©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

UNIT TEST 2

Physics

1. Figure shows a uniform rod of mass 3 kg and of length 30 cm . The strings shown in figure are pulled by constant forces of 20 N and 32 N
.The acceleration of the rod is-
A. $2 m / s^{2}$
B. $3 m / s^{2}$
C. $4 m / s^{2}$
D. $6 m / s^{2}$

Answer:

- Watch Video Solution

2. A pulley is attached to one arm of a balance and a string passed around it carries two masses m_{1} and m_{2}. The pulley is provided with a clamp due to which m_{1} and m_{2} do not move. On removing the clamp, m_{1} and m_{2} start moving. How much change in counter mass has to be made to restore balance ?

A. $\frac{g\left(m_{1}-m_{2}\right)^{2}}{\left(m_{1}+m_{2}\right)}$ to be reduced
B. $\frac{g\left(m_{1}-m_{2}\right)^{2}}{\left(m_{1}+m_{2}\right)}$ to be increased
C. $\frac{g\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}\right)}$ to be increased
D. $\frac{g\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}\right)}$ to be increased

Answer:

D Watch Video Solution

3. A bullet is fired from a gun. The force on the bullet is given by $F=600-2 \times 10^{5} \mathrm{t}$, where
F is in newtons and t in seconds. The force on
the bullet becomes zero as soon as it leaves
the barrel. What is the average impulse imparted to the bullet?
A. $9 \mathrm{~N}-\mathrm{s}$
B. zero
C. $0.9 \mathrm{~N}-\mathrm{s}$
D. $1.8 \mathrm{~N}-\mathrm{s}$

Answer:

4. A body of weight 2 kg is suspended as shown in the figure. The tension T_{1} in the horizontal string (in kg wt) is

A. $2 / \sqrt{3}$
B. $\sqrt{3} / 2$
C. $2 \sqrt{3}$
D. 2

Answer:

D Watch Video Solution

5. In an arrangement shown in the figure, the acceleration of block A and B are given-

A. $g / 3, g / 6$
B. $g / 6, g / 3$
C. $g / 2, g / 2$
D. 0,0

Answer:

D Watch Video Solution
6. The force exerted by the lift on the foot of a person standing in it, is more then his weight then the lift is-
(a) going up and slowing down, (b) going up and speeding up
(c) going down and slowing down, (d) going down and speeding up
A. a,c
B. b,c
C. a,d
D. b,d

Answer:

D Watch Video Solution

7. As shown in figure A, B and C are $1 \mathrm{~kg}, 3 \mathrm{~kg}$ and 2 kg respectively. The acceleration of the
system is -

A. $5 m s^{-2}$
B. $4.11 m s^{-2}$
C. $4 m s^{-2}$
D. $5.11 m s^{-2}$

Answer:

D Watch Video Solution

8. A particle of mass $2 k g$ is initially at rest. A
force starts acting on it in one direction whose magnitude changes with time. The force time graph is shown in figure. Find the
velocity of the particle at the end of $10 s$.

Fig. 11.29
A. $20 m s^{-1}$
B. $10 m s^{-1}$
C. $75 m s^{-1}$
D. $50 m s^{-1}$

- Watch Video Solution

9. A string of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the figure. The force on
the pulley by the clamp is given by

A. $\sqrt{2 M g}$

> B. $\sqrt{2 m g}$
> C. $\left(\sqrt{(M+m)^{2}+m^{2}}\right) g$
> D. $\left(\sqrt{(M+m)^{2}+M^{2}}\right) g$

Answer:

D Watch Video Solution

10. A system is shown in the figure. A man standing on the block is pulling the rope.

Velocity of the point of string in contact with
the hand of the man is $2 m / s$ downwards. The
velocity of the block will be [assume that the block does not rotate]

A. $3 m / s$
B. $2 m / s$

C. $1 / 2 m / s$

D. $1 m / s$

Answer:

D Watch Video Solution

11. A triangular prism of mass m placed on it is released from rest on a smooth inclined plane of inclination θ The block does not slip on the

A. the acceleration of the prism is $g \cos \theta$
B. the acceleration of the prism is $\mathrm{g} \tan \theta$
C. the minimum coefficient of friction
between the block and prism is
$\mu_{\text {min }}=\tan \theta$
D. the minimum coefficient of friction between block and prism is

$$
\mu_{\min }=\tan \theta
$$

Answer:

D Watch Video Solution

12. A system of two blocks is shown in figure.

Friction coefficient between 5 kg and 10 kg block is $\mu=0.6$ and between 10 kg and ground is $\mu=0.4$ What will be the maximum
value of force F applied at the lower block so
that 5 kg block does not slip w.r.t. 10 kg .
$\left(g=10 \mathrm{~m} / \mathrm{sec}^{2}\right)$. The force applied at the upper block is having fixed magnitude of 80 N
(both forces start to act simultaneously)

$$
\begin{gathered}
\mu _ { 1 } = 0 . 6 \longdiv { 5 \mathrm { kg } } \rightarrow 8 0 \mathrm { N } \\
\mu _ { 2 } = 0 . 4 \longdiv { 1 0 \mathrm { kg } } \rightarrow \mathrm { F } \\
\square \Pi \Pi \Pi n
\end{gathered}
$$

A. 160 N
B. 250 N
C. 210 N
D. 310 N

Answer:

D Watch Video Solution

13. Figure shown a man standing stationary with respect to a horizontal converyor belt that is accelerationg with $1 \mathrm{~m} / \mathrm{s}^{-2}$. What is the net force on the man?If the coefficient of ststic friction between the man's shoes and the belt is 0.2 upto what maximum acceleration of the belt can the man continue to be stationary relative to the belt? Mass of
the man $=65 k g\left(g=9.8 m / s^{2}\right)$

A. $1.25 m s^{-2}$
B. 1.96^{-2}
C. $2.5 m s^{-2}$
D. $3.6 m s^{-2}$

Answer:

Watch Video Solution

14. A box of mass 8 kg placed on a rough inclined plane of inclened θ its downward motion can be prevented by applying an upward pull F and it can be made to slide upward appliying a force $2 F$.The coefficient of friction between the box and the inclined plane is
A. $\frac{1}{3} \tan \theta$
B. $3 \tan \theta$
C. $\frac{1}{2} \tan \theta$

D. $2 \tan \theta$

Answer:

D Watch Video Solution

15. Starting from rest, a body slides down at
45° inclined plane in twice the time it takes to
slide down the same distance in the absence
of friction. The coefficient of friction between
the body and the inclined plane is
A. 0.33
B. 0.75
C. 0.25
D. 0.8

Answer:

D Watch Video Solution

16. A circular table with smooth horizontal
surface is rotating at an angular speed ω about its axis. A groove is made on the surface
along a radius and a small particle is gently
placed inside the groove at a distance I from
the centre. Find the speed of the particle with
respect to the table as its distance from the centre becomes L.
A. $v=\omega l$

> B. $v=\omega(l-a)$
> C. $v=\frac{\omega(l+a)}{2}$
D. $v=\omega \sqrt{l^{2}-a^{2}}$

Answer:
17. A bob of mas M is suspended by a massless string of length L. The horizontal velocity v at position A is just sufficient to make it reach the point B. The angle θ at which the speed of the bob is half of that at A,
satisfies.

A. $\frac{\pi}{4}<\theta<\frac{\pi}{2}$
B. $\frac{\pi}{4}<\theta<\frac{\pi}{2}$
C. $\frac{\pi}{2}<\theta<\frac{3 \pi}{4}$
D. $\frac{3 \pi}{4}<\theta<\pi$

Answer:

D Watch Video Solution

18. A particle is given an initial speed u inside a smooth spherical shell of radius $R=1 \mathrm{~m}$
such that it is just able to complete the circle.

Acceleration of the particle when its velocity is

vertical is

A. $g \sqrt{10}$
B. g
C. $g \sqrt{2}$
D. 3 g

Answer:

- Watch Video Solution

19. A particle crosses the topmost point C of a vertical circle with critical speed, then the
ratio of velocities at points A, B and C is

A. $3: 2: 1$
B. $5: 3: 1^{`}$
C. $5^{2}: 3^{2}: 1^{2}$
D. $\sqrt{5}: \sqrt{3}: \sqrt{1}$

Answer:

D Watch Video Solution

20. A railway track is banked for aspeed v, by making the height of the outer rail ' h ' higher than that of the inner rail.The horizontal separation between the rails is d. The radius of curvature of the track is ' r ': then which of the following relationis true?

$$
\text { A. } \frac{h}{d}=\frac{v^{2}}{r g}
$$

B. $\tan \left\{\left(\sin ^{-1}\right) \frac{h}{d}\right\}=\frac{V^{2}}{r g}$
C. $\tan ^{-1 \frac{h}{d}=\frac{v^{2}}{r g}}$
D. $\frac{h}{r}=\frac{v^{2}}{d g}$

Answer:

D Watch Video Solution

21. An elastic cord of constant K and length L is hung from point A having a massless lock at the other end. A smooth ring of mass M falls
from point A, the maximum elongation of

cord is

$$
\begin{aligned}
& \text { A. } \frac{m g}{K}\left(1+\frac{1+2 K L}{M g}\right) \\
& \text { B. } \frac{M g}{K}\left(1-\left(1-\frac{2 K L}{M g}\right)^{1 / 2}\right) \\
& \text { C. } \frac{M g L}{K}
\end{aligned}
$$

D. $\frac{M g}{K}\left(1+\left(1+\frac{2 K L}{M g}\right)^{1 / 2}\right)$

Answer:

D Watch Video Solution

22. A hammer of mass M falls from height h to
drive a pile of mass m into the ground. The
hammer makes the pile pentrate in the ground to a distance d, opposition force of penetration is given by -

$$
\text { A. } \frac{M^{2} g h}{M+m d}
$$

> B. $\frac{M^{2} g h}{(M+m) d}+(M+m) g$
> C. $\frac{M^{2} g h}{M+m d}$
> D. $\frac{m^{2} g h}{(m+M) d}-(M+m) g$

Answer:

D Watch Video Solution

23. A varable force, given by the 2 - dimensional
vector $\bar{F}=(3 \times 2 \hat{i}+4 \hat{j})$, acts on a particle.
The force is in newton and x is in metre. What is the change in the kinetic energy of the
particle as it moves from the point with

coordinates $(2,3)$ to $(3,0)$ (The coornates are in

 metres)A. $-7 J$
B. zero
C. $+7 J$
D. +19 J

Answer:

D Watch Video Solution
24. A constant power P is applied to a car starting from rest. If v is the velocity of the car at time t , then:
A. $v \propto t$
B. $v \propto \frac{1}{t}$
C. $v \propto \sqrt{t}$
D. $v \propto \frac{1}{\sqrt{t}}$

Answer:

25. A particle is released from height H. At cartain height from the ground its kinetic energy is twice its gravitational potential energy. Find the height and speed of particle at that height.

$$
\begin{aligned}
& \text { A. } \frac{H}{3}, \sqrt{\frac{2 g H}{3}} \\
& \text { B. } \frac{H}{3}, 2 \sqrt{\frac{g H}{3}} \\
& \text { C. } \frac{2 H}{3}, \sqrt{\frac{2 g H}{3}} \\
& \text { D. } \frac{2 H}{3}, \sqrt{2 g H}
\end{aligned}
$$

- Watch Video Solution

26. An object moving along the x axis is acted upon by a forse F_{x} that varies with position as shown. How much work is done by this force as the moves from $x=2 m$ to $x=8 a m$?

A. $-10 J$
B. $+10 J$
C. $+30 J$
D. $-30 J$

Answer:

D Watch Video Solution

27. A man is riding on a cycle with velocity $7.2 \frac{\mathrm{~km}}{\mathrm{hr}}$ up a hill having a slope 1 in 20 . The
total mass of the man and cycle is 100 kg . The

power of the man is

A. 200 W
B. 175 W
C. 125 W
D. 98 W

Answer:
(Watch Video Solution
28. The potential energy function for the force between two atoms in a diatomic molecule is approximately given by $U(x)=\frac{a}{x^{12}}-\frac{b}{x^{6}}$ where a and b are constant and x is the distance between the atoms. Find the dissoociation energy of the molecule which is given as $D=\left[U(x-\infty)-U_{\text {atequilibrium }}\right]$

$$
\begin{aligned}
& \text { A. } x=6 \sqrt{\frac{11 a}{5 b}} \\
& \text { B. } x=6 \sqrt{\frac{a}{2 b}} \\
& \text { С. } x=0
\end{aligned}
$$

$$
\text { D. } x=6 \sqrt{\frac{2 a}{b}}
$$

Answer:

D Watch Video Solution

29. When the KE of a particle is increased by
300%, the momentum of the body si increased by :
A. 100%
B. 150%
C. $\sqrt{300 \%}$
D. 175%

Answer:

D Watch Video Solution

30. A uniform chain has a mass m and length I
. It is held on a frictionless table with one sixth of its length hanging over the edge. The work done in just pulling the hanging part back on the table is :
A. $m g \frac{l}{72}$
B. $\frac{m g l}{36}$
C. $\frac{m g l}{12}$
D. $\frac{m g l}{6}$

Answer:

- Watch Video Solution

