©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

UNIT TEST 10

Physics

1. If the wavelength of photon emitted due to
transition of electron from third orbit to first
orbit in a hydrogen atom is λ then the
wavelength of photon emitted due to transition of electron from fourth orbit to second orbit will be

$$
\begin{aligned}
& \text { A. } \frac{128}{27} \lambda \\
& \text { B. } \frac{25}{9} \lambda \\
& \text { C. } \frac{36}{7} \lambda \\
& \text { D. } \frac{125}{11} \lambda
\end{aligned}
$$

Answer: A

D Watch Video Solution
2. Energy levels A, B, C of a certain atom corresponding to increasing values of energy
i.e., $E_{A}<E_{B}<E_{C}$. If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the wavelengths of radiations correspnding to the transitions C to B, B to A and C to A respectively, which o fthe following statements is correct?

$$
\text { A. } \lambda_{3}=\lambda_{1}+\lambda_{2}
$$

$$
\begin{aligned}
& \text { B. } \lambda_{3}=\frac{\lambda_{2} \lambda_{1}}{\lambda_{1}+\lambda_{2}} \\
& \text { C. } \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
& \text { D. } \lambda_{3}^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

3. If, in a hydrogen atom, radius of nth Bohr orbit is r_{n} frequency of revolution of electron in nth orbit is f_{n} and area enclosed by the nth
orbit is A_{n}, then which of the pollowing graphs are correct?
A. a,b
B. a, b, c
C. a,b,c,d
D. None of these

Answer: B
(Watch Video Solution
4. A particle of mass m moves along a circular orbit in centrosymmetrical potential field $U(r)=k r^{2} / 2$. Using the Bohr quantization condition, find the permissible orbital radii and energy levels to that particle.
A. $\frac{n h}{2 \pi} \sqrt{\frac{K}{m}}$
B. $\frac{2 n h}{\pi} \sqrt{\frac{K}{m}}$
C. $\frac{n h}{2} \sqrt{\frac{K}{m}}$
D. None of these

- Watch Video Solution

5. In rutherford's experiment, the mumber of alpha-particles scattered through an angle of 90° is 28 per minute. Then,the number of particles scattered through an angle of 60° per minute by the same nucleus is
A. 28 per minute
B. 112 per minute
C. 12.5 per minute

D. 7 per minute

Answer: B

- Watch Video Solution

6. A Hydrogen atom and Li^{++}ion are both in
the second excited state. If L_{H} and $L_{L i}$ are their respective angular momenta, and E_{H} and $E_{L i}$ their respective energies, then:

$$
\text { A. } l_{H}>l_{L i} \text { and } E_{H}\left|>\left|E_{L i}\right|\right.
$$

B. $l_{H}=l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$
C. $l_{H}=l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
D. $l_{H}<l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$

Answer: B

D Watch Video Solution

7. An e-m wave of wavelength λ is incident on
a photo sensitive surface of negligible work
function. If the photoelectrons emitted from
this surface have the de-Broglie wavelength λ_{1}
. Find relation between ' λ ' and ' λ_{1} '-

$$
\begin{aligned}
& \text { A. } \lambda=\left(\frac{2 m c}{h}\right) \lambda_{1}^{2} \\
& \text { B. } \lambda=\left(\frac{m c}{2 h}\right) \lambda_{1}^{2} \\
& \text { C. } \lambda_{1}=\left(\frac{2 m c}{h}\right) \lambda^{2}
\end{aligned}
$$

D. None of these

Answer: A

D Watch Video Solution

8. A 100 W light bulb is placed at the centre of
a spherical chamber of radius 20 cm . Assume that 60% of the energy supplied to the bulb is converted into light and that the surface of the chamber is perfectly absorbing. Find the pressure exerted by the light on the surface of the chamber.

$$
\text { A. } 4.0 \times 10^{-6} \mathrm{~Pa}
$$

B. $4.0 \times 10^{-7} \mathrm{~Pa}$
C. $2.0 \times 10^{+7} \mathrm{~Pa}$
D. $4.0 \times 10^{+7} \mathrm{~Pa}$

Answer: B

D Watch Video Solution

9. In Davisson-Germer experiment, the correct
relation between angle of diffraction ϕ and glancing angle θ is-

$$
\begin{aligned}
& \text { A. } \theta=90^{\circ}-\frac{\phi}{2} \\
& \text { B. } \theta=90^{\circ}+\frac{\phi}{2}
\end{aligned}
$$

C. $\theta=\frac{\phi}{2}$
D. $\theta=\phi$

Answer: A

D Watch Video Solution

10. The longest wavelength that can be
analysed by a sodium chloride crystal of
spacing $d=2.82 \AA$ in the second order is -
A. $2.82 \AA$
B. $5.64 \AA$
C. $8.46 \AA$
D. $11.28 \AA$

Answer: A

- Watch Video Solution

11. Identify the graph which correctly represent
the Moseley's law-
A.
(1)
$0_{0}^{\mathrm{f}} \frac{\mathrm{Z}}{\mathrm{Z}}$
B.
(2)

(3)

C.
(4)

D.

Answer: B

D Watch Video Solution

12. In X-ray tube, when the accelerating voltage V is halved, the difference between the wavelength of K_{α} line and minimum wavelength of continuous X-ray spectrum
A. remain constant
B. increases
C. becomes half
D. decreases

Answer: B

D Watch Video Solution
13. Light of wavelength λ strikes a photoelectric surface and electrons are ejected with kinetic energy K. If K is to be increased to exactly twice its original value, the wavelength must be changed to λ^{\prime} such that
A. $\lambda^{\prime}<\lambda / 2$
B. $\lambda>\lambda / 2$
C. $\lambda>\lambda^{\prime}>\lambda / 2$
D. $\lambda^{\prime}=\lambda / 2$

Answer: C

- Watch Video Solution

14. Photoelectric emission is observed from a metallic surface for frequencies v_{1} and v_{2} of the incident light rays $\left(v_{1}>v_{2}\right)$. If the maximum values of kinetic energy of the photoelectrons emitted in the two cases are in
the ratio of $1: k$, then the threshold frequency of the metallic surface is
A. $\frac{v_{1}-v_{2}}{n-1}$
B. $\frac{n v_{1}-v_{2}}{n-1}$
C. $\frac{n v_{2}-v_{1}}{n-1}$
D. $\frac{v_{1}-v_{2}}{n}$

Answer: B

D Watch Video Solution

15. If K_{1} and K_{2} are maximum kinetic energies of photoelectrons emitted when light of wavelength λ_{1} and λ_{2} respectively are
incident on a metallic surface. If $\lambda_{1}=3 \lambda_{2}$
then

$$
\begin{aligned}
& \text { A. } K_{1}>\frac{K_{2}}{3} \\
& \text { B. } K_{1}<\frac{K_{2}}{3} \\
& \text { C. } K_{1}=3 K_{2} \\
& \text { D. } K_{2}=3 K_{1}
\end{aligned}
$$

Answer: B
(Watch Video Solution
16. Given that a photon of light of wavelength

10,000 angstrom has an energy equal to
1.23 eV . When light of wavelengths 5000 angstrom and intensity I_{0} falls on a photoelectric cell, the saturation current is 0.40×10^{-6} ampere and the stopping potential is 1.36 volt, then the work function is-
A. 0.43 eV
B. 1.10 eV
C. 1.36 eV

D. 2.47 eV

Answer: B

D Watch Video Solution

17. In an α-decay, the kinetic energy of α particles is $48 M e V$ and Q value of the reaction is 50 MeV . The mass number of the mother nucleus is (assume that daughter nucleus is in ground state)
A. 96

B. 100

C. 104

D. none of these

Answer: B

D Watch Video Solution

18. Carbon -14 decays with half-life of about

5,800 years. In a sample of bone, the ratio of carbon -14 to carbon -12 is found to be $\frac{1}{4}$ of what it is in free air. This bone may belong
to a period about x centuries ago. Where x nearest to
A. 2×58
B. 58
C. $58 / 2$
D. 3×58

Answer: A
(Watch Video Solution
19. A radioactive element decays by
β-emission. A detector records n beta particles in $2 s$ and in next $2 s$ it records $0.75 n$ beta particles. Find mean life correct to nearest whole number. Given $\ln |2|=0.6931$,
$\ln |3|=1.0986$.
A. $17 s$
B. $7 s$
C. $5 s$
D. 15 s

Answer: B

- Watch Video Solution

20. Find the Q value of the reaction
$P+.{ }^{7} \mathrm{Li} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \quad$ Determine whether the reaction is exothermic or endothermic. The atomic masses of $.{ }^{1} \mathrm{H}, .{ }^{4} \mathrm{He} \quad$ and $\quad .{ }^{7} \mathrm{Li} \quad$ are
$1.007825 u, 4.002603 u$,
and
$7.016004 u$, respectively.
A. 17 eV
B. 17 keV
C. 17 MeV
D. 170 MeV

Answer: C

D Watch Video Solution

21. A nuclear fission is represented by the following reaction: $U^{236}=X^{111}+Y^{122}+3 n$

If the binding energies per nucleon of
X^{111}, Y^{122} and U^{236} are $8.6 M e V, 8.5 M e V$
and 7.6 MeV respectively, then the energy released in the reaction will be-
A. 200 MeV
B. 202 MeV
C. 195 MeV
D. 198 MeV

Answer: D

D Watch Video Solution
22. The alongside is a plot of binding energy per nucleon E_{b},against the nuclear mass M,A,B,C,D,E,F correspond to different nuclei.

Consider four reactions.
(i) $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\varepsilon$ (ii) $\mathrm{C} \rightarrow \mathrm{A}+\mathrm{B}+\varepsilon$
(iii) $\mathrm{D}+\mathrm{E} \rightarrow \mathrm{F}+\varepsilon$ (iv) $\mathrm{F} \rightarrow \mathrm{D}+\mathrm{E}+\varepsilon$ where ε is the energy released. In which reactions, is ε positive?
A. i and iv

B. i and iii

C. ii and iv

D. ii and iii

Answer: A

D Watch Video Solution

23. In the circuit shown in figure I_{1}, I_{2} and $I_{D_{2}}$ are respectively-

A. $0.212 M A, 3.32 m A, 3.108 m A$
B. $2.12 m A, 3.32 m A, 3.108 m A$
C. $0.212 m A, 0.332 m A, 3.108 m A$
D. None of these

Answer: A
24. In a common emitter amplifier, using output resistance of 5000 ohm and input resistance of 2000 ohm, if the input signal voltage is 10 mV and $\beta=50$, calculate output volatge \& power gain
A. $1.25 V, 6250$
B. $3 V, 6250$
C. $1.5 \mathrm{~V}, 3050$
D. None of these

- Watch Video Solution

25. In semiconductor the concentrations of electron and holes are $8 \times 10^{18} / \mathrm{m}^{3}$ and $5 \times 10^{18} / m$ respectively. If the mobilities of electrons and hole are $2.3 \mathrm{~m}^{2} /$ volt-sec and $0.01 \mathrm{~m}^{2} /$ volt-sec respectively, then semicondutor is
A. n-type and its resistivity is $0.34 \Omega-m$
B. p-type and its resistivity is $0.034 \Omega-m$
C. n-type and its resistivity is $0.034 \Omega-m$

D. p-type and its resistivity is $3.4 \Omega-m$

Answer: A

D Watch Video Solution

26. If $\alpha=0.98$ and current through emitter $i_{e}=20 m A$, the value of β is
A. 4.9
B. 49
C. 96
D. 9.6

Answer: B

D Watch Video Solution

27. The real time variation of input signals A \&

B are as shown below. If the inputs are into
NAND gate, then select the output signals
from the following-

A.

(2)

C.

Answer: B

D Watch Video Solution

28. Which of the following is forward biased?
A. ${ }^{(1)} \xrightarrow{-5 V}$ SV
B. ${ }^{(2)} \xrightarrow{0 \mathrm{~V}} \xrightarrow{2 \mathrm{~V}}$
C. ${ }^{(3)} \xrightarrow{-1 \mathrm{~V}}+-1.5 \mathrm{~V}$
D. None of these

Answer: C
29. If α and β are the current gain in the CB
and CE configuration respectively of the transistor circuit, then $(\beta-\alpha) / \alpha \beta=\ldots . .$.
A. ∞
B. 1
C. 2
D. 0.5
30. A screw gauge has a least count of 0.005
mm and its head scale is divided into 200 equal division. The distance between consecutive threads on the screw is:
A. 0.25 mm
B. 0.5 mm
C. 1.00 mm
D. 2.00 mm

Answer: C
(D) Watch Video Solution

