©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

REVISION TEST 1

Physics

1. If $\vec{P}+\vec{Q}=\vec{R}$ \& \vec{R} is perpendicular to \vec{P}.

$$
\vec{P} \quad \& \vec{Q} \text { if } \overrightarrow{|P|}=\overrightarrow{|R|}-
$$

A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{4}$
C. π
D. $\frac{\pi}{2}$

Answer:

2. The nth division of main scale coincides with
$(\mathrm{n}+1)$ th division of vernier scale. Given one main division is equal to 'a' units. Find the least count of the vernier.
A. $\frac{L}{(n-1)}$ unit
B. $(n-1)$ L unit
c. $\left(\frac{L}{n-1}\right)$ unit
D. $\left(\frac{n L}{n+1}\right)$ unit

Answer:

3. In the forumla $a=3 b c^{2}$ ' a ' and ' c ' have dimensions of electric capacitance and magnetic induction, respectively, what are dimensions of ' b ' in MKS system?

$$
\begin{aligned}
& \text { A. }\left[M^{-3} L^{-2} T^{4} Q^{4}\right] \\
& \text { B. }\left[M^{-3} T^{4} Q^{4}\right] \\
& \text { C. }\left[M^{-3} T^{3} Q\right] \\
& \text { D. }\left[M^{-3} L^{2} T^{4} Q^{-4}\right]
\end{aligned}
$$

Answer:

D Watch Video Solution

4. Four marbles are dropped from the top of a tower one after the other with an interval of one second. The first one reaches the ground after 4 seconds. When the first one reaches
the ground the distance between the first and second, the second and third and the third and forth will be respectively
A. 35,25 and $15 m$
B. 30,20 and 10 mS
C. 20, 10 and 5 m
D. 40,30 and 20 m

Answer:

D Watch Video Solution

5. A bullet travelling horizontally looses
$1 / 20^{\text {th }}$ of its velocity while piercing a wooden
plank. Then the number of such planks required to stop the bullet is
A. 6
B. 9
C. 11
D. 13

Answer:

D Watch Video Solution
6. In the time taken by the projectile to reach
from A to B is t. Then the distance $A B$ is
equal to.

A. $\frac{u t}{\sqrt{3}}$
B. $\frac{\sqrt{3} u t}{2}$
C. $(\sqrt{3} u t)$

D. $2 u t$

Answer:

D Watch Video Solution

7. A chain consisting of 5 links each of mass 0.1
kg is lifted vertically with a constant acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$ as shown in the figure. The force of interaction between the top link and the link immediately below it, will
be

A. 6.15 N
B. 4.92 N
C. 3.69 N
D. 2046 N

Answer:

D Watch Video Solution

8. Block A and C start from rest and move to
the right with acceleration $a_{A}=12 \mathrm{tm} / \mathrm{s}^{2}$ and $a_{C}=3 m / s^{2}$ Here t is in seconds. The
time when block B attain comes to rest is:

A. 2 s
B. 1s
C. $2 / / 2 \mathrm{~s}$
D. $1 / / 4 \mathrm{~s}$

Answer:
9. The two blocks, $m=10 \mathrm{~kg}$ and $\mathrm{M}=50 \mathrm{~kg}$ are free to move as shown. The coefficient of static friction between the blocks is 0.5 and there is no friction between M and the ground. A minimum horizontal force F is applied to hold m against M that is equal to -

A. 100 N
B. 50 N

C. 240 N

D. 180 N

Answer:

D Watch Video Solution

10. As per given figure to complete the circular
loop what should be the radius if initial height
is 5 m

A. 4 m
B. 3 m
C. 2.5 m
D. 2 m

Answer:

11. A car (treat it as particle) of mas ' m ' is accelerating on a level smooth roud under the action of single force F. The power dellvered to the car is constant and equal to P. If the velocity of the car at an instant is v, then after traveclling how much distance it becomes double?

A. $\frac{7 m v^{3}}{3 p}$
B. $\frac{4 m v^{3}}{3 p}$
C. $\frac{m v^{3}}{P}$
D. $\frac{18 m v^{3}}{7 P}$

Answer:
(D) Watch Video Solution
12.

A body of mass 2 kg slides down a curved track which is quadrant of a circle of radius 1 metre .

All the surfaces are frictionless. If the body
starts from rest, its speed at the bottom of the track is
A. $4.43 m s^{-1}$
B. $2 m s^{-1}$
C. $0.5 m s^{-1}$
D. $19.6 m s^{-1}$

Answer:

D Watch Video Solution

13. A uniform chain of length L and mass M overhangs a horizontal table with its two third part n the table. The friction coefficient between the table and the chain is μ. Find the
work done by the friction during the period the chain slips off the table.

$$
\begin{aligned}
& \text { A. }-\frac{1}{4} \mu M g L \\
& \text { B. }-\frac{2}{9} \mu M g L \\
& \text { C. }-\frac{4}{9} \mu M g L \\
& \text { D. }-\frac{6}{7} \mu M g L
\end{aligned}
$$

Answer:

D Watch Video Solution

14. A moving body with a mass m_{1} strikes a stationary body of mass m_{2}. The masses m_{1} and m_{2} should be in the ratio $\frac{m_{1}}{m_{2}}$ so as to decrease the velocity of the first body 1.5 times
assuming a perfectly clastic impact. Then the
ratio $\frac{m_{1}}{m_{2}}$ is
A. 5
B. $1 / / 5$
C. $1 / / 125$
D. 25

Answer:

D Watch Video Solution

15. Consider a sytem of two particles having masses m_{1} and m_{2}. If the particle of mass m_{1} is pushed towards the centre of mass of particles through a distance d, by what distance would the particle of mass m_{2} move
so as to keep the mass centre of particles at the original position?
A. $\frac{m_{1} d}{m_{2}}$
B. d
C. $\frac{m_{2} d}{m_{1}}$
D. $\frac{m_{1}}{m_{1}+m_{2}} d$

Answer:

D Watch Video Solution

16. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with centre at O as shown. The moment of inertia
of the loop about the axis $X X^{\prime}$ is :

B

A. $\frac{p L^{3}}{8 \pi^{2}}$
B. $\frac{p L^{3}}{16 \pi^{2}}$
C. $\frac{5 p L^{3}}{16 \pi^{2}}$
D. $\frac{3 p L^{3}}{8 \pi^{2}}$

- Watch Video Solution

17. In the arrangement shown in figure two equal masses (each m) hung light cords wrapped around a uniform solid cylinder of mass M and radius R. The cylinder is free to roate about a harizontal axis. If the system is released from rest then, the tension in each cord is-

> A. $\frac{M m g}{4 m+M}$
> B. $\frac{M m g}{m+M}$
> C. $\frac{M m g}{M+3 m}$
> D. $\frac{M m g}{2 m+M}$

Answer:

D Watch Video Solution

18. Two spheres each of mass M and radius
$R / 2$ are connected at their centres with a mass less rod of length $2 R$. What will be the
moment of inertia of the system about an axis passing through the centre of one of the sphere and perpendicular to the rod?

$$
\begin{aligned}
& \text { A. } \frac{21}{5} M R^{2} \\
& \text { B. } \frac{2}{5} M R^{2} \\
& \text { C. } \frac{5}{2} M R^{2} \\
& \text { D. } \frac{5}{21} M R^{2}
\end{aligned}
$$

Answer:

D Watch Video Solution
19. A tunnel is dug along a diameter of the planet. A particle is dropped into it at the surface. The particle reaches the centre of the planet with speed v. If v_{e} is the escape velocity from the surface fo the planet, then-
A. $\sqrt{2} v=v_{e}$
B. $v=v_{e}$
C. $v_{e}=\sqrt{3} v$
D. $v_{e}=\sqrt{5} v$

Answer:

20. A planet revolves in elliptical orbit around the sun. (see figure). The linear speed of the planet will be maximum at

A. A
B. B
C. C
D. D

Answer:

D Watch Video Solution

21. A particle at the end of a spring executes simple harmonic motion with a period t_{1} while
the corresponding period for another spring
is t_{2} if the oscillation with the two springs in series is T then
A. $T=t_{1}+t_{2}$
B. $T^{2}=t_{1}^{2}+t_{2}^{2}$
C. $T^{1}=t_{1}^{-1}+t_{2}^{-1}$
D. $T^{2}=t_{1}^{-2}+t_{2}^{-2}$

Answer:

D Watch Video Solution
22. The matallic bob of a simple pendulum has
the relative density ρ. The time period of this
pendulum is T it the metallic bob is immersed in water the new time period is given by

$$
\begin{aligned}
& \text { A. } T \frac{p-1}{p} \\
& \text { В. } T \frac{p}{p-1} \\
& \text { C. } T \sqrt{\frac{p-1}{p}} \\
& \text { D. } T \sqrt{\frac{p}{p-1}}
\end{aligned}
$$

Answer:

23. A block of mass M is suspended from a wire of length L, area of cross-section A and Young's modulus Y . The elastic potential energy stored in the wire is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \frac{M^{2} g^{2} L}{A Y} \\
& \text { B. } \frac{1}{2} \frac{M g}{A L Y} \\
& \text { C. } \frac{1}{2} \frac{M^{2} g^{2} A}{Y L} \\
& \text { D. } \frac{1}{2} \frac{M g Y}{A L}
\end{aligned}
$$

Answer:

24.

The diagram (figure) shows a venturimeter,
through which water is flowing the speed of water at X is $2 \mathrm{~cm} / \mathrm{s}$. the speed of water at Y (taking $g=1000 \mathrm{~cm} / \mathrm{s}^{2}$) is
A. $23 \mathrm{cms}^{-1}$
B. $23 \mathrm{cms}^{-1}$
C. $101 \mathrm{cms}^{-1}$

D. $1024 \mathrm{cms}^{-1}$

Answer:

D Watch Video Solution

25. Equal masses of three liquids A, B and C
have temperature $10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{c}$ respectively. If A and B are mixed, the mixture has a temperature of $15^{\circ} \mathrm{C}$. If B and C are mixed, the mixture has a temperature of $30^{\circ} \mathrm{C}$
, if A and C are mixed will have a temperature of
A. $16^{\circ} C$
B. $20^{\circ} \mathrm{C}$
C. $25^{\circ} C$
D. 29°

Answer:
(Watch Video Solution
26. The density of carbon dioxide gas at $0^{\circ} C$ and at pressure $1.0 \times 10^{5} \mathrm{Nm}^{-2}$ is $1.98 \mathrm{kgm}^{-3}$. Find the rms velocity of its molecules at $0^{\circ} \mathrm{C}$ and also at $30^{\circ} \mathrm{C}$, assuming pressure to be constant.
A. $423 m / s$
B. $300 \mathrm{~m} / \mathrm{s}$
C. $100 \mathrm{~m} / \mathrm{s}$
D. $500 \mathrm{~m} / \mathrm{s}$
27. Find the amount of work done to increase
the temperature of one mole of ideal gas by $30^{\circ} C$ if its is expanding under the condition $V \propto R^{2 / 3}(R=8.31 \mathrm{~J} / \mathrm{mol}-K):$
A. 16.62 J
B. 166.2 J
C. $1662 J$
D. 1.662J

Answer:

D Watch Video Solution

28. One end of a copper rod of length 1.0 m and area of cross-section 10^{-3} is immersed in boiling water and the other end in ice. If the coefficient of thermal conductivity of copper is
$92 \mathrm{cal} / \mathrm{m}-s-.{ }^{\circ} C$ and the latent heat of ice is $8 \times 10^{4} \mathrm{cal} / \mathrm{kg}$, then the amount of ice which will melt in one minute is
A. $9.2 \times 10^{-3} \mathrm{~kg}$
B. $8 \times 10^{-3} \mathrm{~kg}$
C. $6.9 \times 10^{-3} \mathrm{~kg}$
D. $5.4 \times 10^{-3} \mathrm{~kg}$

Answer:

D Watch Video Solution
29. The correct graph between the frequecny n and square root of density (p) of a wire,
keeping its length, radius and tension

constant, is

A.
B.
(2)

(3)

(4)

Answer:
30. A siren placed at a railway platform is emitting sound of frequency $5 k \mathrm{~Hz}$. A passenger sitting in a moving train A records a frequency of 5.5 kHz while the train approaches the siren. During his return journey in a different train B he records a frequency of 6.0 kHz while approaching the same siren. the ratio the velocity of $\operatorname{train} B$ to that of train A is
A. $242 / 252$
B. 2
C. 3
D. $11 / 6$

Answer:

- Watch Video Solution

