©゙" doubtnut

PHYSICS

BOOKS - CAREER POINT

MOCK TEST 2

Part A Physics

1. A simple pendulam with a solid metal bob
has a period T . The metal bob is now immersed
in a liquid having density one-teeth that of the
metal of the bob. The liquid is non-viscuous.

Now the period of the same pendulum with its
bob remaining all the time in the liquid will be
A. $\frac{9}{10} \mathrm{~T}$
B. $\mathrm{T} \sqrt{\frac{10}{9}}$
C. unchanged
D. $T \sqrt{\frac{9}{10}}$

Answer: B

D Watch Video Solution
2. If earth is supposed to be a sphere of radius R , if g_{30} is value of acceleration due to gravity at latitude of 30° and g at the equator, the
value of $g-g_{30^{\circ}}$ is
A. $\frac{1}{4} \omega^{2} R$
B. $\frac{3}{4} \omega^{2} R$
C. $\omega^{2} R$
D. $\frac{1}{2} \omega^{2} R$

Answer: B

- Watch Video Solution

3. A particle of mass m and charge q enters a region of magnetic field (as shown) with speed v at $t=0$. There is a region in which the magnetic field is absent as shown. The particle after entering the region collide elastically with a rigid wall. Time t after which the velocity of particle become antiparallel to its
initial velocity is -

A. $\frac{m(\pi+4)}{2 q B}$
B. $\frac{m}{4 q B}(\pi+2)$
C. $\frac{m}{q B}(\pi+2)$
D. $\frac{m}{4 q B}(2 \pi+3)$

- Watch Video Solution

4. A magnet is suspended horizontal in the earth's magnetic field. When it is displaced and then released it oscillates in a horizontal plane with a period T. If a place of wood of the same moment of inertia (about the axis of rotation) as the magnet is attached to the magnet what would the new period of oscillation of the system become?
A. $\frac{T}{3}$
B. $\frac{T}{2}$
C. $\frac{T}{\sqrt{2}}$
D. $\sqrt{2} T$

Answer: D

D Watch Video Solution

5. Two identical conducing ring A and B of radius R are in pure rolling over a horizontal conducing plane with same speed (of center of
mass) v but in opposite direction. A constant magnetic field B is present pointing inside the plane of paper. Then the potential difference between the highest points of the two rings, is:

A. Zero
B. 2 BvR
C. 4 BvR
D. None of these

Answer: C

D Watch Video Solution

6. Two carnote engines A and B have their sources at 1000 K and 1100 K and their sinks
are at 400 K and 500 K respectively. If η_{A} and η_{B} are their efficiencies,
A. $\eta_{A}<\eta_{B}$
B. $\eta_{A}=\eta_{B}$
C. $\eta_{A}>\eta_{B}$

D. Data is insufficient.

Answer: C

D Watch Video Solution

7. A meter scale is balanced at its mid point if a

20 N weight is balanced at 20 cm mark and a

30 N weight hanged at xcm mark. Calculate the value of x.
A. 20 cm

B. 70 cm

C. 30 cm
D. 80 cm

Answer: B

- Watch Video Solution

8. In a semiconducting material the mobilities
of electrons and holes are μ_{e} and μ_{h} respectively. Which of the following is true?
A. $\mu_{h}>\mu_{e}$
B. $\mu_{e}>\mu_{h}$
C. $\mu_{e}=\mu_{h}$
D. None of these

Answer: B

D Watch Video Solution
9. What maximum frequency from following which can be reflected from ionosphere -
A. 5 MHz
B. 6 GHz
C. 5 KHz
D. 500 MHz

Answer: A

D Watch Video Solution

10. Two waves are given by
$y_{1}=a \sin (\omega t-k x)$ and $y_{2}=a \cos (\omega t-k x)$
. The phase difference between the two waves is -
A. $\pi / 4$
B. π
C. $\pi / 8$
D. $\pi / 2$

Answer: D
(Watch Video Solution
11. An observer moves towards a stationary source of sound of frequency n. The apparent
frequency heard by him is 2 n . If the velocity of sound in air is $332 \mathrm{~m} / \mathrm{sec}$, then the velocity of the observer is
A. $166 \mathrm{~m} / \mathrm{sec}$
B. $664 \mathrm{~m} / \mathrm{sec}$
C. $332 \mathrm{~m} / \mathrm{sec}$
D. $1328 \mathrm{~m} / \mathrm{sec}$

Answer: C
12. 10 g of ice at $0^{\circ} \mathrm{C}$ is mixed with 100 g of water at $50^{\circ} \mathrm{C}$. What is the resultant temperature of mixture
A. $31.2{ }^{\circ} \mathrm{C}$
B. $32.8^{\circ} \mathrm{C}$
C. $36.7^{\circ} \mathrm{C}$
D. $38.2^{\circ} \mathrm{C}$
13. At the same temperature and pressure and
volume of two gases, which of the following quantities is constant -
A. Total number of molecules
B. Average kinetic energy
C. Root mean square velocity
D. Mean free path

- Watch Video Solution

14. A π - meason hydrogen atom is a bound state of negative charged pion (denoted by $\left.\pi^{-}, m_{\pi}=273 m_{e}\right)$ and a proton. Estimate the number of revolutions a π - meason makes
(averagely) in the ground state on the atom
before , it decays (mean life of a
$\pi-$ meason $\cong 10^{-8} s$, mass of proton

$$
\left.=1.67 \times 10^{-27} \mathrm{~kg}\right) .
$$

A. 2×10^{7}
B. 2×10^{10}
C. 2×10^{14}
D. None

Answer: B

D Watch Video Solution

15. M_{x} and M_{y} denote the atomic masses of
the parent and the daughter nuclei respectively in a radioactive decay. The Q value for a $\beta-$ decay is Q_{1} and that for a β^{+}
decay is Q_{2}. If m_{e} denotes the mass of an electrons, then which of the following statements is correct?

$$
\begin{aligned}
& \text { A. } Q_{1}=\left(M_{X}-M_{Y}\right) c^{2} \quad \& \\
& Q_{2}=\left(M_{X}-M_{Y}-2 m_{e}\right) c^{2} \\
& \text { B. } Q_{1}=\left(M_{X}-M_{Y}\right) c^{2} \quad \& \\
& Q_{2}=\left(M_{X}-M_{Y}\right) c^{2} \\
& \text { C. } Q_{1}=\left(M_{X}-M_{Y}-2 m_{e}\right) c^{2} \quad \& \\
& Q_{2}=\left(M_{X}-M_{Y}+2 m_{e}\right) c^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { D. } Q_{1} & =\left(M_{X}-M_{Y}+2 m_{e}\right) c^{2} \quad \& \\
Q_{2} & =\left(M_{X}-M_{Y}+2 m_{e}\right) c^{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

16. If an em wave of wavelength λ is incident on a photosensitive surface of negligible work
function. If the photoelectrons emitted from this surface have the de-Broglie wavelength λ_{1}
, prove that
$\lambda=\left(\frac{2 m c}{h}\right) \lambda_{1}^{2}$
A. $\sqrt{\left(\frac{2 m c}{h}\right)} \lambda_{1}$
B. $\sqrt{\frac{h}{2 m c}} \times \lambda_{1}$
C. $\left(\frac{2 m c}{h}\right) \times \lambda_{\frac{2}{1}}$
D. None

Answer: C

D Watch Video Solution

17. A particle A with a mass m_{A} is moving with
a velocity v and hits a particle B (mass m_{B}) at rest (one dimensional motion). Find the change in the de-Broglie wavelength of the particle A. Treat the collision as elastic.

$$
\begin{aligned}
& \text { A. } \frac{h}{m_{A} v}\left[\left|\frac{m_{A}+m_{B}}{m_{A}-m_{B}}\right|-1\right] \\
& \text { B. } \frac{h}{m_{B} v}\left[\left|\frac{m_{A}+m_{B}}{m_{A}-m_{B}}\right|-1\right] \\
& \text { C. } \frac{h}{m_{A} v}\left[\left|\frac{m_{A}-m_{B}}{m_{A}+m_{B}}\right|-1\right] \\
& \text { D. } \frac{h}{m_{B} v}\left[\left|\frac{m_{A}-m_{B}}{m_{A}+m_{B}}\right|-1\right]
\end{aligned}
$$

- Watch Video Solution

18. a point charge q is situated at a distance r
from one end of a thin conduction rod of
length L having a charge Q (uniformly distributed a long its length).find the magnitudes of electric force between the two.
A. $\frac{1}{4 \pi \in_{0}} \frac{q Q}{d(d+L)}$
B. $\frac{q Q}{4 \pi \epsilon_{0} d}$
C. $\frac{q Q}{2 \pi \epsilon_{0} d}$
D. $\frac{q Q}{8 \pi \in_{0} d(d+L)}$

Answer: A

D Watch Video Solution

19. When a $100 \mathrm{~W}, 240 \mathrm{~V}$ bulb is operated at

200 volt, the current in it is -
A. 0.35 A
B. 0.42 A
C. 0.50 A

D. 0.58 A

Answer: A

D Watch Video Solution

20. Two square metallic plates of side $a=1 \mathrm{~m}$
are kept at $\mathrm{d}=8.85 \mathrm{~mm}$ apart, like a parallel
plate capacitor, in such a way that their surfaces are normal to the oil surface are normal to the oil surface in a tank filled with insulating oil ($\mathrm{K}=11$). The plates are connected
to a battery of emf $\mathrm{V}=500$ volt as shown in
figure. The plates are then lowered vertically into the oil at a speed of $\mathrm{v}=10^{-3} \mathrm{~ms}^{-1}$.

Negalecting resistance of connecting wires, calculate the current drawn from battery during the process
$\left.\varepsilon_{0}=8.85 \times 10^{-12} C^{2} N^{-1} m^{-2}\right)$

A. $5 \times 10^{-19} \mathrm{~A}$
B. $0.5 \times 10^{-19} \mathrm{~A}$
C. $5 \times 10^{-9} \mathrm{~A}$
D. None of these

Answer: C

D View Text Solution
21. A 4 m long wire of resistance 8Ω is connected in series with a battery of emf 2 V and a resistor of 7Ω. The internal resistance of
the battery is 1Ω. What is the potential gradient along the wire ?

A. $0.25 \mathrm{~V} m^{-1}$
B. $0.50 \mathrm{~V} m^{-1}$
C. $0.75 \mathrm{Vm}^{-1}$
D. $1.00 \mathrm{~V} m^{-1}$

Answer: A
(Watch Video Solution
22. A body of mass $5 \times 10^{-3} \mathrm{~kg}$ is launched upon a rough inclined plane making an angle of 30° with the horizontal. Obtain the coefficient of friction between the body and the plane if the time of ascent is half of the time of descent.
A. 0.56
B. 0.60
C. 0.75
D. 0.364

Answer: A

- Watch Video Solution

23. A body of mass m, having momentum p, is moving on a rough horizontal surface. If it is stopped in a distance x, the coefficient of friction between the body and the surface is given by

$$
\begin{aligned}
& \text { A. } \mu=\frac{p^{2}}{2 g m^{2} x} \\
& \text { B. } \mu=\frac{p^{2}}{2 m g x}
\end{aligned}
$$

> C. $\mu=\frac{p}{2 m g x}$
> D. $\mu=\frac{p}{2 g m^{2} x}$

Answer: A

D Watch Video Solution

24. A equilaterial triangle $A B C$ formed from a uniform wire has two small identical beads initially located at A. The triangle is set rotating about the vertical axis $A O$. Then the beads are released from rest simultaneously
and allowed to slide down. one long. $A B$ and
the other along $A C$ as shown. Neglecting frictional effects, the quantities that are conserved as the beads slide down, are.

A. angular velocity and total energy
B. angular velocity and moment of inertia about axis of rotation
C. total angular momentum and moment of inertia about axis of rotation
D. total angular momentum and total
energy

Answer: D

25. Adjoining figure shows cubical room ABCD, with the wall CD as a plane mirror. Each side of the room is L metres in length. A camera P is placed at the mid-point of the wall $A B$. At what distance should the camera be focused to photograph and object placed at A ?

A. $\frac{L}{2}$
B. L
C. 2 L
D. More than 2 L

Answer: D

- Watch Video Solution

26.

A quarter cylinder of radius R and refractive index 1.5 is placed on a table.A point object P is kept at a distance of $m R$ from it. Find the value of m for whicha ray from P will emerge parallel to the table as shown in the figure.
A. $3 / 2$
B. $4 / 3$
C. $5 / 4$

D. None of these

Answer: B

D Watch Video Solution

27. A plastic hemisphere has a radius of curvature of 8 cm and an index of refraction of
1.6. On the axis halfway between the plane surface and the spherical one (4 cm from each) is a small object O.

The distance between the two images when
viewed along the axis from the two sides of the hemisphere is approximately .

A. 1.0 cm
B. 1.5 cm
C. 3.75 cm
D. 2.5 cm

Answer: D

D Watch Video Solution

28. Two particles A and B are initially $40 m$ apart, A is behind B. Particle A is moving with uniform velocity of $10 \mathrm{~ms}^{-1}$ towards B. Particle B starts moving away from A with constant acceleration of $2 m s^{-1}$.

The time for which there is a minimum distance between the two is .
A. 2 s
B. 4 s
C. 5 s
D. 6 s

Answer: C
(Watch Video Solution
29. A cannon ball has a range R on a horizontal
plane. If h and h^{\prime} are the greatest heights in
the two paths for which this is possible, then-

$$
\begin{aligned}
& \text { A. } R=4 \sqrt{h h^{\prime}} \\
& \text { B. } R=\frac{4 h}{h^{\prime}} \\
& \text { С. } R=4 h h^{\prime} \\
& \text { D. } R=\sqrt{h h^{\prime}}
\end{aligned}
$$

Answer: A
30. In the figure shown the relation between acceleration is -

A. $a_{1}+a_{2}+2 a_{3}=0$
B. $a_{1}+a_{2}=2 a_{3}$
C. $a_{1}+a_{2}=a_{3}$
D. $a_{1}+a_{2}+a_{3}=0$

Answer: B

- Watch Video Solution

Part B Chemistry

1. Sodium thiosulphate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
used in photography to
A. Reduce AgBr to metallic Ag
B. Remove reduced Ag
C. Remove undecomposed AgBr as a soluble complex

D. Convert metallic Ag to silver salt

Answer: C

D Watch Video Solution

2. The cyanide ion $C N$ and N_{2} are
isoelectronic, but in contrast to $C N^{-}, N_{2}$ is chemically inert, because of
A. Low bond energy
B. Absence of bond polarity
C. Unsymmetrical electron distribution
D. Presence of more number of electrons in
bonding orbital

Answer: B

- Watch Video Solution

3. Ferric ion forms a prussian blue coloured solution with $K_{4}\left[F e(C N)_{6}\right]$ due to the formation of -
A. $K_{3} F e(C N)_{6}$
B. $F e_{4}\left[F e(C N)_{6}\right]_{3}$
C. $\mathrm{Fe}(\mathrm{OH})_{3}$
D. $K F e\left[F e(C N)_{6}\right]$

Answer: B

D View Text Solution
4. Under what conditoin of temperature and pressur the formation of atomic hydrogen
from molecular hydrogen will be favoured most?
A. High temperatured and high pressure
B. Low temperature and low pressure
C. High temperature and low pressure
D. Low temperature and high pressure

Answer: C

5. The reaction of (S)-2 bromobutane with
OH^{-}to produce (R)-butane-2-ol will be -
A. first order in 2-bromobutane only
B. first order in OH^{-}only
C. first order in 2-bromobutane and first order in OH^{-}
D. second order in OH^{-}

Answer: C

- View Text Solution

6. 4 mole of a mixture of Mohr's salt and
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ requires 500 mL of $1 M K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
for complete oxidation in acidic medium. The mole \% of the Mohr's salt in the mixture is:
A. 25
B. 50
C. 60
D. 75

Answer: D

- Watch Video Solution

7. Total charge required for the oxidation of two moles $\mathrm{Mn}_{3} \mathrm{O}_{4}$ into MnO_{4}^{2-} in presence of alkaline medium is
A. 5 F
B. 10 F
C. 20 F
D. None of these

Answer: C

- Watch Video Solution

8. Calculate standard free energy change for
the reaction $2 \mathrm{Ag}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2}+2 \mathrm{Ag}^{+}$

Given : $E_{A g^{+} / A g}^{\circ}=+0.80 V$
A. 308.08 kJ
B. 154.4 kJ
C. 77.2 kJ
D. -154.4 kJ

Answer: B

D Watch Video Solution

9. Which one of the following ionic species will
impart colour to an aqueous solution?
A. $T i^{+4}$
B. $C u^{+}$
C. $Z n^{+2}$
D. $C r^{+3}$

Answer: D

- Watch Video Solution

10. Select incorrect order :
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te} \quad$ (Order of bond angle)
B. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{Hl} \quad$ (Order of
boiling point)

C. $\mathrm{LiCl}<\mathrm{BeCl}_{2}<B C l_{3}<C C l_{4}$ (Order

of covalent character)

D. $C a F_{2}>C a C l_{2}>C a B r_{2}<C a l_{2}$
(Order of melting point)

Answer: B

D View Text Solution
11. In which of the following processes energy
is absorbed?
A. $C l_{(g)}+e^{-} \rightarrow C l_{(g)}^{-}$
B. $F_{(g)}^{-}+e^{-} \rightarrow F_{(g)}^{-2}$
C. $N a_{(g)}^{+}+e^{-} \rightarrow N a_{(g)}$
D. $M g_{(g)}^{+2}+e^{-} \rightarrow M g_{(g)}^{+}$

Answer: B

D Watch Video Solution

12. An element (atomic mass $=100 \mathrm{~g} / \mathrm{mol}$)
having bcc structure has unit cell edge 400 pm .Them density of the element is
A. $2.144 \mathrm{~g} / \mathrm{cm}^{3}$
B. $5.188 \mathrm{~g} / \mathrm{cm}^{3}$
C. $7.289 \mathrm{~g} / \mathrm{cm}^{3}$
D. $10.376 \mathrm{~g} / \mathrm{cm}^{3}$

Answer: B

D Watch Video Solution
13. Select the correct statement -
A. Longmuir adsoption is highly specific
B. van der wall's adsorption is reversible
C. Both (1) and (2) are exothermic
D. All are correct

Answer: D

D View Text Solution

14. Element X crystallizes in 12 co - ordination
fcc lattice. On applyng high temperature it changes to bcc lattice. Find the ratio of the
density of the crystal lattice before and and after applying high temperature
A. 1:1
B. $3: 2$
C. $\sqrt{2}: \sqrt{3}$
D. $2(\sqrt{2})^{3}:(\sqrt{3})^{3}$

Answer: D

D Watch Video Solution
15. Which of the following is correct option for
the free expansion of an ideal gas under adiabatic condition ?

$$
\begin{aligned}
& \text { A. } q=0, \Delta T<0, w \neq 0 \\
& \text { B. } q=0, \Delta T \neq 0, w=0 \\
& \text { C. } q \neq 0, \Delta T=0, w=0 \\
& \text { D. } q=0, \Delta T=0, w=0
\end{aligned}
$$

Answer: D

D Watch Video Solution

16. Which of the following is correct ?

A. ΔH is positive for exothermic reaction
B. ΔH is negative for endothermic reaction
C. The enthalpy of fusion in negative
D. The heat of neutralisation of strong acid
with strong base is always the same

Answer: D

17. On increasing the temperature, the rate of a reaction:
A. always increases
B. always decreases
C. first increases and then decreases
D. may increase or decreas depending
upon the nature of the reaction

Answer: A

D Watch Video Solution

18. The molality of 15% by wt solution of

 $\mathrm{H}_{2} \mathrm{SO}_{4}$ isA. 1.8
B. 2.2
C. 1.2
D. 2.8

Answer: A
(Watch Video Solution
19. Rate of reaction (r) is plotted against temperature (T) for an enzyme catalysed reaction. What of the following is correct representation?

Answer: B

D View Text Solution

20. What volume of 75% alcohol by weight
$\left(d-0.80 \mathrm{~g} / \mathrm{cm}^{3}\right)$ must be used to prepare
$150 \mathrm{~cm}^{3}$ of 30% alcohal by mass
$\left(d=0.90 \mathrm{~g} / \mathrm{cm}^{3}\right) ?$
A. 44.44 mL
B. 56.25 mL
C. 67.5 mL
D. 33.56 mL

Answer: C

- Watch Video Solution

21. The pH of blood stream is maintained by a proper balance of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} concentration. What volume of 5 M NaHCO 3 solution should be mixed with a 10 mL sample
of blood which is 2 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in order to maintain its pH ?
$\left[p k_{a}\right.$ for $\left.H_{2} \mathrm{CO}_{3}=6.1\right]\left[10^{1.3}=19.9\right]$
A. 40 mL
B. 38 mL
C. 50 mL
D. 79 mL

Answer: D

D View Text Solution
22. Which of the following disaccharide will not reduce Tollen's reagent ?

(Q)
A. P
B. Q
C. P and Q both
D. None of these

Answer: B

D View Text Solution

23. Lassaigne's test for the detection of nitrogen fails in

A. $\mathrm{NH}_{2} \mathrm{CONHNH} 2 . \mathrm{HCl}$

B. $\mathrm{NH}_{2} \mathrm{NH}_{2} . \mathrm{HCl}$
C. $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2} . \mathrm{HCl}$

Answer: B

- Watch Video Solution

24. The species which acts as electrophile in
the bromination of benzene is :
A. $B r_{2}$
B. $B r^{-}$
C. Br^{+}
D. $B r^{*}$

Answer: C

- Watch Video Solution

25.

$\mathrm{CH}_{3}-\stackrel{\stackrel{\mathrm{O}}{\mathrm{C}}}{\mathrm{C}}-\mathrm{OH} \xrightarrow[\Delta]{\mathrm{ND}_{3}}(A) \xrightarrow[\mathrm{KOH}]{\mathrm{Br}_{2}}(B)$
Product (B) is -
A. $\mathrm{CH}_{3}-N D_{2}$
B. $\mathrm{CH}_{3}-\mathrm{NH}_{2}$

D. ${ }^{\text {(4) }}$

Answer: B

D View Text Solution
26.

is -

Answer: B

- View Text Solution

27. Which of the following compound will undergo tautomerism?
A.
O
B.
(2)

C.
(3)

Answer: C

D Watch Video Solution

28. Which metal does not form nitrate when
heated with conc. HNO_{3} ?
A. Zn
B. Mg
C. Sn
D. Pb

Answer: C

D View Text Solution

29. The $K_{e q}$ values in HCN addition to following aldehydes are in the order -

(iii)
A. igtiigtiii

B. iigtiiigti

C. iiigtigtii

D. iigtigtiii

Answer: D

D View Text Solution

