©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

MOCK TEST 7

Part A Physics

1. Two balls, each of radius R, equal mass and density
are placed in contact, then the force of gravitation between them is proportional to
A. $F \propto \frac{1}{R^{2}}$
B. $F \propto R$
C. $F \propto R^{4}$
D. $F \propto \frac{1}{R}$

Answer: 3

- Watch Video Solution

2. A mass is suspended separately by two springs of spring constants k_{1} and k_{2} in successive order. The time periods of oscillations in the two cases are T_{1} and
T_{2} respectively. If the same mass be suspended by connecting the two springs in parallel, (as shown in figure) then the time period of oscillations is T. The
A. $T^{2}=T_{1}^{2}+T_{2}^{2}$
B. $T^{-2}=T_{1}^{-2}+T_{2}^{-2}$
C. $T^{-1}=T_{1}^{-1}+T_{2}^{-1}$
D. $T=T_{1}+T_{2}$

Answer: 2

- Watch Video Solution

3. A stone of relative density K is released from rest on the stone sinks in water with an accleration of -
A. $g(1-k)$
B. $g(1+k)$
C. $g\left(1-\frac{1}{k}\right)$
D. $g\left(1+\frac{1}{k}\right)$

Answer: 3

- View Text Solution

4. An infinitely long wire carrying current I is along Y axis such taht its one end is at point $A(0, b)$ while the wire extends upto $+\infty$. The magnitude of magnetic
field strength at point $(a, 0)$ is

A. $\frac{\mu_{0} I}{4 \pi a}\left(1+\frac{b}{\sqrt{a^{2}+b^{2}}}\right)$
B. $\frac{\mu_{0} I}{4 \pi a}\left(1-\frac{b}{\sqrt{a^{2}+b^{2}}}\right)$
C. $\frac{\mu_{0} I}{4 \pi a}\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)$
D. None of these
5. The magnetic flux (ϕ) linked with the coil depends on time t as $\phi=a t^{n}$, where a and n are constants. The emf induced in the coil is e
A. If $0<n<1, e \neq 0$ and $|\mathrm{e}|$ decrease with time
B. If $n=1, \mathrm{e}$ is constant
C. If $n>1,|e|$ increase with time
D. None of these

Answer: 4

6. A cricuite contains an inductance L, a resistance R and a battery of emf E . The circuit is switched on at
$t=0$. The change flows through the battery in one time constant (τ) is-

A. $\frac{2 E \tau}{R e}$
B. $\frac{E \tau}{2 R e}$
C. $\frac{E \tau}{R e}$
D. zero

Answer: 3

- Watch Video Solution

7. An e.m.f. $E=4 \cos (1000 t)$ volt is applied to an $L R$ circuit of inductance 3 mH and resistance 40 hm . The amplitude of current in the circuit is
A. $4 \sqrt{7} A$
B. 1.0 A
C. $\frac{4}{7} \mathrm{~A}$
D. 0.8 A

- Watch Video Solution

8. An ideal gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure, If the net heat supplied to the gas in the cycle is 5J, the work done by the gas in the process CtoA is

A. 5 J
B. -10 J
C. -15 J
D. -20 J

Answer: 1

- Watch Video Solution

9. A small metal ball of diameter 4 mm and density $10.5 \mathrm{~g} / \mathrm{cm}^{3}$ in dropped in glycerine of density $1.5 \mathrm{~g} / \mathrm{cm}^{3}$. The ball attains a terminal velocity of $8 \mathrm{cms}^{-1}$. The coefficient of viscosity of glycerine is
A. 4.9 poise
B. 9.8 poise
C. 98 posie
D. 980 posie

Answer: 2

- Watch Video Solution

10.

The out put Y is
A. $A+\bar{A} B$
B. $\bar{A}+A B$
C. \bar{A}
D. None of these

Answer: 3

- Watch Video Solution

11. An FM transmission has a frequency deviation of
18.75KHz. Calcualte present present modulation if it is broadcast in $88-108 \mathrm{MHz}$ band.
A. 37.5%
B. 12.5%
C. 50%
D. 25%

Answer: 4

- View Text Solution

12. The two interfering waves have intensities in the ratio 9:4. The ratio of intensities of maxima and minima in the interference pattern will be
A. $1: 25$
B. $25: 1$
C. 9:4
D. $4: 9$

- Watch Video Solution

13. An organ pipe P_{1} closed at one end vibrating in its first overtone and another pipe P_{2} open at both ends vibrating in third overtone are in resonance with a given tuning fork. The ratio of the length of P_{1} to that of P_{2} is
A. 1:2
B. 1:3
C. 3:8
D. 3:4

Answer: 3

- Watch Video Solution

14. A stationary objected at $0^{\circ} \mathrm{C}$ and weighing 3.5 kg falls from a height of 2000 m on a snow mounation at
$0^{\circ} C$. If the temperature of the object just before hitting the snow is $0^{\circ} C$ and the object comes to rest immediately $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$ and (latent heat of ice $=$ 3.5×10^{5} joule $\left./ s\right)$ then the mass of ice that will melt is
A. 2 kg
B. 200 gram
C. 20 gram
D. 2 gram

Answer: 2

- Watch Video Solution

15. Magnetic field at the center (at nucleus) of the hydrogen like atom (atomic number $=z$) due to the motion of electron in nth orbit is proporional to
A. $\frac{n^{2}}{z^{3}}$
B. $\frac{n^{4}}{Z}$
C. $\frac{z^{2}}{n^{3}}$
D. $\frac{z^{3}}{n^{5}}$

Answer: 4

- Watch Video Solution

16. A light of wavelengt $1240 \AA$ falls on a metallic sphere of radius 1 m and work function $W_{0}=3 \mathrm{eV}$. The maximum number of electron left from the sphere till photoelectric effest stops will be- (approximately)
A. 5×10^{6}
B. 5×10^{7}
C. 5×10^{9}
D. 5×10^{12}

Answer: 3

(D) Watch Video Solution

17. Let $p=\frac{Q r^{3}}{\pi R^{5}}$ be the volume charge density at distance r from the centre for a a soild sphere of radius R and charge Q . The electric field at $r=\frac{R}{2}$ from the centre will be
A. $\frac{Q}{4 \pi \varepsilon_{0} R^{2}}$
B. $\frac{Q}{40 \pi \varepsilon_{0} R^{2}}$
C. $\frac{Q}{8 \pi \varepsilon_{0} R^{2}}$
D. None

Answer: 2

- Watch Video Solution

18. The electric field at centre O, due to the segment of a ring of liner change density $8 \mathrm{C} / \mathrm{cm}$ is -

A. $9 \times 10^{13} V / m$
B. $16 \times 10^{13} \mathrm{~V} / \mathrm{m}$
C. $8 \times 10^{13} \mathrm{~V} / \mathrm{m}$
D. $18 \times 10^{13} \mathrm{~V} / \mathrm{m}$

Answer: 4
19. In given circuit, switch S is closed at $t=0$. The charge on the capacitor ar steady state will be

A. $\frac{C \varepsilon R_{1}}{r+R_{1}}$
B. $\frac{C \varepsilon R_{2}}{r+R_{2}}$
C. $\frac{C \varepsilon R_{2}}{r+R_{1}}$
D. $\frac{C \varepsilon R_{1}}{r+R_{2}}$

Answer: 2

- Watch Video Solution

20. If a_{r} and a_{t} represent radial and tangential accelerations, the motion of a particle will be uniformly circular if
A. $a_{r}=0$ and $a_{t}=0$
B. $a_{r}=0$ and $a_{t} \neq 0$
C. $a_{r} \neq 0$ and $a_{t}=0$
D. $a_{r} \neq 0$ and $a_{t} \neq 0$

Answer: 3

- Watch Video Solution

21. A block of mass m is placed on a rough floor of a lift
. The coefficient of friction between the block and the
floor is μ. When the lift falls freely, the block is pulled horizontally on the floor. What is the force of friction -
A. $\mu m g$
B. $\mu m g / 2$
C. $2 \mu m g$

D. None of these

Answer: 4

- Watch Video Solution

22. The potential energy U (in J) of a particle is given by
$(a x+b y)$, where a and b are constants. The mass of
the particle is 1 kg and x and y are the coordinates of
the particle in metre. The particle is at rest at $(4 a, 2 b)$ at time $t=0$.

Find the speed of the particle when it crosses x-axis
A. $2 \sqrt{a^{2}+b^{2}}$
B. $\sqrt{a^{2}+b^{2}}$
C. $\frac{1}{2} \sqrt{a^{2}+b^{2}}$
D. $\sqrt{\frac{\left(a^{2}+b^{2}\right)}{2}}$

Answer: 1

- Watch Video Solution

23. System shown in figure is released from rest . Pulley
and spring is mass less and friction is absent everywhere. The speed of 5 kg block when 2 kg block leaves the constant of with ground is (force constant
of spring $k=40 \mathrm{~N} / \mathrm{m}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

B
 2kg

A. $\sqrt{2} m / s$
B. $2 \sqrt{2} m / s$
C. $2 m / s$
D. None of these

Answer: 2

- Watch Video Solution

24. Consider a sphere of radius R exposed to radition of instensity I as shown in figure. If surface of sphere is partially reflection and reflection coefficient is 0.3 , then
radiation force experienced is :

A. $\frac{\pi R^{2} I}{c}$
B. $\frac{1.7 \pi R^{2} I}{c}$
C. $\frac{0.3 \pi R^{2} I}{c}$
D. None of these

Answer: 4
25. A ring of radius R is first rotated with an angular velocity ω and then carefully placed on a rough horizontal surface. The coefficient of friction between the surface and the ring is μ. Time after which its angular speed is reduced to half is
A. $\frac{\omega_{0} \mu R}{2 g}$
B. $\frac{2 \omega_{0} R}{\mu g}$
C. $\frac{\omega_{0} R}{2 \mu g}$
D. $\frac{\omega_{0} g}{2 \mu g}$

Answer: 3

26. A real object is placed in front of a convex mirror (fixed).The object is moving toward the mirror. If v_{0} is the speed of object and v_{i} is the speed of image, then
A. $V_{O}>V_{I}$, always
B. $V_{O}>V_{I}$ always
C. $V_{I}>V_{O}$ initially and then $V_{O}>V_{I}$
D. $V_{I}<V_{O}$ initially and then $V_{I}>V_{O}$

Answer: 1

D Watch Video Solution

27. Consider slabs of three media A, B, and C. Arragned as shown inn figure. R.I of A is 1.5 and that of C is 1.4. If the number of waves in the combination B and C then refractive index of B is

A. 1.4
B. 1.5
C. 1.6
D. 1.7

Answer: 4
28. The value of the of d_{1} and d_{2} for final rays to be parallel to the principle axis are (focal lengths of the lenses are written on the lenses).

A. $d_{1}=10 \mathrm{~cm}, d_{2}=15 \mathrm{~cm}$
B. $d_{1}=20 \mathrm{~cm}, d_{2}=15 \mathrm{~cm}$
C. $d_{1}=30 \mathrm{~cm}, d_{2}=15 \mathrm{~cm}$
D. All of these

Answer: 4

- Watch Video Solution

29. A mixture of plane polarised and unpolarised light falls normally on a polarising sheet. On rotating the polarising sheet about the direction of the incident beam, the transmitted intensity varies by a factor 4.

Find the ratio of the intensities I_{P} and I_{0} respectively of the polarized and unpolarised components in the incident beam. Next the axis of polarising sheet is fixed at an angle of 45° with the direction when the transmitted intensity is maximum. Then obtain the
total intensity of the transmitted beam in terms of I_{0}.

$$
\left[\frac{3}{2}, \frac{5 I_{0}}{4}\right]
$$

A. $\frac{2}{1}$
B. $\frac{3}{2}$
C. $\frac{4}{3}$
D. $\frac{4}{1}$

Answer: 2

- Watch Video Solution

30. The acceleration versus time graph of a particle is
shown in. The respective $v-t$ graph of the particle is.

A.

C.

D.

 (4)

Answer: 1

- Watch Video Solution

Part B Chemistry

1. $A g_{2} S+N a C N \rightarrow(a)$
(a) $+Z n \rightarrow(d)$
(b) is a metal. Hence (a) and (b) are
A. $N a_{2}\left[Z n(C N)_{4}\right], Z n$
B. $N a\left[A g(C N)_{2}\right], A g$
C. $N a_{2}\left[A g(C N)_{4}\right], A g$
D. $N a_{3}\left[A g(C N)_{4}\right], A g$

Answer: 2

D Watch Video Solution

2. $\left[\mathrm{SiO}_{4}\right]^{4-}$ has tetrahedral structure, the silicate formed by using the three oxygen has
A. Linear polymeric structure
B. Three dimensional structure
C. Pyrosilicate structure
D. Two dimensional sheet structure

Answer: 4

- Watch Video Solution

3. The correct order of the acidic nature of oxides is in the order
A. $\mathrm{N}_{2} \mathrm{O}_{5}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}$
B. $\mathrm{N}_{2} \mathrm{O}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}_{5}$
C. $\mathrm{N}_{2} \mathrm{O}_{5}<\mathrm{N}_{2} \mathrm{O}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}<\mathrm{NO}_{2}$
D. $\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: 2

- Watch Video Solution

4. Which of the following carbides gives propyne on hydrolysis?
A. CaC_{2}
B. $B e_{2} C$
C. $M g C_{2}$
D. $M g_{2} C_{3}$

Answer: 3
5. Consider the following sequence of reactions.

The product (B) is
A. (1)

B.

C.

(4)

Answer: 2
6. Which of the following compounds will not yield iodoform on heating with iodine and dilute NaOH ?
A.

C.
(3) $\mathrm{CH}_{3} \mathrm{C}-\mathrm{CHCH}_{3}$ CH_{3}
D.

Answer: 1

7. Identify the major product in the following reaction.

A.
${ }^{(1)} \mathrm{Me}-\mathrm{OH}$
(2)

C.
(3) $\mathrm{Ph} \simeq \mathrm{Me}^{\mathrm{OH}}$
D.
(4) Me
8. Cadmium amalgam is prepared by electrolysis of a solution of $C d C I_{2}$ using of 4 A be passed in order to perpare 10% by weight Cd in the $\mathrm{Cd}-\mathrm{Hg}$ amalgamon cathode of 4.5 g Hg ?
A. 400 sec
B. 215.40 sec
C. 861.6 sec
D. 430.8 sec

Answer: 2
9. 4 gm of sulphur dioxide gas diffuses from a container in 8 min . Mass of helium gas diffusing from the same container over the same time interval is :
A. 0.5 gm
B. 1 gm
C. 2 gm
D. None of these

Answer: 2
10. The oxidation number of nitrogen atoms in $\mathrm{NH}_{4} \mathrm{NO}_{3}$ are:
A. $+3,+3$
B. $+3,-3$,
C. $-3,+5$,
D. $-5,+3$

Answer: 3

- Watch Video Solution

11. Select incorrect statement :
A. Central metal in Vitamine B_{12} is Co^{+3}
B. The donor sites of $E D T A^{-4}$ are two N - atoms and four O - atoms
C. Hybrid state of Cu in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$ is $s p^{3}$
D. $\mathrm{CuSO} \mathrm{H}_{4(a q)}$ froms $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$ with excess

KCN

Answer: 3

- View Text Solution

12. Which of the following salt on heating with solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, orange red vapours are
evolved which turn NaOH solution yellow.
A. NaBr
B. NaCl
C. NaNO_{2}
D. NaI

Answer: 2

- Watch Video Solution

13. Which substance has the highest melting point?
A. NaCl
B. CO
C. SiO_{2}
D. $P_{4} O_{10}$

Answer: 3

D View Text Solution

14. which of the following oxides is amphoteric ?
A. $\mathrm{Na}_{2} \mathrm{O}$
B. Cao
C. ZnO
D. CO_{2}

Answer: 3

- View Text Solution

15. Ionisation
$H e^{+}$is $19.6 \times 10^{-18} \mathrm{Jatom}^{-1}$. The energy of the first stationary state $(n=1)$ of $L i^{2+}$ is
A. $4.41 \times 10^{-19} \mathrm{Jatom}^{-1}$
B. $-4.41 \times 10^{-17} \mathrm{Jatom}^{-1}$
C. -2.2×10^{-15} Jatom $^{-1}$
D. $8.82 \times 10^{\widehat{u} 17} \mathrm{Jatom}^{-1}$

(Watch Video Solution

16. The ionic radii of $R b^{+}$and I^{-}are 1.46 and $2.16 \AA \AA$.

The most probable type of structure exhibited by it is:
A. CsCl type
B. NaCl type
C. ZnS type
D. $C a F_{2}$ type

Answer: 2

- Watch Video Solution

17. The correct statement about the following disaccharide is :

A.

2
B.

2
c. 2
D.

Answer: 1

prepeared by :
A.
(1) $\square+\underset{\text { Anhytrous }}{\mathrm{AlCl}_{3}}$
B. (2) \bigcirc
C. \longrightarrow
D.

Answer: 4

- View Text Solution

19. In Reimer-Tiemann reaction molecular weight of
phenol increases by:
A. 28
B. 29
C. 30
D. 31

Answer: 1

- View Text Solution

20. Chloroform has $\Delta H_{\text {vaporization }}=29.2 k J / \mathrm{mol}$ and boils at $61.2^{\circ} \mathrm{C}$. What is the value of $\Delta H_{\text {vaporization }}=29.2 k J / \mathrm{mol}$ for chloroform?
A. $87.3 \mathrm{~J} / \mathrm{mol}-K$
B. $477.1 \mathrm{~J} / \mathrm{mol}-K$
C. $-87.3 \mathrm{~J} / \mathrm{mol}-K$
D. $-477.1 \mathrm{~J} / \mathrm{mol}-K$

- Watch Video Solution

21. For which of the following reaction is product formation favoured by law pressure and high temperature?

$$
\text { A. } \mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g), \Delta H^{\circ}=172.5 \mathrm{KJ}
$$

B.

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}, \Delta H^{\circ}=-21.7 \mathrm{KJ}
$$

C. $2 O_{3}(g) \Leftrightarrow 3 O_{2}(g), \Delta H^{\circ}=-285 k J$

$$
\text { D. } H_{2}(g)+F_{2}(g) \Leftrightarrow 2 H F(g), \Delta H^{\circ}=-541 k J
$$

Answer: 3
22. Which dilute solution have the higher vapours presure?
A. 0.002 M NaCl at $50^{\circ} \mathrm{C}$
B. 0.003 M sucrose at $15^{\circ} \mathrm{C}$
C. $0.005 \mathrm{M} \mathrm{CaCl}_{2} a t 50^{\circ} \mathrm{C}$
D. $0.005 \mathrm{M} \mathrm{CaCl} \mathrm{Cl}_{2} a t 25^{\circ} \mathrm{C}$

Answer: 3

- View Text Solution

23. The rate constant at $25^{\circ} \mathrm{C}$ for the reaction of
NH_{4}^{+}and OH^{-}to form $\mathrm{NH}_{4} \mathrm{OH}$ is
$4 \times 10^{10} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ and ionisation constant of aq.
$N H_{3}$ is 1.8×10^{-5}. The rate constant of proton transfer to NH_{3} is
A. 1.8×10^{-5}
B. $7.2 \times 10^{+5}$
C. 3.6×10^{5}
D. 4.2×10^{-5}

Answer: 2
24. Polyethylene can be produced from calcium carbide according to the following sequence of reactions
$C a C_{2}+H_{2}$ or $\operatorname{arrCaO}+H C \equiv C H$
$n \mathrm{HC} \equiv \mathrm{CH}+n \mathrm{H}_{2} \rightarrow\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}$
The mass of polyethylene which can be produced from 40.0 kg of CaC_{2} is
A. 6.75 kg
B. 7.75 kg
C. 8.75 kg
D. 9.75 kg

Answer: 3
25. Which of the following respresent the variation of conducatnes of solution if weak base $\mathrm{NH}_{4} \mathrm{OH}$ is titrated with dilute HCl ?
A.

26. The formation of cyanohydrin from ketone is an example of:
A. electrophilic addition
B. nucleophilic addition
C. nuclecophilic substituion
D. electrophilic substitrution

Answer: 2

- Watch Video Solution

27. Aniline on being heated with $C S_{2}$ in the presence of HgCl_{2} gives-
A. Phenyl thiocyanate
B. Phenyl cyanate
C. Phenyl isothiocyante
D. N-phenyldithicarbamic acid

Answer: 3

- View Text Solution

28. Which of the following compound has highest enol

 content?
C. ${ }^{(3)} \mathrm{Ph}^{\text {是 }}{ }^{\mathrm{O}}$

Answer: 3
29. Relation between gives pair is -

A. Enantiomer
B. Diastereomers
C. Identical
D. Structural isomer

Answer: 1

30. The stability order of following carbocation is
A. $i>i i>i i i$
B. $i i i>i i>i$
C. $i i i>i>i i$
D. $i>i i i>i i$

Answer: 1

- Watch Video Solution

