©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

REVISION TEST 2

Physics

1. A, B, C, D, P, and Q are points in a uniform
electric field. The potentials at these points
$V(A)=2 V . V(P)=V(B)=V(D)=5 V$, and $V(C)=8 V$. Find the electric field at P .

A. $10 \vee m^{-1}$ along $P Q$
B. $5 \vee m^{-1}$ along PC
C. $15 \sqrt{2} \mathrm{~V} m^{-1}$ along PA
D. $5 \mathrm{~V} m^{-1}$ along PA

Answer: C

- Watch Video Solution

2. Two charges Q_{1} and Q_{2} coulombs are shown in figure. A third charge Q_{3} coulombs is moved from points R to S along a circular path. Change in potential energy of the charge
is -

A. $k Q_{1} Q_{2} Q_{3}$
B. $4 k Q_{1} Q_{2}$
C. $4 k Q_{2} Q_{3}$
D. $\frac{2}{3} k Q_{2} Q_{3}$

Answer: C

D Watch Video Solution

3. A drop of water of mass m falls away from
the bottom of charged conducting sphere of
radius R , carrying with it a charge q_{1} and leaving the sphere a uniformly distributed charge q_{2}. The kinetic energy of the drop after it has fallen height h is -

$$
\text { A. } \frac{1}{4 \pi \xi_{0}} q_{1} q_{2}\left(\frac{h}{R(R+h)}\right)
$$

B. mgh

$$
\begin{aligned}
& \text { C. } \frac{1}{4 \pi \xi_{0}} q_{1} q_{2}\left(\frac{h}{R(R+h)}\right)+m g h \\
& \text { D. } \frac{1}{4 \pi \xi_{0}} \frac{q_{1} q_{2}}{h}+m g h
\end{aligned}
$$

Answer: C

D Watch Video Solution

4. A solid conducting sphere of radius a has a net positive charge $2 Q$. A conducting spherical shell of inner radius b and outer radius c is concentric with the solid sphere and has a net
charge $-Q$. The surface charge density on the inner and outer surfaces of the spherical shell will be

A. $-\frac{2 Q}{4 \pi b^{2}}, \frac{Q}{4 \pi c^{2}}$
B. $-\frac{Q}{4 \pi b^{2}}, \frac{Q}{4 \pi c^{2}}$
c. $0, \frac{Q}{4 \pi c^{2}}$
D. None of these

Answer: A

- Watch Video Solution

5. Due to a charge inside the cube, the electric
field is: $E_{x}=600 x, E_{y}=0, E_{z}=0$. The charge
inside the cube is nearly -

A. $600 \mu \mathrm{C}$
B. $60 \mu \mathrm{C}$
C. $53 \mu \mathrm{C}$
D. $6 \mu \mathrm{C}$

Answer: C
6. Four charges equal to $-Q$ are placed at the four corners of a square and a charge q is at its centre. If the system is in equilibrium the value of q is

$$
\begin{aligned}
& \text { A. }-\frac{Q}{2}(1+2 \sqrt{2}) \\
& \text { B. } \frac{Q}{4}(1+2 \sqrt{2}) \\
& \text { C. }-\frac{Q}{4}(1+2 \sqrt{2}) \\
& \text { D. } \frac{Q}{2}(1+2 \sqrt{2})
\end{aligned}
$$

Answer: B

- Watch Video Solution

7. Potential difference between the points B

and E of the circuit is -

> A. $\frac{\left(C_{2}-C_{1}\right)}{V}$
> B. $\frac{\left(C_{4}-C_{3}\right)}{V}$
> C. $\left\{\frac{C_{2} C_{3}-C_{1} C_{4}}{C_{1}+C_{2}+C_{3}+C_{4}}\right\}$
> D. $\left\{\frac{C_{1} C_{4}-C_{2} C_{3}}{\left(C_{1}+C_{2}\right)\left(C_{3}+C_{4}\right)}\right\}$

Answer: D

- Watch Video Solution

8. The expression for the equivalent capacitance of the system shown in Fig. is (A is
the corss-sectional area of one of the planes) :

A. $\varepsilon_{0} A / 3 d$
B. $\frac{3 \varepsilon_{0} A}{d}$
C. $\varepsilon_{0} A / 6 d$
D. none of the above

Answer: D

- Watch Video Solution

9. In steady state, find energy stored in the capacitor -

A. $\frac{1}{2} C\left[\frac{E R_{1}}{r+R_{1}+R_{2}}\right]^{2}$

$$
\begin{aligned}
& \text { B. } \frac{1}{2} C\left[E_{0}+\left(\frac{E R_{1}}{r+R_{1}+R_{2}}\right) \cdot R_{1}\right]^{2} \\
& \text { C. } \frac{1}{2} C E_{0}^{2} \\
& \text { D. none of the above }
\end{aligned}
$$

Answer: B

D Watch Video Solution

10. A, B and C are voltmeters of resistances
$R, 1.5 R$ and $3 R$ respectively. When some potential difference is applied between x and y the voltmeter readings are $V_{A}, V_{-} \mathrm{B}$ and

V_C, then

A. $V_{A}=V_{B}=V_{C}$
B. $V_{A} \neq V_{B}=V_{C}$
C. $V_{A}=V_{B} \neq V_{C}$
D. $V_{A}+V_{B}=V_{C}$

Answer: A
(Watch Video Solution
11. The potential difference between the points
V and B in the following circuit will be -

A. zero
B. 2 V
C. 3.5 V
D. 4.5 V
12. The resistance P, Q and R in the circuit have equal resistance.

The battery of negligible resistance, supplies a total power of 12 W . What is the power dissipated by heating in resistor R-
A. 2 W
B. 4 W
C. 3 W
D. 6 W

Answer: A

D Watch Video Solution

13. A particle of charge per unit mass α is released from origin with a velocity $\vec{v}=v_{0} \hat{i}$ uniform magnetic field $\vec{B}=-B_{0} \hat{k}$. If the
particle passes through $(0, y, 0)$, then y is equal to

$$
\begin{aligned}
& \text { A. }-\frac{2 v_{0}}{B_{0} \alpha} \\
& \text { B. } \frac{v_{0}}{B_{0} \alpha} \\
& \text { C. } \frac{2 v_{0}}{B_{0} \alpha} \\
& \text { D. }-\frac{v_{0}}{B_{0} \alpha}
\end{aligned}
$$

Answer: C

D Watch Video Solution

14. Equal currents $i=1$ A are flowing through
the wires parallel to y-axis located at
$x=+1 m, x=+2 m, x=+4 m$ and so
on...., etc. but in opposite directions as shown
in Fig The magnetic field (in tesla) at origin
would be

A. $-1.33 \times 10^{-7} \hat{k}$
B. $1.33 \times 10^{-7} \hat{k}$
C. $2.67 \times 10^{-7} \hat{k}$
D. $-2.67 \times 10^{-7} \hat{k}$

Answer: B

D Watch Video Solution

15. A dip circle is so set that the dip needle moves freely in the magnetic meridian. In this position the angle of dip is 39°. Now, the dip
circle is rotated so that the plane in which the needle moves makes an angle of 30° with the magnetic meridian. In this position, the needle will dip by an angle -
A. exactly 39°
B. 30°
C. more than 39°
D. less than 39°

Answer: C

16. A coil having an inductance of $1 / \pi$ henry is connected in series with a resistance of 300Ω.

If 20 volt from a 200 cycle source are impressed across the combination, the value of the phase angle between the voltage and the current is :
A. $\tan ^{-1}\left(\frac{5}{4}\right)$
B. $\tan ^{-1}\left(\frac{4}{5}\right)$
C. $\tan ^{-1}\left(\frac{3}{4}\right)$
D. $\tan ^{-1}\left(\frac{4}{3}\right)$

Answer: D

D Watch Video Solution

17. A transformer with efficiency 80% works at
$4 k W$ and 100 V . If the secondary voltage is
200 V , then the primary and secondary
currents are respectively
A. $40 \mathrm{~A}, 16 \mathrm{~A}$
B. $16 \mathrm{~A}, 40 \mathrm{~A}$
C. $20 \mathrm{~A}, 40 \mathrm{~A}$

D. $40 \mathrm{~A}, 20 \mathrm{~A}$

Answer: A

D Watch Video Solution

18. In the circuit shown in fig., the cell is ideal.

The coil has an inductance of $4 H$ and zero resistance. F is a fuse of zero resistance and
will blow when the current through it reaches
$5 A$. The switch is closed at $t=0$. The fuse will
blow

A. after 1s
B. after 2 s
C. after 5 s
D. after 10 s

Answer: D
19. A square wire of side 3.0 cm is placed 25 cm away from a concave mirror of focal length

10 cm . What is the area enclosed by the image of the wire ? The centre of the wire is on the axis of the mirror, with its two sides normal to the axis.
A. $2 \mathrm{~cm}^{2}$
B. $4 \mathrm{~cm}^{2}$
C. $8 \mathrm{~cm}^{2}$

D. $16 \mathrm{~cm}^{2}$

Answer: B

D Watch Video Solution

20. A point object is placed at distance of 20
cm from a thin plane - convex lens of focal
length 15 cm . The plane surface of the lens is now silvered. The image created by the
system is :-

A. 60 cm to the right of the lens

B. 30 cm to the left of the lens

C. 24 cm to the right of the lens

D. 12 cm to the left of the lens

- Watch Video Solution

21. A ray of light is incident at an angle of 60° on one face of a 30° prism. The emergent ray
from the prism makes an angle of 30° with the incident ray. The angle of emergence and refractive index of the material of the prism are-
A. $90^{\circ}, \sqrt{3}$
B. $0^{\circ}, \sqrt{3}$
C. $0^{\circ}, \sqrt{2}$
D. $90^{\circ}, \sqrt{2}$

Answer: B

D Watch Video Solution

22. To make the central fringe at the center O,
mica sheet of refractive index 1.5 is introduced

Choose the corect statement.

A. The thickness of sheet is $2(\sqrt{2}-1) d$ in
front of S_{1}
B. The thickness of sheet is $(\sqrt{2}+1) d$ in
front of S_{2}
C. The thickness of sheet is $(2 \sqrt{2} d-1)$ in
front of S_{2}
D. The thickness of sheet is $(2 \sqrt{2}-1) d$ in
front of S_{1}

Answer: A

D Watch Video Solution
23. Green light of wavelength $5100 \AA$ from a narrow slit is incident on a double slit. If the
overall separation of 10 fringes on a screen 200 cm away is 2 cm , find slit separation.

A. $5 \times 10^{-4} \mathrm{~m}$
B. $2.5 \times 10^{-2} \mathrm{~m}$
C. $2.5 \times 10^{-4} \mathrm{~m}$
D. $5 \times 10^{-2} \mathrm{~m}$

Answer: A

- Watch Video Solution

24. A person is not able to see objects farther
than 80 cm clearly, while another person is not able to see objects beyond 120 cm , clearly. The powers of the lenses used by them for correct vision are in the ratio -
A. $2: 3$
B. 3:2
C. 1:2
D. 2:1

- Watch Video Solution

25. Radiation coming from transition
$n=2 \rightarrow n=1$ of hydrogen atoms falls on
helium in $n=1$ and $n=2$ state. What are
the possible transition of helium ions as they absorb energy from the radiation?
A. $\mathrm{n}=1$ to $\mathrm{n}=2$ and $\mathrm{n}=2$ to $\mathrm{n}=3$
B. $\mathrm{n}=1$ to $\mathrm{n}=3$ and $\mathrm{n}=2$ to $\mathrm{n}=4$
C. $\mathrm{n}=2$ to $\mathrm{n}=3$ and $\mathrm{n}=2$ to $\mathrm{n}=4$

$$
\text { D. } n=1 \text { to } n=2 \text { and } n=2 \text { to } n=4
$$

Answer: C

- Watch Video Solution

26. An electron with speed v and a photon with speed c have the same de-Broglic wavelength. If the kinetic energy and momentum of electron is E_{e} and P_{e} and that of photon is $E_{p h}$ and $P_{p h}$ respectively, then correct statement is -
A. $\frac{E_{e}}{E_{p h}}=\frac{2 c}{v}$
B. $\frac{E_{e}}{E_{p h}}=\frac{v}{2 c}$
C. $\frac{P_{e}}{P_{p h}}=\frac{2 c}{v}$
D. $\frac{P_{e}}{P_{p h}}=\frac{v}{2 c}$

Answer: B

D Watch Video Solution

27. A radioactive element X converts into another stable elemnet Y. Half-life of X is $2 h$. Initally, only X is present. After time t, the
ratio of atoms of X and Y is found to be $1: 4$

Then t in hours is .
A. 2
B. 4
C. between 4 and 6
D. 6

Answer: C
(Watch Video Solution
28. If mass of $U^{235}=235.12142 a$. m. u., mass
of $U^{236}=236.1205 a \mu$, and mass of neutron
$=1.008665 \mathrm{amu}$, then the energy required to
remove one neutron from the nucleus of U^{236}
is nearly about.
A. zero
B. 6.5 MeV
C. 75 MeV
D. 1 cV
29. The expression of Y in following circuit is

A. ABCD
B. $A+B C D$
C. $A+B+C+D$
D. $A B+C D$

Answer: C

- Watch Video Solution

30. The current flowing through the zener diode in figure is -

A. 2 mA
B. 7 mA

C. 9 mA

D. 5 mA

Answer: C
(D) Watch Video Solution

