©゙doubtnut

PHYSICS

BOOKS - CAREER POINT

MOCK TEST 5

Part A Physics

1. By what percent the energy of the satellite has

to be increased to shift it from an orbit of radius
r to $\frac{3 r}{2}$.
A. 66.7%
B. 33.3%
C. 75%
D. 20.3%

Answer: B

- Watch Video Solution

2. The potential energy of a particle of mass 1 kg in motion along the x - axis is given by:
$U=4(1-\cos 2 x)$, where x in meters. The period of small oscillation (in sec) is
A. 2π
B. π
C. $\frac{\pi}{2}$
D. $\sqrt{2} \pi$

Answer: C

- Watch Video Solution

3. The bulk modulus of water is $2.0 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$.

The pressure required to increase the density of water by 0.1% is
A. 2×10^{9} newton $/$ metre 2
B. 2×10^{8} newton $/$ metre 2
C. 2×10^{6} newton $/$ metre 2
D. 2×10^{4} newton $/$ metre 2

Answer: C
(D) Watch Video Solution
4. Two circular coils X and Y, having equal number of turns and carrying currents in the same sense, subtend same solid angle at point O. If the smaller coil X is midway between O and Y and if we represent the magnetic induction due to bigger coil Y at O as B_{y} and the due to smaller coil X at O as B_{x}, then find the ratio B_{x} / B_{y}.

$$
\begin{aligned}
& \text { A. } \frac{B_{Y}}{B_{X}}=1 \\
& \text { B. } \frac{B_{Y}}{B_{X}}=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{B_{Y}}{B_{X}}=\frac{1}{2} \\
& \text { D. } \frac{B_{Y}}{B_{X}}=\frac{1}{4}
\end{aligned}
$$

Answer: C

D Watch Video Solution

5. A short magnet porduces a deflection of 30°
when placed at certain distance in $\tan A$ position of magnetometer. If another short magnet of double the length and thrice the pole strength is placed at the same distance in $\tan B$ position of
the magnetometer, the deflection produced will be-
A. 60°
B. 30°
C. 45°
D. None

Answer: A

- Watch Video Solution

6. The loop $A B C D$ is moving with velocity ' v ' towards right. The magnetic field is $4 T$. The loop is connected to a resistance of 8Ω. If steady current of $2 A$ flows in the loop then value of ' v ' if loop has a resistance of 4Ω, is : (Given
$A B=30 \mathrm{~cm}, A D=30 \mathrm{~cm})$

50
A. $\frac{50}{3} m / s$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $\frac{100}{3} m / s$

Answer: D

D Watch Video Solution

7. A 50 HzAC source of 20 V is connected across
R and C as shown in figureure.

The voltage across R is $12 V$. The voltage across C is
A. 8 V
B. 16 V
C. 10 V
D. not possible to determine unless values of R
and C are given

Answer: B

D Watch Video Solution

8. In a adiabatic process pressure is increased by
$2 / 3 \%$ if $C_{P} / C_{V}=3 / 2$. Then the volume decreases by about
A. $\frac{4}{9} \%$
B. $\frac{2}{3} \%$
C. 4%
D. $\frac{9}{4} \%$

Answer: A

(D) Watch Video Solution

9. Two circular disc A and B with equal radii are blackened. They are heated to same temperature
and are cooled under identical conditions. What
inference do your draw from their cooling curves?

$A . A$ and B have same specific beats
B. specifice heat of A is less
C. specific heat of B is less
D. nothing came be said.

Answer: B

- Watch Video Solution

10. Pitch of a screw gauge is 0.5 mm and its least count is .01 mm , Calculate no. of divisons on its circular scale.
A. 100
B. 25
C. 50

D. None of these

Answer: C

- Watch Video Solution

11. $p-n$ junction diode can be used as

A. Rectification

B. Amplification
C. Obtaining light radiation
D. Detecting light intensity

Answer: B

(D) Watch Video Solution

12. When a wave travels in a medium, the particle
displacement is given by the equation
$y=a \sin 2 \pi(b t-c x)$, where a, b and c are
constants. The maximum particle velocity will be
twice the wave velocity. If
A. $c=\frac{1}{\pi a}$
B. $c=\pi a$
C. $b=a c$
D. $b=\frac{1}{a c}$

Answer: A

D Watch Video Solution

13. A source of sound is travelling towards a stationary observer. The frequency of sound heard by the observer is of three times the original frequency. The velocity of sound is $\mathrm{v} \mathrm{m} /$
sec. The speed of source will be
A. $\frac{2}{3} v$
B. v
C. $\frac{3}{2} v$
D. 3 v

Answer: A

D Watch Video Solution

14. A vessel is partitioned in two equal halves by a
fixed diathermic separator. Two different ideal gases ae filled in left (L) and right (R) halves the rms speed of the molecules in L part is equal to the mean speed of moleucles in the R equal to
the ratio of the mass of a molecules in L part to that of a molecules in R part is

A. $\sqrt{\frac{3}{2}}$
B. $\sqrt{\pi / 4}$
C. $\sqrt{2 / 3}$
D. $3 \pi / 8$

Answer: D
15. The minimum (threshold) KE of the proton to initiate the nulear reaction

$$
p+{ }^{7} \mathrm{Li} \rightarrow{ }^{7} \mathrm{Be}+n
$$

Given $m_{p}=1.0073 \mathrm{amu}, m_{1}=7.0144 \mathrm{amu}$,
$m_{B e}=7.0147 \mathrm{amu}, m_{0}=1.0087 \mathrm{amu}$.
A. $2 \times 10^{-15} J$
B. $4 \times 10^{-14} J$
C. $2.5 \times 10^{-13} J$
D. $8 \times 10^{-6} J$
16. A Photo sensitive material would emit electrons if excited by photons beyond a threshold. To overcome the threshold, one would increases -
A. Voltage applied to the light source
B. Intensity of light
C. Wavelength of light
D. The frequency of light

Answer: D

D Watch Video Solution

17. what should be the velocity of an electron so that its momentum becomes equal to that of a photon of wavelength $5200 \AA$
A. $700 \mathrm{~m} / \mathrm{s}$
B. $1000 \mathrm{~m} / \mathrm{s}$
C. $1400 \mathrm{~m} / \mathrm{s}$
D. $2800 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

18. Two long wires each oflength I are placed on a
smooth horizontal table. Wires have equal but opposite charges. Magnitude oflinear charge density on each wire is λ. Calculate the work required to increase the separation between the wires from a to 2a:

$$
\begin{aligned}
& \text { A. } \frac{\lambda^{2}}{2 \pi \varepsilon_{0}} \ln 2 \\
& \text { B. } \frac{\lambda}{2 \pi \varepsilon_{0}} \ln 2
\end{aligned}
$$

C. $\frac{\lambda}{2 \pi \varepsilon_{0}}$
D. $\frac{\lambda^{2}}{2 \pi \varepsilon_{0} a}$

Answer: A

- Watch Video Solution

19. In the circuit shown in figure-3.311, the switch is shifted from position 1 to 2 at time $t=0$. The switch was initially in position I for a long time.

The graph between charge on capacitor C and
time tis best represented as

(1)

A.

C.
(3)

D.

Answer: D

- Watch Video Solution

20. In figure, the resistance of galvanometer G is

50 ohm and the battery is ideal. Of the following alternatives, in which case, are the currents arranged strictly in the order of decreasing
magnitudes with the larger coming earlier-

A. I, I_{1}, I_{g}, I_{2}
B. I, I_{g}, I_{1}, I_{2}
C. I, I_{2}, I_{1}, I_{g}
D. I_{g}, I_{1}, I_{2}, I

Answer: C

(D) Watch Video Solution

21. Null point in the galvanometer is obtained when a cell of emf E and internal resisance r is connncted across the length of 22 cm wire of the potentiometer . Now a resistane of 10Ω is connected across the terminals of the cell (by closing the key K) and null point is obtained against the length of cm . The internal resistance r
of the cell is -

A. 0.5Ω
B. 1Ω
C. 1.5Ω
D. 2Ω

Answer: B

(D) Watch Video Solution

22. An open knife of mass m is dropped from a height h on a wooden floor. If the blade penetrates up to the depth d into the wood. The average resistance offered by the wood to the knife edge is .
A. mg

$$
\begin{aligned}
& \text { B. } m g\left(1-\frac{h}{d}\right) \\
& \text { C. } m g\left(1+\frac{h}{d}\right)
\end{aligned}
$$

D. $m g\left(1+\frac{h}{d}\right)^{2}$

Answer: C

D Watch Video Solution

23. Portion $A B$ of the wedge shown in figure is
rough and $B C$ is smooth. A solid cylinder rolld without slipping from A to B. Find the ratio of translational kinetic energy to rotationa linetic
energy, when the cylinder reaches point C.

A. $3 / 5$
B. 5
C. $7 / 5$
D. $8 / 3$

Answer: B

(D) Watch Video Solution

24. A system of coordinatees is drawn in a medium whose refractive index vaires as $\mu=\frac{2}{1+Y^{2}}$ where $0 \leq y \leq 1$. A ray of light is incident at origin at an angle 60° with y-axis as
shown in figure. At point P, the ray becomes
parallel to x -axis, the volue of H is -

А. $\left\{\left(\frac{2}{\sqrt{3}}-1\right)\right\}^{1 / 2}$
B. $\left\{\frac{2}{\sqrt{3}}\right\}^{1 / 2}$
C. $\{(\sqrt{3}-1)\}^{1 / 2}$
D. $\{\sqrt{(3)}+1\}^{1 / 2}$

Answer: A

(D) Watch Video Solution

25. In YDSE, let A and B be two slits. Films of thickness t_{A} and t_{B} and refractive μ_{A} and μ_{B} are placed in front of A and B, respectively. If $\mu_{A} t_{A}=\mu_{A} t_{B}$, then the central maxima will
A. not shift

B. shift towards A

C. shift towares B
D. None of these

Answer: A

- Watch Video Solution

26. When an unpolarized light of intensity I_{0} is incident on a polarizing sheet, the intensity of the
light which does not get transmitted is
A. I_{0}
B. 0
C. $I_{0} / 2$
D. $I_{0} \cos ^{2} \theta$

Answer: C

- Watch Video Solution

27. The heat dissipated in a resistance can be obtained by the measurement of resistance,
current and time. If the maximum precentage error in the mesurement of these quanties is
$\%, 2 \%$ and 1% respectively. The maximum
percentage error in the determination of the dissipated heat is -
A. 4%
B. 6%
C. $4 / 3 \%$
D. 2%

Answer: B
28. Resultant of which of the following may be equal to zero ?
A. $10 \mathrm{~N}, 10 \mathrm{~N}, 30 \mathrm{~N}$
B. $10 \mathrm{~N}, 20 \mathrm{~N}, 30 \mathrm{~N}, 40 \mathrm{~N}$
C. $5 \mathrm{~N}, 10 \mathrm{~N}, 20 \mathrm{~N}, 40 \mathrm{~N}$
D. none of these

Answer: B

- View Text Solution

29. The initial velocity of a particle is u and the accelertion at time t later is given by at, then its
velocity is given by-
A. $u+\frac{a t^{2}}{2}$
B. $u^{2}+\frac{a t^{2}}{2}$
C. $\frac{u+a t^{2}}{2}$
D. none of these

Answer: A
30. Two trolleys A and B are moving with accelerations a and ea, respectively, in the same direction. To an observer in trolley A. Find the magnitude of the pseudo force acting on a block of mass m on trolley B.

A. ma
B. 2 ma
C. $\frac{m a}{2}$
D. none of these

Answer: A

(D) Watch Video Solution

Part B Chemistry

1. Which of the following is incorrect processes ?

A. $\mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3}$
B. $\mathrm{ZnO}+C \rightarrow Z n+C O$
C. $\mathrm{Cr}_{2} \mathrm{O}_{3} 2 \mathrm{Al} \rightarrow 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}$
D.

$$
2\left[A g(C N)_{2}\right]^{-}+Z n \rightarrow 2 A g+\left[Z n(C N)_{4}\right]^{2-}
$$

Answer: A

- View Text Solution

2. When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water, the sodium ions are are exchanged with
A. H^{+}ions
B. $C a^{++}$ions
C. SO_{4}^{-}ions
D. OH^{-}ions

Answer: B

D Watch Video Solution

3. Sodium sulphate is soluble in water,whereas
barium sulphate is sparingly soluble because
A. The hydration energy of sodium sulphate is more than its lattice energy
B. The lattice energy of barium sulphate is less than its by hydration energy
C. The lattice energy hs no role to play in solubiliy
D. The hydration energy of sodium sulphate is
less than its lattice energy

Answer: A
(D) Watch Video Solution
4. The number of P-O-P bonds present in $P_{4} O_{6}$ and $P_{4} O_{10}$ are respectively
A. 5,5
B. 5,6
C. 6,6
D. 6,5

Answer: C

5. Identify (Z) in the following transformation

(PRO: 10 ?
A.
(1)

(2)

(3)
C.

D.

Answer: B

- View Text Solution

6. Consider the following compounds I to IV with respect to their $S_{N} 2$ reacrtivity with a given nucelophile
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
I
II
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br} \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{Br}$
III
IV

$$
\text { A. } I V>I I I>I I>I
$$

$$
\text { B. } I>I V>I I I>I I
$$

C. $I V>I>I I>I I I$
D. $I>I I>I I I>I V$

Answer: D

D View Text Solution

7. Consider the following reaction

The major products formed in the reaction are
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{I}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{CH} \\ \mathrm{CH}_{3}}}{\mathrm{CH}}-\mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{CH} \\ \mathrm{CH}_{3}}}{\mathrm{CH}}-\mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{3}$

Answer: A

D View Text Solution

8. The standard free energy change free energy
for the following reaction is -210 KJ . What is the standard cell potential ?
$2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)$
A. +0.752
B. +1.09
C. +0.420
D. +0.640

Answer: B

D View Text Solution

9. $100 \mathrm{~cm}^{3}$ of a solution of an acid (Molar mass
$=98)$ containing $29.4 g$ of the acid per litre were
completely neutralized by $90.0 \mathrm{~cm}^{3}$ of aq. NaOH containing 20 g of NaOH per $500 \mathrm{~cm}^{3}$. The basicity of the acid is :
A. 3
B. 2
C. 1
D. data insufficient

Answer: A

- Watch Video Solution

10. For a complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} C I_{3}\right]$ pick up true statements ?
A. The co-ordination number and oxidation number of coablt is 6
B. The complex can show fac and mer
isomerism
C. The complex can show optical isomerism
D. This complex can from whitwe precipitate of

AgCl with AgNO_{3}

Answer: B

View Text Solution

11. Select incorrect statement :

A. Ferrous sulphate on heating gives both SO_{2} and SO_{3} gas

B. CrO_{3} from CrO_{4}^{-2} with NaOH

C. KMnO_{4} acts as an oxidizing in acidic medium only
D. $M n_{2} \mathrm{O}_{7}$ is an acidic oxide

Answer: C

12. Which of the following is the correct order for increasing bond angle ?
A. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{As} \mathrm{H}_{3}<\mathrm{SbH}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{OF}_{2}<\mathrm{CI}_{2} \mathrm{O}$
C. $\mathrm{H}_{3} \mathrm{Te} e^{+}<\mathrm{H}_{3} \mathrm{Se}^{+}<\mathrm{H}_{3} \mathrm{~S}^{+}<\mathrm{H}_{3} \mathrm{O}^{+}$
D. $B F_{3}<B C I_{3}<B B r_{3}<B I_{3}$

Answer: C

D View Text Solution
13. Among the halogens, fluorine differs considerably form the other members. The hydrides of halogens also differ in their properties.

Which of the following halogens do not form polyhalide?
A. Electronegativity
B. Atomic radius
C. Ionisation energy
D. Oxidising power

- Watch Video Solution

14. Relation between (A) and (B) is :
(A)

(B)

A. Anomers
B. Positional
C. Functional isomer
D. Enantiomer
15. Both ionic and covalent bond is present in the
following
A. CH_{4}
B. KCl
C. SO_{4}
D. NaOH

Answer: D
16. Which of the following statements wrong

about aniline

A. Positive isocyanide test
B. 2,4, DNP (Positive -test)
C. Reacts with $\mathrm{CH}_{3} \mathrm{MgBr}$ and evole CH_{4} gas

D. Give diazotization product

$$
\mathrm{NaNO} \mathrm{O}_{2}+\mathrm{HCIon} 0^{\circ} \mathrm{Cto} 5^{\circ} \mathrm{C}
$$

Answer: B

D View Text Solution

Product (B) is -
A. Antibiotic

B. Analgesic

C. Anta Acid
D. None of these

Answer: B

- View Text Solution

18. In an atom, an electron is moving with a speed of $600 \mathrm{~m} / \mathrm{s}$ with an accuracy of 0.05%. The certainty with which the position of the electron can be located is $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right.$, mass of electron , $\left.e_{m}=9.1 \times 10^{-31} \mathrm{~kg}\right)$:
A. $1.52 \times 10^{-4} m$
B. $5.10 \times 10^{-3} m$
C. $1.92 \times 10^{-3} \mathrm{~m}$
D. $3.84 \times 10^{-3} \mathrm{~m}$

Answer: C

(D) Watch Video Solution

19. Xenon crystallizes in the face-centred cubic lattice and the edge of the unit cell is 620 pm .

What is the nearest neighbour distance and what is the redius of xenon atom?
A. 219.20pm
B. 438.5 pm
C. 265.5 pm
D. 536.94 pm

Answer: A

D Watch Video Solution
20. The standard enthalpy of formation of octane
$\left(C_{8} H_{18}\right)$ is $-250 \mathrm{~kJ} / \mathrm{mol}$. Calculate the enthalpy of combustion of $C_{8} H_{18}$. The enthalpy of formation of $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are $-394 k J / m o l$ and $-286 k J / m o l$ respectively.
A. $-5200 \mathrm{KJ} / \mathrm{mol}$
B. $-5726 \mathrm{KJ} / \mathrm{mol}$
C. $-5476 \mathrm{KJ} / \mathrm{mol}$
D. $-5310 \mathrm{KJ} / \mathrm{mol}$

Answer: C
21. What is the maximum value of van't Hoff factor for AlCl_{3} ?
A. 3
B. 4
C. 1
D. 2

Answer: B

- Watch Video Solution

22. In a reversible reaction,
$K_{e}<K_{p}$ and $\Delta H=+40 \mathrm{kca}$. The product will be obtained in less amount on
A. Decreasing pressure and temperature
B. Increasing pressure and temprature
C. Deceasing pressure and increasing
temperature .
D. Decreasing temperature and increasing
pressure
23. Which of the following factors will be favourbale for higher yields of NO in the reaction given below?

$$
N_{2}+O_{2} \Leftrightarrow 2 N O(g)(\Delta H=+v e)
$$

A. Low temperature, high pressure and high conentration of N_{2} and O_{2}
B. High temperature, and high concentrations
of N_{2} and O_{2}. The reaction remains
unaffected by pressure.
C. High temperature , law pressure and low concentration, of N_{2} and O_{2}
D. Law temperature, low pressure and high concentraion of N_{2} and O_{2}

Answer: B

D View Text Solution

24. Equal volumes of three acid solutions of $p H 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?

$$
\text { A. } 3.7 \times 10^{-3} M
$$

B. $1.11 \times 10^{-3} M$
C. $1.11 \times 10^{-4} M$
D. $3.7 \times 10^{-4} M$

Answer: D

- Watch Video Solution

25. In the following sequence of reaction, the end product is :

$$
\left.H C \equiv C H \xrightarrow{\mathrm{Hg}^{2+} / \mathrm{H}_{2} \mathrm{SO}_{4}}(A) \xrightarrow[{\left[\mathrm{H}_{2} \mathrm{O}\right.}]\right]{\mathrm{CH}_{3} \mathrm{MgX}}(B) \xrightarrow{[\mathrm{O}]}(C)
$$

A. acetaldehyde
B. isopropyl alcohol
C. acetone
D. ethyl alcohol

Answer: C

- Watch Video Solution

26. Which of the following reaction will not give primary amine?
A. $\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\mathrm{Br}_{2} \mathrm{KOH}}$

C. $\mathrm{CH}_{3} \mathrm{NC} \xrightarrow{\mathrm{I.} \mathrm{LiAIH}_{4} / \mathrm{H}^{+}}$

Answer: C

- Watch Video Solution

27. In the reaction
$\mathrm{CH}_{3}-\stackrel{\mathrm{O}_{\mathrm{C}}^{-\mathrm{O}}-\stackrel{\mathrm{H}}{\mathrm{H}} \mathrm{C}_{\mathrm{CH}}}{\mathrm{CH}_{3} \mathrm{H}_{5}}+\mathrm{KOH} \xrightarrow[\text { heat }]{\mathrm{H}, \mathrm{O}} \mathrm{A}+\mathrm{B}$
the products (A) and (B) are-

A.

(1) $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{OK}$ and ${ }^{18}-\mathrm{CH}_{3}$
B. (2) $\mathrm{CH}_{3}-\stackrel{-}{\mathrm{C}-\mathrm{O}_{-2}}$

(4) $\mathrm{CH}_{3}-\overbrace{-\mathrm{O}-\mathrm{OK}}^{\mathrm{O}}$ and $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}-\mathrm{OH}$

Answer: A

D View Text Solution

28. Decreasing order of stability of given
carbocatons is as :

(i)

(ii) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$

A. $i i i>i i>i v>i$
B. $i>i i i>i v>i i$
C. $i>i i i>i i>i v$
D. $i i i>i i>i>i v$

Answer: C

- View Text Solution

29. Which of the following reagents is best used for the conversion shown below?

A. 1. $\mathrm{NaBH}_{4} / 2 D_{3} \mathrm{O}^{+}$
B. 1. $\mathrm{NaBD} \mathrm{D}_{4} / 2 . \mathrm{H}_{3} \mathrm{O}^{+}$
C. 1. $\mathrm{LiAIH}_{4} / 2 . \mathrm{D}_{3} \mathrm{O}^{+}$
D. 1. $\mathrm{H}_{2} / \mathrm{Pt} / 2 . \mathrm{D}_{2} \mathrm{O}$

Answer: B

- View Text Solution

