :

A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. $\frac{\sqrt{3}}{2}$

## Answer: A

## - Watch Video Solution

24. A uniform cube of side and mass $m$ rests on a rough horizontal surface. A horizontal force F is applied normal to one face at point that is directly above the centre of the face at a height $\frac{a}{4}$ above the centre. The minimum value of $F$ for which the cube begins to topple above an edge without sliding is
A. $\frac{1}{4} \mathrm{mg}$
B. 2 mg
C. $\frac{1}{2} \mathrm{mg}$
D. $\frac{2}{3} \mathrm{mg}$

## Answer: D

## Watch Video Solution

25. The focal length of a convex lens of $R . I .1 .5$ is $f$ when it is placed in air. When it is immersed in a liquid is behaves as a converging lens its focal length becomes $x f(x>1)$. The refractive index of the liquid
A. $>\frac{3}{2}$
B. $<\frac{3}{2}$ and $>1$
C. $<\frac{3}{2}$
D. All of these

## Answer: B

26. A double-slit experiment is immersed in a liquid of refractive index 1.33. It has slit separation of 1 mm and distance between the plane of slits and screen is 1.33 m . The slits are illuminated by a parallel bam of light whose wavelength in air is $6830 \AA$. Then the fringe width is
A. $6.3 \times 10^{-4} \mathrm{~m}$
B. $8.3 \times 10^{-4} \mathrm{~m}$
C. $6.3 \times 10^{-2} \mathrm{~m}$
D. $6.3 \times 10^{-5} \mathrm{~m}$

## Answer: A

## - Watch Video Solution

27. A beam of light strikes a surface at angle of incidence of $60^{\circ}$ and reflected beam becomes completely polarised. The refractive index of glass surface is -
A. 1.5
B. $\sqrt{3}$
C. 2
D. $\frac{1}{\sqrt{3}}$

## Answer: B

## - Watch Video Solution

28. If $P$ represents radiation pressure, $C$ represents the speed of light, and $Q$ represents radiation energy striking a unit area per second, then non-zero integers $x, y, z$ such that $P^{x} Q^{y} C^{z}$ is dimensionless, find the values of $x, y$, and $z$.
A. $x=1, y=1, z=-1$
B. $x=1, y=-1, z=1$
C. $x=-1, y=1, z=1$
D. $x=1, y=1, z=1$

## - Watch Video Solution

29. A particle is confined to move along the $x$-axis between reflecting walls at $x=0$ and $x=a$. Between these two limits it moves freely at constant velocity $v$. If the walls are perfectly reflecting, then its displacement time graph is -
(1)

(2)

C.

(3)
(4)

D.

## - Watch Video Solution

30. A particle is on a smooth horizontal plane. A force $F$ is applied whose F-t graph is given. Then,


A. between $0 \& t_{1}$ acceleration is constant
B. initally body must be in rest
C. after $t_{1}$ acceleration is constant
D. Finally acceleration is zero

## Answer: C

## Part B Chemistry

1. Which method of purificationis represented by the following equations

$$
\underset{\text { (Impure) }}{T i+2 I_{2}} \xrightarrow{523 K} T i I_{4} \xrightarrow{1700 K} \underset{\text { (pure) }}{T i}+2 I_{2}
$$

A. Cupellation
B. Poling
C. Van Arkel method
D. Zone refining

## Answer: C

## - Watch Video Solution

2. A fire work gave brick red colour . It probably contained a salt of -
A. Ca
B. K
C. Ba
D. Mg

## Answer: A

## D View Text Solution

3. About $\mathrm{H}_{2} \mathrm{SO}_{4}$, which of the following statements is incorrect?
A. It acts as a reducing agent
B. It acts as an oxidizing agent
C. It acts as dehydrating agent
D. It is highly viscous

## Answer: B

4. The property of halogen acids, that indicated incorrect is -
A. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI} \ldots \ldots$. acidic strength
B. $\mathrm{HI}>\mathrm{HBr}>H C l H F \ldots \ldots$.... reducing strength
C. $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF} . \ldots$. . . bond length
D. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI} \ldots$... thermal stability

## Answer: A

## - View Text Solution

5. Which of the following will be the major product when 3 phenylpropene reacts with HBr ?
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHBrCH} 3$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHBrCHCH} 2$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}$

Answer: D

## - Watch Video Solution

6. The major product formed in the reaction is -
$\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{CH}_{2} \mathrm{OHKOH} / \mathrm{H}_{2} \mathrm{O}(\rightarrow)$
heat
A. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
C.
) $\mathrm{CH}_{3}$
(3)

D. $\mathrm{CH}_{3} \stackrel{\mathrm{OH}}{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

## Answer: C

7. Consider the following sequence of reactions .


The final product (C) is -
A.

(2)
B.

C.
(4)
D.

Answer: D
8. For the redox reaction,
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{-2}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{+2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ the correct coefficient of reactants $\mathrm{MnO}_{4}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}^{-2}$
$H^{+}$for the balanced reaction are respectively :
A. $2,5,16$
B. $16,3,12$
C. $15,16,12$
D. $2,16,5$

## Answer: A

## - View Text Solution

9. The density of gas $A$ is twice that of B at the same temperature the molecular weight of gas $B$ is twice that of $A$. The ratio of pressure of gas $A$ and $B$ will be :
A. 1: 6
B. 1:1
C. $4: 1$
D. 1:4

## Answer: C

## - Watch Video Solution

10. $I_{2}(s) \mid I^{-}(0.1 \mathrm{M})$ half cell is connected to a $H^{+}(\mathrm{aq})\left|H_{2}(1 \mathrm{bar})\right| \mathrm{Pt}$ half celland e.m.f. is found to be 0.7714 V . If $E_{I_{2} \mid I^{-}}^{\circ}=0.535 \mathrm{~V}$, find the pH of $H^{+} \mid H_{2}$ half cell.
A. 1
B. 3
C. 5
D. 7
11. Which of the following statement is/are correct ?
I. The ligand thiosulphate, $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ can give rise to linkage isomers.
II. In metallic carbonyls the ligand CO molecule acts both as donor and acceptor .
III. The complex $\left[\mathrm{Pt}(\mathrm{Py})\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right) \mathrm{ClBrI}\right]$ exists in eight different geometrical isomeric forms .
IV. The complex ferricyanide ion does not follow effective atomic number (EAN) rule .
A. I and II only
B. II and IV only
C. I , II and III
D. I , II and IV

## Answer: D

12. A six coordination complex of formula $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ has green colour. A 0.1 M solution of the complex when treated with excess of $\mathrm{AgNO}_{3}$ gave 28.7 g of white precipitate. The formula of the complex would be:
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$

## Answer: B

## - Watch Video Solution

13. Which one of the following ions exhibit highest magnetic moment ?
A. $C u^{+2}$
B. $T i^{+3}$
C. $N i^{+2}$
D. $M n^{+2}$

## Answer: D

## - View Text Solution

14. Which of the following gaseous molecule is non-linear ?
A. $\mathrm{XeF}_{2}$
B. $H C N$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $B e F_{2}$

## Answer: C

15. Select incorrect order
A. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$ (order of acidic strength)
B. $S>S e>T e>O$ (order of electron affinity)
C. $S i<S<P<C l$ (order of IE)
D. $\mathrm{S}^{-2}>\mathrm{Cl}^{-}>\mathrm{K}^{1}>\mathrm{Ca}^{+2}$ (order of radius)

## Answer: A

## Watch Video Solution

16. In $\psi_{321}$, the sum of angular momentum, spherical nodes and angular node is
A. $\frac{\sqrt{6} h+4 \pi}{2 \pi}$
B. $\frac{\sqrt{6} h}{2 \pi}+3$
C. $\frac{\sqrt{6} h+2 \pi}{2 \pi}$
D. $\frac{\sqrt{6} h+8 \pi}{2 \pi}$

## Answer: A

## - Watch Video Solution

17. A solid is formed and it has three types of atoms $X, Y$ and $Z, X$ forms a fcc lattice with $Y$ atoms occupying all tetrahedral voids and $Z$ atoms occupying half of octahedral voids. The formula of solid is :-
A. $X_{4} Y Z_{2}$
B. $X_{4} Y_{2} Z$
C. $X Y_{2} Z_{4}$
D. $X_{2} Y_{4} Z$

## Answer: D

18. The heat of formation of $N H_{3}(g)$ is $-46 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The $\Delta H$ (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) of the reaction, $2 \mathrm{NH}_{3}(g) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$ is
A. 46
B. -46
C. 92
D. -92

## Answer: C

## - Watch Video Solution

19. $\mathrm{NH}_{4} H S(s) \Leftrightarrow \mathrm{NH}_{3}(g)+\mathrm{H}_{2} S(g)$

The3equilibriumpressureat25^(@)Cis0.660atm. W $\hat{i} s \mathrm{~K}_{-}(\mathrm{p})^{`}$ for the reaction?
A. 0.109
B. 0.218
C. 1.89
D. 2.18

## Answer: A

## Watch Video Solution

20. Calculate depression of freezing point for 0.56 molal aq. Solution of KCI.
(Given : $K_{f\left(\mathrm{H}_{2} \mathrm{O}\right)}=1.8 \mathrm{kgmol}^{-1}$ ).
A. 2
B. 3
C. 4
D. 5

## Answer: A

21. A graph plotted between $\log t_{50} \%$ vs log concentration is a straight line. What conclusion can you draw from this graph?

A. $\mathrm{n}=1, t_{1 / 2}=\frac{1}{K a}$
B. $\mathrm{n}=2, t_{1 / 2}=1 / a$
C. $n=1, t_{1 / 2}=\frac{0.693}{K}$
D. None of these
22. Identify Bronsted -Lowry acids in the reactions given .

$$
\begin{aligned}
& {\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}+\mathrm{HCO}_{3}^{-} \Leftrightarrow} \\
& {\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{OH}^{-}\right)\right]^{2+}+\underset{\mathrm{D}}{\mathrm{H}_{2} \mathrm{CO}_{3}}}
\end{aligned}
$$

The correct Answer
A. (a) , (d)
B. (b) , (c)
C. (b), (d)
D. (a), (c)

## Answer: A

## - Watch Video Solution

23. 2.4 g of pure Mg (at. Mass $=24$ ) is dropped in 100 mL of 1 M HCl .

Which of the following statement is wrong ?
A. 1.12 L of hydrogen is produce as S.T.P.
B. 0.05 mol of magnesium is left behind
C. HCl is the limiting reagent .
D. None of these

## Answer: D

## - Watch Video Solution

24. Among the following which Statement is incorrect ?
A. $\underset{\text { to haloform test }}{\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{OH}} \xrightarrow{\mathrm{X}_{3} / \mathrm{OH}^{-}}$will not respond
B. $C H_{2} \underset{\text { cannizaro reaction }}{C H}=O \quad \xrightarrow{\stackrel{\ominus}{\mathrm{OH} / \Delta}}$ gives cannizaro reaction

D.


## Answer: D

25. Identify ' $Z$ ' in the given sequence of reaction .

(1)

(2)

B.
C.

(4)


## Answer: C

26. $(\mathrm{X}) \xrightarrow{\mathrm{KOH}+\mathrm{CHCl}_{3}}(Y) \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$

Identify compound X

B. $\mathrm{CH}_{3}-\stackrel{O}{\mathrm{CH}_{2}}-\stackrel{\text { ॥ }}{\mathrm{C}}-\mathrm{NH}_{2}$
c. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\stackrel{+}{\mathrm{C}}}{\mathrm{C}}-\mathrm{Cl}$
D. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

Answer: D

## - Watch Video Solution

27. The IUPAC name of is -

A. 2-Chlorocarbonyl ethylbenzoate
B. 2-Carboxyethyl bezoyl chloride
C. Ethyl-2- (chlorocarbonyl) benzoate
D. Ethyl-1-(chlorocarbonyl) benzoate

## Answer: C

## - View Text Solution

(A)
(B)
28.
, (A) and (B) are -
A. Chain isomer
B. Position isomer
C. Metamers
D. Functional group isomer

## Answer: B

## - View Text Solution

29. Arrang the anions (p) $\mathrm{CH}_{3},(q) \mathrm{NH}_{2},(r) \mathrm{OH}^{-},(s) \mathrm{F}^{-}$, in decreasing order of their basic strength .
A. $p>q>r>s$
B. $q>p>r>s$
C. $r>q>p>s$
D. $r>p>q>s$

## Answer: A

## - Watch Video Solution

30. Borate form green colour flame when burunt With (Conc. $\mathrm{H}_{-}(2) \mathrm{SO}$

+ Ethanol). Green colour flame is obtained due to formation of -
A. $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{3} B$
B. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{BO}_{3}$
C. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BO}_{3}$
D. 1 and 3 are correct


## Answer: 3

## - View Text Solution

31. At STP, a container has 1 mole of Ar, 2 mole of $\mathrm{CO}_{2}, 3$ moles of $\mathrm{O}_{2}$ and 4 moles of $N_{2}$. Without changing the total pressure if one mole of $O_{2}$ is removed, the partial pressure of $O_{2}$
A. is changed by about $26 \%$
$B$. is halved
C. is unchanged
D. changes by $33 \%$

## Answer: 1

32. The oxidation potential of a hydrogne electrode at $p H=10$ and $p_{H_{2}}=1 \mathrm{~atm}$ is
A. 0.059 V
B. 0.59 V
C. 0.00 V
D. 0.51 V

## Answer: 3

## - Watch Video Solution

33. On reduction with hydrogen, 3.6 g of an oxide of metal left 3.2 g of metal . If the simplest atomic weight of metal is 64 , the simplest formula of the oxide is
A. MO
B. $\mathrm{M}_{2} \mathrm{O}_{3}$
C. $M_{2} O$
D. $\mathrm{M}_{2} \mathrm{O}_{5}$

## Answer: 3

## - Watch Video Solution

34. 



A.

B.

C.

D.

Answer: 2

D View Text Solution
A.

B.

(3)

C.
D.


## View Text Solution

36. The back side attack on -- bromobutan by methoxide $\left(\mathrm{CH}_{3} \mathrm{O}^{-}\right)$gives the product shown below j . which fischer projeaction represents 2bromobutane used a sthe reactant in this raction?

(1) Me
Lt
A.

Br
B.
Et
(2) H

Me
Me
(3) $\mathrm{Br}-\mathrm{H}$
Et
C.
(4) $\mathrm{Me}-\mathrm{H}$
D.
Et

Answer: 4

## - Watch Video Solution



Major product of this reaction is :
A.
(1) $\ll$
B.
(2)


(3)

C.
(4)

D.

## Answer: 3

## - View Text Solution

38. The species having tetrahedral shape is
A. $\left[P d C l_{4}\right]^{-2}$
B. $\left[N i(C N)_{4}\right]^{-2}$
C. $\left[\operatorname{Pd}(C N)_{4}\right]^{-2}$
D. $\left[\mathrm{NiCl}_{4}\right]^{-2}$

## - Watch Video Solution

39. Electronic configuration of some elements are given:

A: $1 s^{2} 2 s^{2}$
B: $1 s^{2} 2 s^{2} 2 p^{6}$ C: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ D: $1 s^{2} 2 s^{2} 2 p^{3}$ E: $1 s^{2} 2 s^{2} 2 p^{5}$
The most ionic compound will be formed between -
A. A and D
B. A and E
C. C and E
D. C and D

## Answer: 3

## - View Text Solution

40. Which of the following can react with both HCl and NaOH ?
A. ss
B. BeO
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. All of these

## Answer: 4

## - View Text Solution

41. Which of the following solid has maximum melting points?
A. Ice
B. dry ice
C. $\mathrm{SiO}_{2}$
D. KCl

## D Watch Video Solution

42. The catalyst used in the manufacture of polyethylene Zeigler method is -
A. titanium tetrachloride and tripbenyl aluminium
B. titanium tetrachloride and triethylaluminium
C. titanium dioxide
D. titanium isopropoxide

Answer: 2

## D View Text Solution

43. 



The product C is -

A.
Cl
B.


D.

## Answer: 1

## - View Text Solution

44. lodine is powerful antiseptic. It is used as a tincture of iodine which is
$\mathrm{X} \%$ iodine solution of Alcohol/water. What is (X)
A. $3-7 \%$
B. 2-3\%
C. 5-7\%
D. 7-9\%

## Answer: 2

45. Two elemets $X$ ( atomic weight $=75$ ) and $Y$ ( atomic weight $=16$ ) combine to give a compound having $75.8 \%$ X.' The formula of the compound is
A. $X Y$
B. $X_{2} Y$
C. $X_{2} Y_{2}$
D. $X_{2} Y_{3}$

## Answer: 4

## - Watch Video Solution

46. The value of the spin only magnetic moment for one of the following configurations is 2.84 BM . The correct one is -
A. $d^{5}$ (in strong field Ligand)
B. $d^{3}$ (in weak as well as strong. field)
C. $d^{4}$ (in weak field Ligand)
D. $d^{4}$ (in strorig Ligand field)

## Answer: 4

## - View Text Solution

47. An element $X(A t, w t=80 \mathrm{~g} / \mathrm{mol})$ having fcc structure, calculate the number of unit cells in 8 gof $X$
A. $0.4 \times N_{A}$
B. $0.1 \times N_{A}$
C. $4 \times N_{A}$
D. None of these

## Answer: 4

48. Which of the following donot give Cannizzaro reaction ?

A.

B.
(2)

(3)

C.
(4)

D.

## Answer: 3

## - Watch Video Solution

49. Consider the following reactions,


The end product ' S ' is -

A.
B.

C.

(4)

D.

## Answer: 2

## D View Text Solution

50. The IUPAC name of $\mathrm{CH}_{3}-\underset{\substack{ \\\mathrm{COOC}_{2} \mathrm{H}_{5}}}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{2}-\underset{\mathrm{O}}{\stackrel{O}{\mid}}$ is
A. 4-ethoxycarbonylpent-3-enoic acid
B. 4-ethanoyloxypent-3-enoic acid
C. 3-ethoxycarbonylbut-2-enecarboxylic acid
D. 3-ethoxycarbonylpent-3-enoic acid

## Answer: 1

51. The order of leaving group ability is
${ }^{-} \underset{(I)}{\mathrm{OAc} .}{ }^{-} \underset{(I I)}{\mathrm{OMe}} .^{-} \underset{(I I)}{\mathrm{SO}_{3} \mathrm{Me}} .^{-} \mathrm{SO}_{3} \mathrm{CFF}_{3}$ The order of leaving group (I) (II) (III) (IV) ability is
A. $I>I I>I I I>I V$
B. $I V>I I I>I I>I$
C. $I>I I I>I V>I I$
D. $I V>I I I>I>I I$

## Answer: 4

## - Watch Video Solution

52. Often in water bodies subjected to sewage pollution, fishes die because of the:
A. Foul smell
B. Reduction in dissolved oxygen caused by microbial activity
C. clotting of their giltes by solid substances
D. pathogens released by the sewage

## Answer: 2

## - Watch Video Solution

53. A solution containing 500 g of a protein per liter is isotonic with a solution containing 3.42 g sucrose per liter. The molecular mass of protein in $5 \times 10^{x}$, hence x is.
A. 2
B. 3
C. 4
D. 5

## Answer: 3

54. Calculate partial pressure of $B$ at equilibrium in the following equilibrium

$$
A(s) \Leftrightarrow B(g)+2 C(g), \quad K_{P}=32 a t m^{3} .
$$

A. 2
B. 3
C. 17
D. 5.8

## Answer: 1

## - Watch Video Solution

55. What is the melting point of benzene if $\Delta H_{\text {fusion }}=9.95 \mathrm{~kJ} / \mathrm{mol}$ and
$\Delta S_{\text {fusion }}=35.7 \mathrm{~J} / K-\mathrm{mol}$
A. $278.7^{\circ} \mathrm{C}$
B. $278.7 K$
C. 300 K
D. 298 K

## Answer: 1

## - Watch Video Solution

56. $\mathrm{D}_{2} \mathrm{O}$ (Heavywater) and $\mathrm{H}_{2} \mathrm{O}$ differ in following except -
A. Freczing point
B. Density
C. ionic product of water
D. its reaction with sodium

## Answer: 2

57. Carborundum is -
A. BN
B. $\mathrm{SiO}_{4}$
C. SiC
D. $C S_{2}$

## Answer: 3

## - View Text Solution

58. If degree of dissociation of $2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is $10 \%$ then degree of dissociation of this acetic 4cid in 3 Molar $\mathrm{CH}_{3} \mathrm{COONa}$ solution will be -
A. $=10 \%$
B. $<10 \%$
C. $>10 \%$
D. Can't be determine

## Answer: 2

## - View Text Solution

59. The solubility in terms of $K_{s p}$ for $A_{3} B_{(a q)}$ is
A. $\left(\frac{K_{S P}}{3}\right)^{\frac{1}{4}}$
B. $\left(\frac{K_{S P}}{27}\right)^{\frac{1}{4}}$
C. $\left(27 K_{S P}\right)^{\frac{1}{4}}$
D. $\left(3 K_{S P}\right)^{\frac{1}{4}}$

## Answer: 2

## - Watch Video Solution

1. The figure shows a part of the circuit in the steady state. The currents, the valuces of resistances and emfs of the cells are shown in the figure. The circuit also contains a capacitor of capacitance $C=\mu F$. The value of $i_{1}$ is-

A. 1A
B. 2A
C. 3A
D. 4 A
2. The reading of the ammeter and voltmeters are (Both the instruments are ac meters and measures rms value)-

A. $2 \mathrm{~A}, 110 \mathrm{~V}$
B. $2 \mathrm{~A}, 0 \mathrm{~V}$
C. $2 \mathrm{~A}, 55 \mathrm{~V}$
D. $1 \mathrm{~A}, 0 \mathrm{~V}$

Answer: 2
3. A parallel plate capacitor of plate are A and plate separation $d$ is charged by a battery of voltage V . The battery is then disconnected. The work needed to pull the plates to a separation 2 d is
A. $\frac{A v^{2} \varepsilon_{0}}{d}$
B. $\frac{2 A v^{2} \varepsilon_{0}}{d}$
C. $\frac{A v^{2} \varepsilon_{0}}{2 d}$
D. $\frac{3 A v^{2} \varepsilon_{0}}{2 d}$

## Answer: 3

## - Watch Video Solution

4. A wire having a linear mass density $5 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$ is stretched between two rigid supports with a tension of 450 N . The wire resibate at a frequency of 420 Hz . The next higher frequency at which the same wire resonates is 490 Hz . Find the length of wire -
B. 1.05 m
C. 4.2 m
D. None of these

## Answer: 1

## - Watch Video Solution

5. When the listener moves towards a stationary source with a velocity $v_{1}$ $m$ the apparent freqency of a note emitted by the source is $f^{\prime}$ When the listener moves away from the source with the same velocity, the apparent frequency of the note $f / f^{\prime}=3$. If $v$ the velocity of sound in air, the value of $v / v_{1}$ is -
A. 3
B. $1 / 2$
C. 2
D. 1

## - Watch Video Solution

6. Calculate the magnetic induction at $P$, for the arrangement shown in figure, when two similar short magnets of magnetic moment $M$ are joined at the middle. So that they are mutually perpendicular -

A. $\frac{\mu_{0} M \sqrt{3}}{4 \pi \quad d^{3}}$
B. $\frac{\mu_{0} 2 M}{4 \pi \quad d^{3}}$
C. $\frac{\mu_{0} M \sqrt{5}}{4 \pi d^{3}}$
D. None of these

## - Watch Video Solution

7. The ratio of magnetic potentials due to magnetic dipole in the end-on position to that in the broad side on position for the same distance from it is -
A. zero
B. 1
C. 2
D. 00

## Answer: 4

## - View Text Solution

8. In given figure, a wire loop has been bent so that it has three segments ab (a quarter circle), bc (a square corner) \& ca (straight line). Here are three choices for a magnetic field through the loop -

(1) $\overrightarrow{ }\left(B_{1}\right)=3 \hat{i}+7 \hat{j}-5 t \hat{k}$
(2) $\overrightarrow{B_{2}}=5 t \hat{i}-4 \hat{j}-15 \hat{k}$
(3) $\overrightarrow{B_{3}}=2 \hat{i}-5 t \hat{j}-12 \hat{k}$
where $B$ is in milli tesla and $t$ is in second. If the induced current in the loop due to $\overrightarrow{B_{1}}, \overrightarrow{B_{2}}, \overrightarrow{B_{3}}$ are $i_{1}, i_{2}, i_{3}$ respectively then

$$
\text { A. } i_{1}>i_{2}>i_{3}
$$

B. $i_{2}>i_{1}>i_{3}$
C. $i_{3}>i_{2}>i_{1}$
D. $i_{1}=i_{2}=i_{3}$

## Answer: 2

## - Watch Video Solution

9. An object is put at a distance of 5 cm from the first focus of a convex lens of focal length 10 cm . If a real image is formed, its distance from the lens will be
A. 15 cm
B. 20 cm
C. 25 cm
D. 30 cm

## Answer: 4

10. A point object moves in $+x$-direction with $v=1 \mathrm{~m} / \mathrm{s}$ along the principal axis of the concave mirror of focal length $f=10 \mathrm{~m}$. When the mirror moves with a velocity $V_{m}=-\hat{i} \mathrm{~m} / \mathrm{s}$ and the object is at a distance of $\mathrm{p}=15 \mathrm{~m}$, the speed of the image is -

A. $-8 \hat{i} m / s$
B. $-9 \hat{i} m / s$
C. $-6 \hat{i} m / s$
D. None of these

## Answer: 2

11. A soap bubble of radius $r$ is placed on another bubble of radius $2 r$. The radius of the surface common to both the bubbles is
A. $\frac{2 r}{3}$
B. $3 r$
C. $2 r$
D. $r$

## Answer: 3

## - Watch Video Solution

12. A particle moves according to the law, $x=a \cos (\pi t / 2)$. . What is the distance covered by it in time interval $t=0$ to $t=3$ second.
A. 2 a
B. 3 a
C. 4 a
D. a

## Answer: 2

## - Watch Video Solution

13. The pressure of an ideal gas varies according to the law $P=P_{0}-A V^{2}$, where $P_{0}$ and $A$ are positive constants. Find the highest temperature that can be attained by the gas
A. $\frac{2 P_{0}}{3 R}\left(\frac{P_{0}}{3 \alpha}\right)^{1 / 2}$
B. $\frac{2 P_{0}}{2 R}\left(\frac{P_{0}}{3 \alpha}\right)^{1 / 2}$
C. $\frac{P_{0}}{R}\left(\frac{P_{0}}{3 \alpha}\right)^{1 / 2}$
D. $\frac{P_{0}}{R}\left(\frac{P_{0}}{\alpha}\right)^{1 / 2}$
14. The spectra of radiation emitted by two distant stars are shown below.


The ratio of the surface temperature of star A to that of $\operatorname{star} \mathrm{B}, T_{A}: T_{B}$, is approximately-
A. 2:1
B. $4: 1$
C. $1: 2$
D. 1:1

## Answer: 1

## - Watch Video Solution

15. Two radioactive samples of different elements (half-lives $t_{1}$ and $t_{2}$ respectively) have same number of nuclei at $t=0$. The time after which their activities are same is
A. $\frac{t_{1} t_{2}}{0.693\left(t_{2}-t_{1}\right)} \operatorname{In} \frac{t_{2}}{t_{1}}$
B. $\frac{t_{1} t_{2}}{0.693} \operatorname{In} \frac{t_{2}}{t_{1}}$
C. $\frac{t_{1} t_{2}}{0.693\left(t_{2}+t_{1}\right)} \operatorname{In} \frac{t_{2}}{t_{1}}$
D. None of these

## Answer: 1

16. A nucleus $X$ initially at rest, undergoes alpha decay according to the equation
$.{ }_{Z}^{232} X \rightarrow{ }_{90}^{A} Y+\alpha$
What fraction of the total energy released in the decay will be the kinetic energy of the alpha particle?
A. $\frac{90}{92}$
B. $\frac{228}{232}$
C. $\sqrt{\frac{228}{232}}$
D. $\frac{1}{2}$

## Answer: 2

## - Watch Video Solution

17. A moving hydrogen atom makes a head on collision with a stationary hydrogen atom. Before collision both atoms are in in ground state and
after collision they move together. What is the minimum value of the kinetic energy of the moving hydrogen atom, such that one of the atoms reaches one of the excited state?
A. 20.4 eV
B. 10.2 eV
C. 54.4 eV
D. 13.6 eV

## Answer: 1

## - Watch Video Solution

18. In Milikan's oil drop experiment, an oil drop of radius $r$ and charge $q$ is held in equilibrium between the plates of as charged parallell plate capacitor when the potential difference is $V$. To keep as drop of radius $2 r$ and with a charge $2 q$ in equilibrium between the plates the potential difference $V$ required is
A. V
B. 2V
C. 4 V
D. 8 V

## Answer: 3

## - Watch Video Solution

19. A shell fired from the base of a mountain just clears it. If $\alpha$ is the angle of projection, then the angular elevation of the summit $\beta$ is
A. $\frac{\alpha}{2}$
B. $\tan ^{-1}\left(\frac{1}{2}\right)$
C. $\tan ^{-1}\left(\frac{\tan \alpha}{2}\right)$
D. $\tan ^{-1}(2 \tan \alpha)$

## Answer: 3

## - Watch Video Solution

20. A ball is dropped vertically from $a$ height $d$ above the ground . It hits the ground and bounces up vertically to a height (d) $/(2) . N e g \leq c t \in g \subset$ sequentmotion and airresis $\tan c e$, itsvelocity vvarieswiththeheighth` above the ground as
A.



## Answer: 1

## - Watch Video Solution

21. Four identical masses $m$ each are kept at points $A, B, C \& D$ shown in figure. Gravitational force on mass at point $D$ (body centre) is -

A. $\frac{3 G m^{2}}{a^{2}}$
B. $\frac{12 G m^{2}}{a^{2}}$
C. $\frac{4 G m^{2}}{a^{2}}$
D. $\frac{4 G m^{2}}{3 a^{2}}$

Answer: 4
22. A disc of mass ' $m$ ' and radius $R$ is free to rotate in horizontal plane about a vetical smooth fixed axis passing through is centre. There is a smooth groove along the diameter of the disc and two small balls of mass $\mathrm{m} / 2$ each are placed in it on either side of the centre of the disc as shown in fig. The disc is given initial angular velocity $\omega_{0}$ and released. The angular speed of the disc when the balls reach the end of the disc is -

A. $\frac{\omega_{0}}{2}$
B. $\frac{\omega_{0}}{3}$
C. $\frac{2 \omega_{0}}{3}$
D. $\frac{\omega_{0}}{4}$

## Answer: 2

## - Watch Video Solution

23. In the above question, the speed of each ball relative to ground just after they leave the disc is -
A. $\frac{R \omega_{0}}{\sqrt{3}}$
B. $\frac{R \omega_{0}}{\sqrt{2}}$
c. $\frac{2 R \omega_{0}}{3}$
D. None of these

## Answer: 3

24. The system shown in th fig is released from rest. (Neglecting friction and mass of the pulley, string and spring). The spring can be elongated:

A. if $M>m$
B. if $M>2 m$
C. if $M>m / 2$
D. for any value of $M$

## Answer: 4

## - Watch Video Solution

25. A particle is dropped from height $H$. At a point its kinetic energy is $x$ times of its potential energy. Find the speed of the particle at that point -
A. $[2 g x H]^{1 / 2}$
B. $\left[\frac{2 g(x+1) H}{x}\right]^{1 / 2}$
C. $\left[\frac{2 g H}{(x+1)}\right]^{1 / 2}$
D. $\left[\frac{2 g x H}{(x+1)}\right]^{1 / 2}$

## Answer: 4

26. A dubble under water oscillates with period $T$, which is proportional to $p^{-5 / 6}, d^{1 / 2} E^{Y}$, where p is pressure, d is density and E is energy. The value of $\gamma$ is -
A. $\frac{1}{7}$
B. $\frac{1}{6}$
C. $\frac{1}{5}$
D. $\frac{1}{3}$

## Answer: 4

## - Watch Video Solution

27. A spherical ball is dropped in a long column of viscous liquid. Which of the following graphs represent the variation of

(I) gravitational force with time
(ii) viscous force with time
(iii) net force acting on the ball with time
A. $Q, R, P$
B. R,QP
C. P,Q,R
D. $R, P, Q$

## Answer: 3

28. A fixed amount of ideal gas ( 1 mole) is taken and is subjected to pressure and temperature variation. The experiment is performed at low pressures as well as at high temperatures. The results obtained are shown in the Fig. The correct variation of $\frac{P V}{R T}$ with P will be exhibited by

A. Curve (4)
B. Curve (3)
C. Curve (2)
D. Curve (1)

## Answer: 4

29. In a transistor, the collector current is always • less then the emitter current because -
A. collector side is reverse biased and the emmiter side is forward biased
B. a few electrons are lost in the base and only remaining ones reach the collector
C. collector being reverse biased. attracts less electrons
D. collector side is forward biased and emitter side is reverse biased

## Answer: 2

## - Watch Video Solution

$$
f_{1}=10 \mathrm{~cm} . f_{2}=10 \mathrm{~cm}
$$

$$
f_{3}=30 \mathrm{~cm}
$$


30.


The position of fical image formed by the given lens combination from the third lens will be at a distance of $f_{1}=+10 \mathrm{~cm}, f_{2}=-10 \mathrm{~cm}, f_{3}=+30$
A. 15 cm
B. infinity
C. 45 cm
D. 30 cm

Answer: 4

## - Watch Video Solution

