

PHYSICS

BOOKS - CAREER POINT

MOCK TEST 7

Part A Physics

1. Two balls, each of radius R, equal mass and density are placed in contact, then the force of gravitation between them is proportional to

A.
$$F \propto rac{1}{R^2}$$

B. $F \propto R$

C. $F \propto R^4$ D. $F \propto rac{1}{R}$

Answer: 3

2. A mass is suspended separately by two springs of spring constants k_1 and k_2 in successive order. The time periods of oscillations in the two cases are T_1 and T_2 respectively. If the same mass be suspended by connecting the two springs in parallel, (as shown in figure) then the time period of oscillations is T. The correct relations is

A.
$$T^2 = T_1^2 + T_2^2$$

B. $T^{-2} = T_1^{-2} + T_2^{-2}$
C. $T^{-1} = T_1^{-1} + T_2^{-1}$
D. $T = T_1 + T_2$

Answer: 2

Watch Video Solution

3. A stone of relative density K is released from rest on

the stone sinks in water with an accleration of -

A.
$$g(1-k)$$

B. $g(1+k)$
C. $g\left(1-rac{1}{k}\right)$
D. $g\left(1+rac{1}{k}\right)$

Answer: 3

4. An infinitely long wire carrying current I is along Yaxis such taht its one end is at point A(0,b) while the wire extends upto $+\infty$. The magnitude of magnetic

field strength at point (a,0) is

D. None of these

5. The magnetic flux (ϕ) linked with the coil depends on time t as $\phi = at^n$, where a and n are constants. The emf induced in the coil is e

A. If 0 < n < 1, e
eq 0 and $|\mathsf{e}|$ decrease with time

B. If n=1, e is constant

C. If n>1, |e| increase with time

D. None of these

6. A cricuite contains an inductance L, a resistance R and a battery of emf E. The circulit is switched on at t = 0. The change flows through the battery in one time constant (τ) is-

A.
$$\frac{2E\tau}{Re}$$

B. $\frac{E\tau}{2Re}$
C. $\frac{E\tau}{Re}$

D. zero

Answer: 3

7. An e.m.f. $E = 4\cos(1000t)$ volt is applied to an LR circuit of inductance 3mH and resistance 4ohm. The amplitude of current in the circuit is

A. $4\sqrt{7}A$

 $\mathsf{B.}\,1.0A$

C.
$$\frac{4}{7}A$$

 $\mathsf{D.}\,0.8A$

8. An ideal gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure, If the net heat supplied to the gas in the cycle is 5J, the work done by the gas in the process CtoA is

 $\mathsf{C.}-15J$

 $\mathrm{D.}-20J$

Answer: 1

Watch Video Solution

9. A small metal ball of diameter 4mm and density $10.5g/cm^3$ in dropped in glycerine of density $1.5g/cm^3$. The ball attains a terminal velocity of $8cms^{-1}$. The coefficient of viscosity of glycerine is

A. 4.9 poise

B. 9.8 poise

C. 98 posie

D. 980 posie

Answer: 2

The out put Y is

A. $A+\overline{A}B$

 $\mathsf{B}.\,\overline{A} + AB$

 $\mathsf{C}.\,\overline{A}$

D. None of these

Answer: 3

Watch Video Solution

11. An FM transmission has a frequency deviation of 18.75KHz. Calcualte present present modulation if it is broadcast in 88-108 MHz band.

A. 37.5~%

B. 12.5 %

C. 50 %

D. 25~%

Answer: 4

12. The two interfering waves have intensities in the ratio 9:4. The ratio of intensities of maxima and minima in the interference pattern will be

A. 1:25

B.25:1

C. 9:4

13. An organ pipe P_1 closed at one end vibrating in its first overtone and another pipe P_2 open at both ends vibrating in third overtone are in resonance with a given tuning fork. The ratio of the length of P_1 to that of P_2 is

A. 1:2

B. 1:3

C. 3:8

D. 3:4

Watch Video Solution

14. A stationary objected at $0^{\circ}C$ and weighing 3.5 kg falls from a height of 2000m on a snow mounation at $0^{\circ}C$. If the temperature of the object just before hitting the snow is $0^{\circ}C$ and the object comes to rest immediately $(g = 10m/s^2)$ and (latent heat of ice = 3.5×10^5 joule/s) then the mass of ice that will melt is

A. 2 kg

B. 200 gram

C. 20 gram

D. 2 gram

Answer: 2

Watch Video Solution

15. Magnetic field at the center (at nucleus) of the hydrogen like atom (atomic number = z) due to the motion of electron in nth orbit is proportional to

A.
$$\frac{n^2}{z^3}$$

B. $\frac{n^4}{Z}$
C. $\frac{z^2}{n^3}$

Answer: 4

Watch Video Solution

16. A light of wavelengt 1240Å falls on a metallic sphere of radius 1 m and work function $W_0 = 3eV$. The maximum number of electron left from the sphere till photoelectric effest stops will be- (approximately)

A. $5 imes 10^6$ B. $5 imes 10^7$ C. $5 imes 10^9$

D. $5 imes 10^{12}$

Answer: 3

O Watch Video Solution

17. Let
$$p = \frac{Qr^3}{\pi R^5}$$
 be the volume charge density at distance r from the centre for a a soild sphere of radius R and charge Q. The electric field at $r = \frac{R}{2}$ from the centre will be

A.
$$\frac{Q}{4\pi\varepsilon_0 R^2}$$

B.
$$\frac{Q}{40\pi\varepsilon_0 R^2}$$

C.
$$\frac{Q}{8\pi\varepsilon_0 R^2}$$

D. None

Answer: 2

Watch Video Solution

18. The electric field at centre O, due to the segment of

a ring of liner change density 8C/cm is -

A. $9 imes 10^{13}V/m$

B. $16 imes 10^{13}V/m$

 ${\rm C.8\times 10^{13}}V/m$

D. $18 imes 10^{13} V/m$

A.
$$rac{Carepsilon R_1}{r+R_1}$$

B. $rac{Carepsilon R_2}{r+R_2}$

C.
$$rac{Carepsilon R_2}{r+R_1}$$

D. $rac{Carepsilon R_1}{r+R_2}$

Answer: 2

20. If a_r and a_t represent radial and tangential accelerations, the motion of a particle will be uniformly circular if

A.
$$a_r=0 \,\, {
m and} \,\, a_t=0$$

$$\texttt{B.} \ a_r = 0 \ \text{and} \ a_t \neq 0$$

$$\mathsf{C}.\, a_r \neq 0 \ \text{and} \ a_t = 0$$

 $\mathsf{D}.\, a_r \neq 0 \, \text{ and } \, a_t \neq 0$

Answer: 3

21. A block of mass m is placed on a rough floor of a lift . The coefficient of friction between the block and the floor is μ . When the lift falls freely, the block is pulled horizontally on the floor. What is the force of friction -

A. μmg

B. $\mu mg/2$

C. $2\mu mg$

D. None of these

Answer: 4

Watch Video Solution

22. The potential energy U(in J) of a particle is given by (ax + by), where a and b are constants. The mass of the particle is 1kg and x and y are the coordinates of the particle in metre. The particle is at rest at (4a, 2b) at time t = 0.

Find the speed of the particle when it crosses x-axis

A.
$$2\sqrt{a^2+b^2}$$

$$\mathsf{B.}\,\sqrt{a^2+b^2}$$

C.
$$rac{1}{2}\sqrt{a^2+b^2}$$

D. $\sqrt{rac{(a^2+b^2)}{2}}$

Answer: 1

23. System shown in figure is released from rest . Pulley and spring is mass less and friction is absent everywhere. The speed of 5kg block when 2kg block leaves the constant of with ground is (force constant

of spring $k=40N/m~~{
m and}~g=10m/s^2ig)$

A.
$$\sqrt{2}m\,/\,s$$

B. $2\sqrt{2}m/s$

C. 2m/s

D. None of these

Answer: 2

Watch Video Solution

24. Consider a sphere of radius R exposed to radition of instensity I as shown in figure . If surface of sphere is partially reflection and reflection coefficient is 0.3, then

radiation force experienced is :

A.
$$\frac{\pi R^2 I}{c}$$

B.
$$\frac{1.7\pi R^2 I}{c}$$

C.
$$\frac{0.3\pi R^2 I}{c}$$

D. None of these

25. A ring of radius R is first rotated with an angular velocity ω and then carefully placed on a rough horizontal surface. The coefficient of friction between the surface and the ring is μ . Time after which its angular speed is reduced to half is

A.
$$\frac{\omega_{0}\mu R}{2g}$$
B.
$$\frac{2\omega_{0}R}{\mu g}$$
C.
$$\frac{\omega_{0}R}{2\mu g}$$
D.
$$\frac{\omega_{0}g}{2\mu g}$$

26. A real object is placed in front of a convex mirror (fixed). The object is moving toward the mirror. If v_0 is the speed of object and v_i is the speed of image, then

A. $V_O > V_I$, always

B. $V_O > V_I$ always

C. $V_I > V_O$ initially and then $V_O > V_I$

D. $V_I < V_O$ initially and then $V_I > V_O$

27. Consider slabs of three media A,B, and C. Arragned as shown inn figure . R.I of A is 1.5 and that of C is 1.4. If the number of waves in the combination B and C then refractive index of B is

A. 1.4

B. 1.5

C. 1.6

D. 1.7

28. The value of the of d_1 and d_2 for final rays to be parallel to the principle axis are (focal lengths of the lenses are written on the lenses).

A. $d_1=10cm, d_2=15cm$

 $\texttt{B.}~d_1=20cm, d_2=15cm$

C. $d_1=30cm, d_2=15cm$

D. All of these

Watch Video Solution

29. A mixture of plane polarised and unpolarised light falls normally on a polarising sheet. On rotating the polarising sheet about the direction of the incident beam, the transmitted intensity varies by a factor 4. Find the ratio of the intensities I_P and I_0 respectively of the polarized and unpolarised components in the incident beam. Next the axis of polarising sheet is fixed at an angle of 45° with the direction when the transmitted intensity is maximum. Then obtain the

total intensity of the transmitted beam in terms of I_0 .

$$\left[\frac{3}{2}, \frac{5I_0}{4}\right]$$
A. $\frac{2}{1}$
B. $\frac{3}{2}$
C. $\frac{4}{3}$
D. $\frac{4}{1}$

Answer: 2

30. The acceleration versus time graph of a particle is shown in. The respective v-t graph of the particle is .

Part B Chemistry

1. $Ag_2S + NaCN
ightarrow (a)$

(a) +Zn
ightarrow (d)

(b) is a metal. Hence (a) and (b) are

A. $Na_2[Zn(CN)_4], Zn$

B.
$$Naig[Ag(CN)_2ig], Ag$$

C. $Na_2ig[Ag(CN)_4ig], Ag$
D. $Na_3ig[Ag(CN)_4ig], Ag$

Answer: 2

2. $\left[SiO_4
ight]^{4-}$ has tetrahedral structure, the silicate

formed by using the three oxygen has

A. Linear polymeric structure

B. Three dimensional structure

C. Pyrosilicate structure

D. Two dimensional sheet structure

Answer: 4

3. The correct order of the acidic nature of oxides is in the order

A.
$$N_2 O_5 < N_2 O_3 < N O_2 < N_2 O_3$$

B.
$$N_2O < NO < N_2O_3 < NO_2 < N_2O_5$$

C. $N_2O_5 < N_2O < N_2O_3 < NO < NO_2$

D. $NO < N_2O < N_2O_3 < NO_2 < N_2O_5$

5. Consider the following sequence of reactions.

 $(A) \xrightarrow{CH_3COOOH} (A) \xrightarrow{CH_3O^*} (B)$

The product (B) is

6. Which of the following compounds will not yield iodoform on heating with iodine and dilute NaOH?

7. Identify the major product in the following reaction.

8. Cadmium amalgam is prepared by electrolysis of a solution of $CdCI_2$ using of 4A be passed in order to perpare 10 % by weight Cd in the Cd -Hg amalgamon cathode of 4.5 g Hg ?

A. 400 sec

B. 215.40 sec

C. 861.6 sec

D. 430.8 sec

9. 4 gm of sulphur dioxide gas diffuses from a container in 8 min. Mass of helium gas diffusing from the same container over the same time interval is :

A. 0.5 gm

B.1gm

C. 2 gm

D. None of these

Answer: 2

Watch Video Solution

10. The oxidation number of nitrogen atoms in NH_4NO_3 are:

A. +3, +3B. +3, -3, C. -3, +5, D. -5, +3

Answer: 3

11. Select incorrect statement :

- A. Central metal in Vitamine B_{12} is Co^{+3}
- B. The donor sites of $EDTA^{-4}$ are two N- atoms

and four O- atoms

C. Hybrid state of Cu in $\left[Cu(NH_3)_4
ight]^{+2}$ is sp^3

D. $CuSO_{4(aq)}$ froms $K_3[Cu(CN)_4]$ with excess

KCN

Answer: 3

12. Which of the following salt on heating with solid $K_2 C r_2 O_7$ and Conc. $H_2 S O_4$, orange red vapours are

evolved which turn NaOH solution yellow.

A. NaBr

B. NaCl

 $C. NaNO_2$

D. Nal

Answer: 2

13. Which substance has the highest melting point?

A. NaCl

B. CO

 $\mathsf{C}.\,SiO_2$

D. P_4O_{10}

Answer: 3

14. which of the following oxides is amphoteric ?

A. Na_2O

B. Cao

C. ZnO

D. CO_2

Answer: 3

15. Ionisation energy of
$$He^+$$
 is $19.6 \times 10^{-18} Jatom^{-1}$. The energy of the first stationary state $(n=1)$ of Li^{2+} is

A. $4.41 imes 10^{-19} Jatom^{-1}$

 $\mathrm{B.-4.41\times10^{-17}Jatom^{-1}}$

C. $-2.2 imes10^{-15}J$ atom $^{-1}$

D. $8.82 imes 10^{\widehat{u}17} J {
m atom}^{-1}$

16. The ionic radii of Rb^+ and I^- are 1.46 and $2.16 {
m \AA}$.

The most probable type of structure exhibited by it is:

A. CsCl type

B. NaCl type

C. ZnS type

D. CaF_2type

Answer: 2

Watch Video Solution

disaccharide is :

Cummen

prepeared by:

18.

is

Answer: 4

View Text Solution	

19. In Reimer-Tiemann reaction molecular weight of

phenol increases by:

A. 28

B. 29

C. 30

D. 31

Answer: 1

20. Chloroform has $\Delta H_{
m vaporization} = 29.2 kJ/
m mol$ and boils at $61.2^\circ C$. What is the value of $\Delta H_{
m vaporization} = 29.2 kJ/
m mol$ for chloroform ?

A. 87.3J/mol - K

B. 477.1J/mol - K

 $\mathsf{C.}-87.3J/mol-K$

D.
$$-477.1J/mol - K$$

21. For which of the following reaction is product formation favoured by law pressure and high temperature?

A.
$$CO_2(g)+C(s)\Leftrightarrow 2CO(g), \Delta H^\circ=172.5KJ$$
 B.

$$CO_2(g)+2H_2(g)\Leftrightarrow CH_3OH, \Delta H^\circ=-21.7KJ$$
C. $2O_3(g)\Leftrightarrow 3O_2(g), \Delta H^\circ=-285kJ$ D. $H_2(g)+F_2(g)\Leftrightarrow 2HF(g), \Delta H^\circ=-541kJ$

22. Which dilute solution have the higher vapours presure ?

A. 0.002 M NaCl at $50^{\,\circ}C$

B. 0.003 M sucrose at $15^{\,\circ}C$

C. 0.005 M $CaCl_2at50^{\,\circ}\,C$

D. 0.005M $CaCl_2at25^{\,\circ}\,C$

23. The rate constant at $25^{\circ}C$ for the reaction of NH_4^+ and OH^- to form NH_4OH is $4 \times 10^{10} M^{-1} \sec^{-1}$ and ionisation constant of aq. NH_3 is 1.8×10^{-5} . The rate constant of proton transfer to NH_3 is

A. $1.8 imes10^{-5}$

B. $7.2 imes10^{+5}$

C. $3.6 imes10^5$

D. $4.2 imes 10^{-5}$

Answer: 2

Watch Video Solution

24. Polyethylene can be produced from calcium carbide according to the following sequence of reactions $CaC_2 + H_2$ or $arrCaO + HC \equiv CH$ $nHC \equiv CH + nH_2 \rightarrow (-CH_2 - CH_2 -)_n$ The mass of polyethylene which can be produced from 40.0kq of CaC_2 is

A. 6.75 kg

B. 7.75 kg

C. 8.75 kg

D. 9.75 kg

25. Which of the following respresent the variation of conducatnes of solution if weak base NH_4OH is titrated with dilute HCl?

26. The formation of cyanohydrin from ketone is an example of :

A. electrophilic addition

B. nucleophilic addition

C. nuclecophilic substituion

D. electrophilic substitrution

Answer: 2

Watch Video Solution

27. Aniline on being heated with CS_2 in the presence of

 $HgCl_2$ gives-

A. Phenyl thiocyanate

B. Phenyl cyanate

C. Phenyl isothiocyante

D. N-phenyldithicarbamic acid

28. Which of the following compound has highest enol

content?

29. Relation between gives pair is -

- A. Enantiomer
- **B.** Diastereomers
- C. Identical
- D. Structural isomer

30. The stability order of following carbocation is

A. i > ii > iii

B.iii > ii > i

 $\mathsf{C}.\,iii>i>ii$

D. i > iii > ii

