©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

MOCK TEST 9

Physics

1. The equation of a wave is given by $Y=5 \sin 10 \pi(t-0.01 x)$ along the x-axis. (All the quantities are expressed in SI units). The phase difference between the points separated by a distance of 10 m along x -axis is
A. $\frac{\pi}{2}$
B. π
C. 2π
D. $\frac{\pi}{4}$

D Watch Video Solution

2. Two tuning forks with natural frequencies of 340 Hz each move relative to a stationary observer. One fork moves away form the observer, while the other moves towards him at the same speed. The observer hears beats of frequency 3 Hz . Find the speed of the tuning fork.
A. $1 m / s$
B. $1.5 m / s$
C. $340 \mathrm{~m} / \mathrm{s}$
D. $2.5 \mathrm{~m} / \mathrm{s}$

Answer: 2

3. Main scale of a screw gauge is 3 mm and 42 division of circular scale of 100 divisions coincides with reference line then find the diameter of the cylinder
A. 1.42 cm
B. 2.42 cm
C. 1.21 m
D. 3.42 mm

Answer: 4

- Watch Video Solution

4. Two spheres of different materials one with double the radius and onefourth wall thickness of the other are filled with ice. If the time taken for complete melting of ice in the larger sphere is 25 minutes and for smaller one is 16 minutes, the ratio of thermal conductivities of the materials of larger sphere to that of smaller sphere is:
A. $4: 5$
B. 5: 4
C. $25: 8$
D. $8: 25$

Answer: 4

- Watch Video Solution

5. A car battery of emf 12 V and internal resistance 0.05ω receives a current of 60 A from an external source, then the terminal potential difference of the battery is
A. 32 V
B. 10 V
C. 15V
D. 9 V

- Watch Video Solution

6. The field normal to the plane of a wire of n turns and radis r which carriers i is measured on the axis of the coil at a small distance h from the centre of the coil. This is smaller than the field at the centre by the fraction.
A. $\frac{3}{2} \frac{h^{2}}{r^{2}}$
B. $\frac{2}{3} \frac{h^{2}}{r^{2}}$
C. $\frac{3}{2} \frac{r^{2}}{h^{2}}$
D. $\frac{2}{3} \frac{r^{2}}{h^{2}}$

Answer: 1

7. A short magnet produces a dfection of 30° when placed at certain distance in $\tan A$ position of magnetometer. If another short magnet of double the length and thrice the pole strength is placed at the same distance in tabB position of the magnetometer, the deflection produced will be
A. 60°
B. 30°
C. 45°
D. None of these

Answer: 1

- Watch Video Solution

8. A block of mass m compresses a spring iof stifffness k through a distacne $l / 2$ as shown in the figure .If the block is not fixed to the spring
the period of motion of the block is

A. $2 \pi \sqrt{\frac{m}{k}}$
B. $(\pi+4) \sqrt{\frac{m}{k}}$
C. $(1+\pi) \sqrt{\frac{m}{k}}$
D. None of these

Answer: 2

- Watch Video Solution

9. A highly rigid cubical block A of small mass M and side L is fixed rigidly on the other cubical block of same dimensions and of modulus of rigidity η such that the lower face of A completely covers the upper face
of B. The lower face of B is rigidly held on a horizontal surface. A small force F is applied perpendicular to one of the side faces of A. After the force is withdrawn, block A executes faces of A. After the force is withdrawn, block A exceutes small oscillations, the time period of which is given by
A. $2 \pi \sqrt{M \eta L}$
B. $2 \pi \frac{\sqrt{M \eta}}{L}$
C. $2 \pi \frac{\sqrt{M L}}{\eta}$
D. $2 \pi \frac{\sqrt{M}}{\eta L}$

Answer: 4

- Watch Video Solution

10. As shown in the figure a metal rod makes contact and complete the circuit. The circuite is perpendicular to the magnetic field with $B=0.15$ tesla. If the resistance is 3Ω force needed to move the rod as indicated
with a constant speed of $2 \mathrm{~m} / \mathrm{sec}$ is

A. $3.75 \times 10^{-3 N}$
B. $3.75 \times 10^{-2 N}$
C. $3.75 \times 10^{2 N}$
D. $3.75 \times 10^{-4 N}$

Answer: 1

- Watch Video Solution

11. For an electric dipole potential \& electric field
A. can have same magnitude for a point at a distance less than 2 meter
B. can have same magnitude fo a point at distacnes greater than 2 meter
C. can never be equal
D. can never be predicted

Answer: 2

- Watch Video Solution

12. A rope ladder of length L is attached to ballon of mass m. As the man of mass m clims the ladder in to the lballon basket the ballon comes donws by a vertical distance s. Then increase in potential energy of man
divided by increase inn potential energy of ballon is

A. $\frac{L-s}{s}$
B. $\frac{L}{s}$
C. $\frac{s}{L-s}$
D. $L-s$

Answer: 1

- View Text Solution

13. A scylindrical rod of mass M, length L \& radius R has cords wound around it, whose ends are attached to the ceioling .The rod is held borizontal and released .The liinear acceleration of the cylinder as it falls and tension in the cords is
A. $g, M g / 2$
B. $g / 3, M g / 3$
C. $2 g / 3, M g / 6$
D. $g / 2, M g / 12$

- Watch Video Solution

14. A disc of mass m and radius R moves in the $x-y$ plane as shown in

Fig. The angular momentum of the disc about the origin O at the instant shown is

A. $\frac{5}{2} m R^{2} \omega$
B. $\frac{7}{3} m R^{2} \omega$
C. $\frac{9}{2} m R^{2} \omega$
D. $\frac{3}{2} m R^{2} \omega$

Answer: 1

- Watch Video Solution

15. N molecules each of mass m of gas A and 2 N molecules each of mass 2 m of gas B are contained in the same vessel which is maintined at a temperature T. The mean square of the velocity of the molecules of B type is denoted by v^{2} and the mean square of the x -component of the velocity of a tye is denoted by ω^{2}. What is the ratio of $\omega^{2} / v^{2}=$?
A. 2
B. 1
C. $(1 / 3)$
D. $(2 / 3)$

Answer: 4

16. "Two metallic spheres"
$S_{1} \&$
S_{2} area made of same material /The mass of S_{1} Is thrice that of S_{2} Both of th
A. $\frac{1}{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{(3)^{1 / 3}}$
D. $\frac{1}{\sqrt{3}^{2 / 3}}$

Answer: 3

- Watch Video Solution

17. If the nucleus were the size of the basket ball, what would the diameter of the atom be?
(Given diameter of basket ball $=24 \mathrm{~cm}$)
A. 24 km
B. 12 km
C. 10 km
D. 15 km

Answer: 1

- Watch Video Solution

18. One gram of radium is reduced by 2 miligram in 5 yers by α-decay. Calculate the half-life of radium.
A. 1700 yr
B. 1000 yr
C. 1115 yr
D. 979 yr

Answer: 1

19. When photons of energy $h v$ fall on an aluminium plate (of work function E_{0}), photoelectrons of maximum kinetic energy K are ejected . If the frequency of the radiation is doubled, the maximum kinetic energy of the ejected photoelectrons will be
A. $K+h v$
B. $K+\varepsilon_{0}$
C. 2 K
D. K

Answer: 1

- Watch Video Solution

20. Relation between current in a conductor and time is shown in fig.

Write the expression of current in terms of time.
A. $i=\frac{i_{0} t}{t_{0}}$
B. $i=i_{0}\left(1+\frac{t}{t_{0}}\right)$
C. $i=i_{0}\left(\frac{t}{t_{0}}-1\right)$
D. $i=i_{0}\left(1-\frac{t}{t_{0}}\right)$

- Watch Video Solution

21. Two charges, each equal to $1 \mu C$, are placed at the vertices A and B of a triangle $A B C$. The produced of $A C$ and $B C$ is $30 \mathrm{~cm}^{2}$. The sum of the sides $A C$ and $B C$ is 10 cm . The potential at C is
A. $3 \times 10^{5} \mathrm{~V}$
B. $6 \times 10^{5} \mathrm{~V}$
C. $9 \times 10^{5} \mathrm{~V}$
D. $18 m V$

Answer: 1

22. Some light bulbs are connected in paralles to 120 V source as shown in the figure .Each bulb dissipates as power of 60 W . The circuit has a fuse F that burns out when the current in the cicuit exceeds 9 A . Determine the largest number of bulbs, which can be used in this circuit without burning out the fuse

A. 9
B. 18
C. 25
D. 34

Answer: 2

- Watch Video Solution

23. A balloon starts rising from the ground with an acceleration of $1.25 \mathrm{~ms}^{-2}$. After 8 seconds, a stone is released from the balloon. After releasing, the stone will:
A. cover a distance of 40 m
B. have a displacement of 50 m
C. reach the ground in 4s
D. begin to move down after

Answer: 3

- Watch Video Solution

24. "Mechanical force" $=\frac{a}{B^{3}+\text { volumetric density }}$
"Then a and b have dimensions"
A. $\left[M L T^{-2}\right],\left[M^{\frac{1}{2}} L^{-1}\right]$
B. $\left[M^{2} L^{-2} T^{-2}\right],\left[M^{\frac{1}{3}} L^{-1}\right]$
C. $\left[M L^{-2} T^{-2}\right],\left[M^{\frac{1}{3}} L^{\frac{1}{2}}\right]$
D. $\left[M^{2} L^{-2} T^{-2}\right],\left[M^{3} L^{-1}\right]$

Answer: 2

- Watch Video Solution

25. The orbital period of sa satellite near the surface of the planet of radius R is given by (ρ is the density of the planet):
A. $\frac{3 \pi}{(\rho G)^{1 / 2}}$
B. $\frac{4 \pi}{(3 \rho G)^{1 / 2}}$
C. $\frac{4 \pi}{(\rho G)^{1 / 2}}$
D. $\frac{3 \pi}{(4 \rho G)^{1 / 2}}$

Answer: 1

26. In the circuit shown in figure, the diode is ideal The potential difference between A and B is

A. $V / 4$
B. V
C. zero
D. $V / 2$

Answer: 1

27. A body o fmass 6 kg moves in a staight line according to the equation $\mathrm{x}=t^{3}-75 t$, where x denotes the distance in metre and t the time in second. The force on the body at $t=4 \mathrm{~s}$ is
A. 64 N
B. 72 N
C. 144 N
D. 36 N

Answer: 3

- Watch Video Solution

28. Shown in the figure is a prism of angle 30° and refractive index $\mu_{p}=\sqrt{3}$. Face AC of the prism is covered with a thin film of refractive index $\mu_{f}=2.2$ A monochromatic light of wavelength $\lambda=550 \mathrm{~nm}$ fall on
the face $A B$ at an angle of incidence of 60° Calculate angle of emergence

A. 0°
B. 30°
C. 45°
D. Not emerge

Answer: 1

29. The young's slit experiment is done in a medium of refractive index $4 / 3$.A light of 600 nm wavelength is falling on the slits having 0.45 mm separation. The lower slit S_{2} is covered by a thin galss sheet of thickness $10.4 \mu m$ and r3efractive index 1.5 .The interferecnce pattern is observed on a screen placed 1.5 m form the slits as shown in figure . Find the light intensity at point O relative to the maximum fringle intensity

$$
\text { (Given }: \cos 3.4=\sqrt{0.75}
$$

A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. 0

Answer: 3

- View Text Solution

30. A polariser is place in a pth of unpolarised light of intensity I_{0} An another polariser is placed in such a way that its axis makes an angle 30° with first. Opne The intensity of emergent light will be
A. 0
B. $\frac{I_{0}}{4}$
C. $\frac{3 I_{0}}{4}$
D. $\frac{3 I_{0}}{8}$

Answer: 4

Chemistry

1. If uncertainty in position and momentum are equal then uncertainty in velocity is.
A. $\sqrt{\frac{h}{\pi}}$
B. $\frac{h}{2 \pi}$
C. $\frac{1}{2 m} \sqrt{\frac{h}{\pi}}$
D. None of these

Answer: 3

- Watch Video Solution

2. Hydrolysis of one mole of peroxodisulphuric acid produces
A. two moles of sulphuric acid
B. two moles of peroxymonosuphuric acid
C. one mole of suphuric acid and one mole of peroxymonosulhuric acid
D. one mole of suphuric acid one mole of peroxymonosuphuric acid and one mole of hydrogen peroxide

Answer: 3

- Watch Video Solution

3. Which one of the following is an inner orbital complec as well as diamagnetic in behaviour?
A. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

D View Text Solution

4. In which of the following compound is hydroxylic proton the most acidic?
A.

${ }^{(2)} \mathrm{l} \mathrm{N}^{\mathrm{O}}$
B.
(3)

C.
(:)

D.

Answer: 4

View Text Solution

5. The correct name of the structure

A. (E),(E)-2,4-hexadicene
B. (Z),(Z)-2,4-hexadicene
C. (E),(Z)-3,5-hexadicene
D. (Z),(E)-2,4-hexadicene

Answer: 4

- View Text Solution

6. The gold numbers of protective colloids $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $0.04,0.004,10$ and 40 respectively. The protective powers of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are in the order:
A. $A>B>C>D$
B. $B>A>C>D$
C. $D>C>A>B$
D. $D>C>B>A$

Answer: 2

- View Text Solution

7. In a solid, oxide ions are arranged in ccp, cations 'A' occupy one sixth of tertrahedral voids and cations 'B' occupy one third of the octaherdral voids. Which of the following is the correct formula of the oxide?
A. ABO_{3}
B. $A_{2} \mathrm{BO}_{3}$
C. $A B_{2} O_{3}$
D. None

Answer: 1

D View Text Solution

8. $\Delta_{r} U^{\circ}$ of formation of $\mathrm{CH}_{4}(\mathrm{~g})$ at certain temperature is $-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$
.The value of $\Delta_{r} H^{\circ}$ is
A. zero
B. $<\Delta_{r} U^{\circ}$
C. $>\Delta_{r} U^{\circ}$
D. equal to $\Delta_{r} U^{\circ}$

Answer: 2

- View Text Solution

9. Which of the following statements is incorrect ? Standard Gibbs free energy change is always zero at equilibrium
A. Addtion of solid does not affect equlibrium
B. Addition of solid does not affect equlibrium
C. On addition of catalyst the value of equilibrium constants is not affected
D. Equilibrium constant for a reaction with negative ΔH value decreases as the temperature increases

Answer: 1

- View Text Solution

10. Calculate Osmotic Pressure of a solution obtained on mixing 100 mL of
3.4\%
$\left(w \frac{t}{v} o l\right)$ solution of area(Mol. wt60)and50mLof1.6 \% (wt/vol) solution of c
A. 9.704
B. 10
C. 12.74
D. 15

Answer: 1

- View Text Solution

11. Monomer related to Nylon 26 is
A. Alanine
B. Glycine
C. Adiple acid
D. Hexa methylene diamine

Answer: 2

12. Arrange in increasing order of solubility of AgBr in solutions given
(i) $0.1 \mathrm{M} \mathrm{NH} H_{3}$ (ii) $0.1 \mathrm{M} \mathrm{AgNo}_{3}$ (iii) 0.2 M NaBr (iv)pure water
A. $(i i i)<(i i)<(i v)<(i)$
B. $(i i i)<(i i)<(i)<(i v)$
C. $(i i i)<(i i)<(i)<(i v)$
D. $(i i)<(i i i)<(i v)<(i)$

Answer: 1

- View Text Solution

13. Green house gases are-
A. CFC, O_{3} and water vapours
B. Peroxy aeetyl niotrate, CFC and O_{3}
C. $\mathrm{NO}_{2} \mathrm{CH}_{4}$ and SO_{2}
D. peroxy acetyl nitrate, NO_{2} and SO_{2}

D View Text Solution

14. In which process maximum energy is released ?
A. $S_{g}^{-}+e^{-} \rightarrow S_{g}^{-2}$
B. $F_{g}^{-}+e^{-} \rightarrow F_{g}^{-}$
C. $N_{g}^{-}+e^{-} \rightarrow N_{g}^{-}$
D. $S_{g}^{-}+e^{-} \rightarrow S_{g}^{-}$

Answer: 2

- View Text Solution

15. $M(g) \rightarrow M_{g}^{+}+e^{-}, \Delta H 1=100 \mathrm{KJ} / \mathrm{mol}$
$M(g) \rightarrow M_{g}^{+2}+2 e^{-}, \Delta H 2=300 \mathrm{KJ} / \mathrm{mol}$
$M(g) \rightarrow M_{g}^{+3}+3 e^{-}, \Delta H 3=650 \mathrm{KJ} / \mathrm{mol}$
Select incorrect sattlement:
A. $I E_{3}$ of $\mathrm{Mis} 350 \mathrm{KJ} / \mathrm{mol}$
B. $I E_{2}$ of $\mathrm{Mis} 200 \mathrm{KJ} / \mathrm{mol}$
C. $I E_{2} o f M^{+} i s 300 K J / m o l$
D. $I E_{2}$ of $M^{+} i s 350 \mathrm{KJ} / \mathrm{mol}$

Answer: 3

- View Text Solution

16. Which of the following in non linear
A. I_{3}
B. XeF_{2}
C. I_{3}
D. CO_{2}

D View Text Solution

17. The quantity $\left[P \frac{V}{k} T\right]$ represent
A. mass of the gas
B. K.E of the gas
C. number of moles of the gas
D. number of molecules of the gas

Answer: 4

D View Text Solution

18. When the concentration of alkyl halide is triple and concentration of OH reduced to half, the rate of S_{n} rectio increased by :
A. 3 times
B. 1.5 times
C. 2 times
D. 6 times

Answer: 2

- View Text Solution

19.

Product:
A.

C.
(3)

(4)

D.

Answer: 2

- View Text Solution

20. Which of the following reaction is possible ?
A. $\mathrm{CH}_{3}-\mathrm{Br} \xrightarrow{\mathrm{OH}}$
B. $\mathrm{CH}_{3}-\mathrm{OHr} \xrightarrow{\mathrm{Br}}$
C.
(3) $\longrightarrow-\mathrm{Cl} \xrightarrow{\mathrm{NOOH}}$
D. $\mathrm{HC}=\mathrm{Ch} \xrightarrow{\mathrm{NaOH}}$

Answer: 1

21. In the unbalanced reaction,
$\mathrm{CrO}_{5}+\mathrm{SnCI}_{2} \rightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{SnCI}_{4}, \quad$ the element undergoiing oxidation and reduction respectively are:
A. $C r S n$
B. $S n, C r$
C. $S n, O$
D. $C I, C$

Answer: 3

- View Text Solution

22. If $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$ contain same number of ' P ' atom then the ratio of oxygen atoms in these compounds respectively is:
A. $8 / 3$
B. $2 / 3$
C. 3
D. $4 / 3$

Answer: 4

- View Text Solution

23. $\mathrm{FeCI}_{3}+$ "Pot . This o cyanate rarr product colour of above product is"
A. Red
B. Chocolate colour
C. Prussian blue
D. Colorless

Answer: 1

24. "Equivalent conducatance of 0.1 M HA (Weak acid) soution is 10 " Scm^{2} "equivalent (-1) Hence pH of HA solution is"
A. 1.3
B. 1.7
C. 2.3
D. 3.7

Answer: 3

- View Text Solution

25. Which of the following is known as Hinsberg reagent ?
A. $\mathrm{COOH}-\mathrm{COOH}$
B. $C O C I C O C I$
C. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{SO}_{2}-\mathrm{CI}$
D. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{CI}$

D View Text Solution

26. A salt is formed when a weak acid of dissociation constant 10^{-4} and weak base of dissociation constant 10^{-5} are mixed. The pH and degree of hydrolysis of salt solution are
A. 5,1\%
B. $7,12 \%$
C. $6.5,0.3 \%$
D. $0.3,6.5 \%$

Answer: 3

- Watch Video Solution

27. Aspirin is an acetylation product of
A. p-dihydroxy benzene
B. m-hydroxy benzene and salicylic acid both
C. o-di hydroxy benzene and salicylic acid both
D. o-hydroxy benzoic acid

Answer: 4

D Watch Video Solution

28. Phenol and benzoic acid is separated by:
A. NaHCO 3
B. NaOH
C. Na
D. NaNH_{2}

Answer: 1

29. Rank the following in the increasing oprder of rate of reaction with HBr
(P)

(Q)

(R)

A. $R>P>Q$
B. $R>Q>P$
C. $P>R>s$
D. $P>S>R$

Answer: 1

- View Text Solution

30.
(1)

A.

B.

C.

(4)

D.

Answer: 4
\square

