©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

UNIT TEST 3

Physics

1. A projectile is fired with a speed u at an angle θ above the horizontal field. The coefficient of restitution between the
projectile and field is e. Find the position from
the starting point when the projectile will land at its second collision

$$
\begin{aligned}
& \text { A. } \frac{e^{2} u^{2} \sin 2 \theta}{g} \\
& \text { B. } \frac{\left(1-e^{2}\right) u^{2} \sin 2 \theta}{g} \\
& \text { C. } \frac{(1-e) u^{2} \sin \theta \cos \theta}{g} \\
& \text { D. } \frac{(1+e) u^{2} \sin 2 \theta}{g}
\end{aligned}
$$

Answer: D

D Watch Video Solution

2. Two pendulums each of lengh I are initially situated as shown in figure. The first pendulum is released and strikes the second.

Assume that the collision is completely inelastic and neglect the mass of the string and frictional effects. How high does the
centre of mass rise after the collision?

A. $d\left[\frac{m_{1}}{\left(m_{1}+m_{2}\right)}\right]^{2}$
B. $d\left[\frac{m_{1}}{\left(m_{1}+m_{2}\right)}\right]$
C. $\frac{d\left(m_{1}+m_{2}\right)^{2}}{m_{2}}$
D. $d\left[\frac{m_{2}}{\left(m_{1}+m_{2}\right)}\right]^{2}$

Answer: A

- Watch Video Solution

3. A 20 g bullet pierces through a plate of mass $M_{1}=1 \mathrm{~kg}$ and then comes to rest inside
a second plate of mass $M_{2}=2.98 \mathrm{~kg}$ as
shown in the figure. It is found that the two
plates, initially at rest, now move with equal
velocities, Find the percentage loss in the initial velocity of the bullet when it is between
M_{1} and M_{2}. Neglect any loss of material of
the plates due to the action of bullet

A. 50%
B. 25%
C. 100%
D. 75%

Answer: B

Watch Video Solution

4. A body of mass m_{1} moving at a constant speed undergoes an elastic head on collision with a body of mass m_{2} initially at rest. The ratio of the kinetic energy of mass m_{1} after the collision to that before the collision is -
A. $\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2}$
B. $\left(\frac{m_{1}+m_{2}}{m_{1}-m_{2}}\right)^{2}$
c. $\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right)^{2}$
D. $\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right)^{2}$

Answer: A

D Watch Video Solution

5. A body of mass 5 kg explodes at rest into
three fragments with masses in the ratio $1: 1$:
6. The fragments with equal masses fly in mutually perpendicular directions with speeds of $21 \mathrm{~m} / \mathrm{s}$. The velocity of the heaviest fragment will be -
A. $11.5 \mathrm{~m} / \mathrm{s}$
B. $14.0 \mathrm{~m} / \mathrm{s}$
C. $7.0 \mathrm{~m} / \mathrm{s}$
D. $9.89 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

6. A beg (mass M) hangs by a long thred and a bullet (mass m) comes horizontally with
velocity v and gets caught in the bag. The for the combined (bag+bullet) system -
A. Momentum is $\frac{m v M}{(M+m)}$
B. KE is $\frac{m v^{2}}{2}$
C. Momentum is $\frac{m v(M+m)}{M}$
D. KE is $\frac{m^{2} v^{2}}{2(M+m)}$

Answer: D

- Watch Video Solution

7. A uniform metal dise of radius R is taken and out of it a disc of diameter R is cut off from
the end. The centre of the mass of the remaining part will be:
A. $\frac{R}{4}$ from the centre
B. $\frac{R}{3}$ from the centre
C. $\frac{R}{5}$ from the centre
D. $\frac{R}{6}$ from the centre

Answer: D

D Watch Video Solution
8. A ball is dropped from a height h on the ground. If the coefficient of restitution is e, the hight to which the ball goes up after it rebounds for the $n^{\text {th }}$ time is -
A. $h e^{2 n}$
B. $h e^{n}$
C. $\frac{e^{2 n}}{h}$
D. $\frac{h}{e^{2 n}}$

Answer: A

9. Look at the drawing given in the figure which has been drawn with ink of uniform linethickness. The mass of ink used to draw each of the two inner circles, and each of the two lines segments is m. The mass of the ink used to draw the outer circle is 6 m . The coordinates of the centers of the different parts are : outer circle (0,0), left inner circle (a,a),right inner circle (a, a), vertical line (0,0) and horizontal line ($0,-\mathrm{a}$). The y -coordinate of the centre of mass of the ink in this drawing is

A. $\frac{a}{10}$
B. $\frac{a}{8}$
C. $\frac{a}{12}$
D. $\frac{a}{3}$

Answer: A

D Watch Video Solution

10. A cavity of radius b is made in a disc of mass M, radius R, as ahown in fig. Find the new

COM-

A. $-b^{2}$
$\frac{}{R+b}$
B. $\frac{-b^{2}}{R-b}$
C. $\frac{-R}{2 R+b}$
D. $\frac{-R}{3 R+b}$

Answer: A

D Watch Video Solution

11. The coordinates of centre of mass of the
following quarter circular are is -

A. $\left(\frac{r}{2}, \frac{r}{2}\right)$
B. $\left(\frac{2 r}{3}, \frac{2 r}{3}\right)$
C. $\left(\frac{2 r}{\pi}, \frac{2 r}{\pi}\right)$
D. $\left(\frac{4 r}{\pi}, \frac{4 r}{\pi}\right)$

Answer: D

D Watch Video Solution

12.

Block
C of mass M is moving with velocity V_{0} and
collides elastically with block A of mass M and
connected to another block B of mass $2 M$ through a spring of spring constant K. What is

K if X_{0} is the compression of spring when
velocity of A and B is same
A. $\frac{m v_{0}^{2}}{x_{0}^{2}}$
B. $\frac{m v_{0}^{2}}{2 x_{0}^{2}}$
C. $\frac{3}{2} \frac{m v_{0}^{2}}{x_{0}^{2}}$
D. $\frac{2}{3} \frac{m v^{2}}{x_{0}^{2}}$

Answer: D
13. A particle of mass m is made to move with uniform speed v_{0} along the perimeter of a regular hexagon inscribed in a circle of radius
R. The magnitude of impulse applied at each corner of the hexagon is :-
A. $2 m v_{0} \sin \cdot \frac{\pi}{6}$
B. $m v_{0} \sin \cdot \frac{\pi}{6}$
C. $m v_{0} \sin \cdot \frac{\pi}{3}$
D. $2 m v_{0} \sin . \frac{\pi}{3}$

Answer: A

D Watch Video Solution

14. Two men support a uniform horizontal beam at its two ends, if one of them suddenly
lets go, the force exerted by the beam on the other man will
A. remain unaffected
B. increase
C. decrease
D. become unequal to the force exerted by him on the beam

Answer: C

D Watch Video Solution

15. A rigid body is made of three identical thin rods, each of length L fastened together in the
form of letter H . The body is free to rotate about a horizontal axis that runs along the length of one of the legs of the H . The body is
allowed to fall from rest from a position in
which the plane of H is horizontal. What is the
angular speed of the body when the plane of
H is vertical ?

B. $\frac{1}{2} \sqrt{\frac{g}{L}}$
C. $\frac{3}{2} \sqrt{\frac{g}{L}}$
D. $2 \sqrt{\frac{g}{L}}$

Answer: C

D Watch Video Solution

16. A wooden log of mass M\&length L is
hinged by a frictionless of nail at O . A bullet of mass m strikes with velocity v \& sticks to it.

Find the angular velocity of the system
immediately after collision -

A. $\frac{m v}{M+m}$
B. $\frac{3 m v}{(M+m) L}$
C. $\frac{3 m v}{(M+3 m) L}$
D. $\frac{m v}{(M+3 m) L}$

Answer: C

D Watch Video Solution

17. A thin spherical shell lying on a rough horizontal surface is hit by a cue in such a way that line of action passes through the centre of the shell. As a result shell starts moving
with a linear speed v without any initial angular velocity. Find the linear velocity to the

A. $\frac{3}{5} v$

2
B. $\overline{5} v$
C. $\frac{4}{5} v$
D. None of these

Answer: B
18. A circular platform is free to rotate in a horizontal plane about a vertical axis passing through its centre. A tortoise is sitting at the edge of the platform Now, the platform is given an angular velocity ω_{0}. When the tortoise moves along a chord of the platform with a constant velocity (with respect to the platform), the angular velocity of the platform will vary with time t as -
A.

Answer: C

D Watch Video Solution

19. The ratio of the time taken by a solid sphere and that taken by a disc of the same
mass and radius to roll down a smooth
inclined plane from rest from the same height
A. $15: 14$
B. $\sqrt{15}: \sqrt{14}$
C. 14:15
D. $\sqrt{14}: \sqrt{15}$

Answer: D

D Watch Video Solution
20. A thin disc of mass 9 M and radius R from which a disc of radius $R / 3$ is cut shown in figure. Then moment of inertia of the remaining disc about O , perpendicular to the plane of disc is -

A. $4 M R^{2}$
B. $9 M R^{2}$
C. $\frac{37}{9} M R^{2}$
D. $\frac{40}{9} M R^{2}$

Answer: A

- Watch Video Solution

21. A ball moves over a fixed track as shown in
the figure. From A to B ball rolls without slipping. Surface $B C$ is frictionless. K_{A}, K_{B} and K_{C} are kinetix energies of the ball at
A, B and C, respectively. Then

A. a, b
B. a,c
C. b,d
D. None of these

Answer: A
22. A disc is performing pure rolling on a smooth stationary surface with constant angular velocity as shown in Fig,. At any instant, for the lower most point of the disc,

A. Velocity is v , acceleration is zero
B. Velocity is zero, acceleration is zero
C. Velocity is v , acceleration is $\frac{v^{2}}{R}$
D. Velocity is zero, acceleration is nonzero

Answer: D

D Watch Video Solution

23. Three rings, each of mass P and radius Q are arranged as shown in the figure. The moment of inertia of the arrangement about

YY' axis will be

A. $\frac{7}{2} P Q^{2}$
B. $\frac{2}{7} P Q^{2}$
C. $\frac{2}{5} P Q^{2}$
D. $\frac{5}{2} P Q^{2}$

Answer: A

D Watch Video Solution

24. The moment of inertia of a solid flywheel
about its axis is $0.1 k g-m^{2}$.A tangential force
of 2 kg -wt. is applied round the circumference
of the flywheel with the help of a string and
mass arrangement as shown in the figure. If
the radius of the wheel is 0.1 m , find the
acceleration (in rad $/ \mathrm{sec}^{2}$) of the mass:

A. 163.3
B. 16.3
C. 81.66

D. 8.16

Answer: B

D Watch Video Solution

25. A ladder of length l and mass m is placed
against a smooth vertical wall, but the ground
is not smooth. Coefficient of friction between
the ground and the ladder is μ. The angle θ at
which the ladder will stay in equilibrium is

$$
\text { A. } \theta=\tan ^{-1}(\mu)
$$

B. $\theta=\tan ^{-1}(2 \mu)$
C. $\theta=\tan ^{-1}\left(\frac{\mu}{2}\right)$
D. None of these

Answer: D

- Watch Video Solution

26.

A uniform rod of length L is free to rotate in a vertical plane about a fixed horizontal axis through B. The rod begins rotating from rest.

The angular velocity ω at angle θ is given as
A. $\sqrt{\frac{6 g}{L}} \sin \theta$
B. $\sqrt{\frac{6 g}{L}} \sin . \frac{\theta}{2}$
C. $\sqrt{\frac{6 g}{L}} \cos \cdot \frac{\theta}{2}$
D. $\sqrt{\frac{6 g}{L}} \cos . \theta$

Answer: B

D Watch Video Solution

27. A solid sphere is rolling on a frictionless
surface, shown in figure with a translational
velocity $v m / s$. If it is to climb the inclined
surface then v should be :

A. $\sqrt{\frac{10}{7} g h}$
B. $\geq \sqrt{2 g h}$
C. $2 g h$
D. $\frac{10}{7} g h$

Answer: A

- Watch Video Solution

28. A particle moves in a circular path with decreasing speed . Choose the correct statement.
A. Angular momentum remains constant
B. Acceleration (\bar{a}) is towards the centre
C. Particle moves in a spiral path with
decreasing radius
D. The direction of angular momentum
remains constant
29. Two loops P and Q are made from a uniform wire. The redii of P and Q are r_{1} and r_{2} respectively, and their moments of inertia are I_{1} and I_{2} respectively, If $I_{2}=4 I_{1}$, then $\frac{r_{2}}{r_{1}}$ equals -
A. $4^{2 / 3}$
B. $4^{1 / 3}$
C. $4^{-2 / 3}$

$$
\text { D. } 4^{-1 / 3}
$$

Answer: B

D Watch Video Solution

30. If the distance between H and Cl ions in

HCl molccule is x , then its moment of incrtia about an axis passing through the centre of mass and perpendicular to the bond length, is-
A. $35 x^{2}$
B. $36 x^{2} / 35$
C. $35 x^{2} / 36$
D. $x^{2} / 35$

Answer: C

- Watch Video Solution

