# ©゙’doubtnut 

## PHYSICS

## BOOKS - CAREER POINT

## UNIT TEST 4

Physics

1. The masses and radii of the earth an moon
are $\quad M_{1}$ and $R_{1}$ and $M_{2}, R_{2}$ respectively.

Their centres are at a distacne $r$ apart. Find
the minimum speed with which the particle of mass $m$ should be projected from a point midway between the two centres so as to escape to infinity.

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{4 G}{r}\left(M_{e}+M_{m}\right)} \\
& \text { B. } \frac{4 G}{r} \sqrt{\left(M_{e}+M_{m}\right)} \\
& \text { C. } \sqrt{\frac{2 G}{r}\left(M_{e}+M_{m}\right)} \\
& \text { D. } \frac{2 G}{r} \sqrt{\left(M_{e}+M_{m}\right)}
\end{aligned}
$$

## Answer: A

2. The mass of a satellite is $M / 81$ and radius
is $R / 4$ where $M$ and $R$ are the mass and radius of the planet. The distance between the surfaces of planet and its satellite will be atleast greter than:
A. 1.25 R
B. 12.5 R
C. 10.5 R
D. 5 R

## Answer: A

## - Watch Video Solution

3. The orbital velocity of a satellite at point $B$
with radius $r_{B}$ is $v$. The radius of a point $A$ is
$r_{A}$. If the orbit is increased in radial distance
so that $r_{A}$ becomes $1.2 r_{A}$ find the orbital
velocity at $\left(1.2 r_{A}\right)$ :

A. $\frac{v r_{B}}{r_{A} \sqrt{1.2}}$
B. $\frac{v r_{A}}{1.2 r_{B}}$
C. $\frac{v r_{B}}{1.2 r_{A}}$
D. $\frac{v r_{A}}{r_{B} \sqrt{1.2}}$

Answer: A

## Watch Video Solution

4. Binary stars of comparable masses rotates
under the influence of each other's gravity at a
distance $2\left[\frac{G}{\omega^{2}}\right]^{1 / 3}$ where $\omega$ is the angular velocity of each of the system. If difference between the masses of two stars is 6 units.

Find the ratio of the masses of smaller to
bigger star.

A. $14: 10$
B. 1:7
C. 2:8
D. $3: 9$

Answer: B

D Watch Video Solution
5. Consider a unigorm annular sphere of density p and internal radius 2 m an external radius 4 m . The graviational field strength at a point at a distance $r=3 \mathrm{~m}$, from the centre of shaper is:

A. $-\frac{32 G \pi p}{9}$
B. $-4 G \pi$
C. $-\frac{32 G \pi p}{9}$
D. $\frac{76}{27} G \pi p$

Answer: D

D Watch Video Solution
6. The correct graph representing the
variation of total energy $\left(E_{t}\right)$, kinetic energy
$\left(E_{k}\right)$ and potential energy $(U)$ of a satellite
with its distance form the centre of earth is
A.

B.

D.


## Answer: C

## D Watch Video Solution

7. Two concentric shells of masses $M_{1}$ and $M_{2}$
are having radii $r_{1}$ and $r_{2}$. Which of the
following is the correct expression for the
gravitational field on a mass $m$ ?


> A. $F=\frac{G\left(M_{1}+M_{2}\right)}{r_{2}}$, for $<r_{1}$
> B. $E=\frac{G\left(M_{1}+M_{2}\right)}{r_{2}}$, for $<r_{2}$
C. $E=\frac{G M_{2}}{r_{2}}$, for $r_{1}<r<r_{2}$
D. $E=\frac{G M_{1}}{r_{2}}$, for $r_{1}<r<r_{2}$

Answer: C

## - Watch Video Solution

8. 



Two particles of equal mass (m) each move in a circle of radius ( $r$ ) under the action of their
mutual gravitational attraction find the speed of each particle.

$$
\begin{aligned}
& \text { A. } \frac{G M}{R} \\
& \text { B. } \sqrt{\left[2 \sqrt{2} \frac{G M}{R}\right]} \\
& \text { C. } \sqrt{\left[\frac{G M}{R}(2 \sqrt{2}+1)\right]} \\
& \text { D. } \sqrt{\left[\frac{G M}{R}\left(\frac{(2 \sqrt{2}+1)}{4}\right)\right]}
\end{aligned}
$$

## Answer: D

## D Watch Video Solution

9. A pendulum has time period T for small oscillations. An obstacle $P$ is situated below the point of suspension O at a distance $\frac{3 l}{4}$.

The pendulum is released from rest.
Throughout the motion, the moving string makes small angle with vertical. Time after which the pendulum returns back to its initial
position is

A. T
B. $\frac{3 T}{4}$

## C. ' $3 \mathrm{~T} / 5$

D. $4 \mathrm{~T} / 5^{\text {` }}$

Answer: B

## D Watch Video Solution

10. What is the period of small oscillations of
the block of mas $m$ if the springs are ideal
andpulleys are messless?

A. $\frac{\pi}{2} \sqrt{\frac{m}{k}}$
B. $\frac{\pi}{2} \sqrt{\frac{m}{2 k}}$
C. $\pi \sqrt{\frac{m}{2 k}}$

## D.

## Answer: A

## D View Text Solution

11. A particle of mass $m$ is located in $a$ potential field given by $U(x)=U_{o}(1-\cos a x)$ where $U_{o}$ and a are constants and x is distance from origin. The period of small oscillations is

$$
\text { A. } \sqrt{\frac{U_{o}}{m a^{2}}}
$$

B. $\sqrt{\frac{m U_{o}}{a^{2}}}$
C. $\sqrt{\frac{a}{m U_{o}}}$
D. $\sqrt{\frac{m}{U_{o} a^{2}}}$

## Answer: D

## D Watch Video Solution

12. A pendulam of length $L$ and bob of mass $M$ has a speing of force constant $K$ connected a speing of force constsnt $K$ connected horizontally to it at a distance $h$ below is point
of suspension. The rod is in equilibrium in vertical podition. The rod of length L. used for vertical suspension s rigid and massless. The frequency of vibration of the system for small values of $\theta$ is

A. $\frac{1}{2 \pi L} \sqrt{g L+\frac{k h}{m}}$

> B. $\frac{1}{2 \pi L} \sqrt{\frac{m g L+k}{m}}$
> C. $2 \pi \sqrt{\frac{k L^{2}}{m g L+k h}}$
> D. $\frac{1}{2 \pi L} \sqrt{g L+\frac{k h^{2}}{m}}$

## Answer: D

## D View Text Solution

13. A particle is performing S.H.M. Its total energy ie $E$ When the displacement of the particle is half of its amplitude, its K.E. will be
A. E
B. $\mathrm{E} / 4$
C. $\mathrm{E} / 2$
D. $\mathrm{E} / 4$

Answer: B

## D Watch Video Solution

14. A body of mass $m=2 \mathrm{~kg}$ hangs from three springs, each of spring constant $1875 \mathrm{~N} / \mathrm{m}$, as shown in the figure. If the mass is slightly
displaced and let go, the system will oscillate with time period

A. $\frac{\pi}{5} \mathrm{sec}$
B. $\frac{\pi}{25} \mathrm{sec}$
C. $\frac{2 \pi}{5} \mathrm{sec}$
D. $\frac{2 \pi}{25} \mathrm{sec}$

## Answer: D

## - Watch Video Solution

15. The length of simple pendulum executing SHM is increased by $69 \%$ The percentage increase in the time period of the pendulum is
A. $30 \%$
B. $11 \%$
C. $21 \%$
D. $42 \%$

Answer: A

## D Watch Video Solution

16. If a spring has time period $T$, and is cut into
( $n$ ) equal parts, then the time period of each part will be.
A. $T \sqrt{a}$
B. $T \sqrt{n}$
C. nT
D. T

Answer: B

## D Watch Video Solution

17. In viscosity experiment which one is the graph between, velocity of time for ball falling
$\underbrace{(1)}_{t \rightarrow}$
(2) $v \underbrace{}_{t \rightarrow}$


## Answer: C

D Watch Video Solution
18. The strain-stress curves of three wires of
different materials ar shown in the figure $P, Q$ and $R$ are the elastic limits of the wires. The figure shows that :

A. elasticity of wire $P$ is maximum
B. elasticity of wire $Q$ is maximum

# C. tensile strength of $R$ is maximum 

D. none of the above

## Answer: C

## D Watch Video Solution

19. Two soap bubbles, each of radius $r$, coaleses
in vacuum under isotermal conditions to from
a bigger bubble of radius $R$. Then $R$ is equal to

$$
\text { A. } 2^{-1 / 2} r
$$

B. $2^{-1 / 3} r$
C. $2^{1 / 2} r$
D. $2 r$

## Answer: C

## D Watch Video Solution

20. If the volume of a block os aluminium is decreased be $1 \%$ the pressure (stress) on is surface is increased by (Bulk moduals) of $\left.A l=7.5 \times 10^{10} \mathrm{Nm}^{-2}\right)$
A. $7.5 \times 10^{10} \mathrm{Nm}^{-2}$
B. $7.5 \times 10^{8} \mathrm{Nm}^{-2}$
C. $7.5 \times 10^{6} \mathrm{Nm}^{-2}$
D. $7.5 \times 10^{4} \mathrm{Nm}^{-2}$

Answer: B

## D Watch Video Solution

21. An air bubble of radius $r$ in water is at a depth $h$ below the water surface at some instant. If $P$ is atmospheric pressure, $d$ and $T$
are density and surface tension of water respectivley . the pressure inside the bubble will be :
A. P+hdg-(4T/r)
B. $\mathrm{P}+\mathrm{hdg}+(2 \mathrm{~T} / \mathrm{r})$
C. $\mathrm{P}+\mathrm{dhg}-(2 \mathrm{~T} / \mathrm{r})$
D. $\mathrm{P}+\mathrm{hdg}+(4 \mathrm{~T} / \mathrm{r})$

Answer: B

D Watch Video Solution
22. The apparent coefficient of expansion of
liquid, when heated in a copper vessel is $C$ and when heated in a silver vessel is $S$. If $A$ is
the linear coefficient of expansion of Copper, linear expansion coefficient of silver is

$$
\begin{aligned}
& \text { A. } \frac{C+S-3 A}{3} \\
& \text { B. } \frac{C+3 A-S}{3} \\
& \text { C. } \frac{S+3 A-C}{3} \\
& \text { D. } \frac{C+S+3 A}{3}
\end{aligned}
$$

23. Several spherical deops of a liquid each of radius $r$ coalesece to from a single drop of radius $R$. If $T$ is the surface tension, then the energy liberated will be

$$
\begin{aligned}
& \text { A. } 4 \pi R^{3} T\left(\frac{1}{r}-\frac{1}{R}\right) \\
& \text { B. } 2 \pi R^{3} T\left(\frac{1}{r}-\frac{1}{R}\right) \\
& \text { C. } \frac{4}{3} \pi r^{2} T\left(\frac{1}{r}-\frac{1}{R}\right) \\
& \text { D. } 2 \pi R T\left(\frac{1}{R}-\frac{1}{r}\right)
\end{aligned}
$$

Answer: A

## D Watch Video Solution

24. Two blocks of wood of masses $m_{1}$ and $m_{2}$
and each of specific givity 0.5 are submerged at a depth of $h_{1}$ and $h_{2}$ in $v$ vessel $\left(h_{2}>h_{1}\right)$
filled with water, which is accelerated upwards
with an acceleration $g / 2$. The difference in
time taken by the blocks to reach the surface,
when frleased with zero velocity is
A. zero

$$
\begin{aligned}
& \text { B. } 2 \sqrt{\frac{\left(h_{2}-h_{1}\right)}{2 g}} \\
& \text { C. } \sqrt{\frac{\left(h_{2}-h_{1}\right)}{g}} \\
& \text { D. } 2 \sqrt{\frac{\left(h_{2}-h_{1}\right)}{3 g}}
\end{aligned}
$$

## Answer: D

## D View Text Solution

25. A cylindrical vessel contains a liquid of density $\rho$ up to height $h$. The liquid is closed
by a piston of mass $m$ and area of cross section $A$. There is a small hole at the bottom of the vessel. The speed $v$ with which the liquid comes out of the hole is

A. $\sqrt{2 g h}$
B. $\sqrt{2\left(g h+\frac{m g}{p A}\right)}$
C. $\sqrt{2\left(g h+\frac{m g}{A}\right)}$
D. $\sqrt{2 g h+\frac{m g}{A}}$

Answer: B

## - Watch Video Solution

26. Figure shows a liquid flowing through a tube at the rate of $0.1 \mathrm{~m}^{3} / \mathrm{s}$. The tube is branched into two semicircular tubes of crosssectional area $A / 3$ and $2 A / 3$. The velocity of liquid at $Q$ is (the cross section of the main
tube is $A=10^{-2} m^{2}$ and $v_{p}=20 \mathrm{~m} / \mathrm{s}$ )

A. $5 \mathrm{~m} / \mathrm{s}$
B. $30 \mathrm{~m} / \mathrm{s}$
C. $35 \mathrm{~m} / \mathrm{s}$
D. None of these

Answer: A
27. Water rises to a height $h$ in a capillary tube of cross-sectional area A. the height to which water will rise in a capillary tube of crosssectional area $4 A$ will be
A. $h$
B. $\mathrm{h} / 2$
C. h/4
D. 4 h

Answer: B

## D Watch Video Solution

28. A tank is filled with water up to a height $H$.

Water is allowed to come out of a hole $P$ in one of the walls at a depth $D$ below the
surface of water. Express the horizontal

## distance $x$ in terms of $H$ and $D$


A. $\frac{H}{2}$
B. $\frac{\sqrt{3} H}{2}$
C. H
D. None of these

Answer: C
29. The total weight of a piece of wood is 6 kg in the floating state in water its $1 / 3$ part remains inside the water on this floating solid what maximum weight is to be put such that the whole of the piece of wood is to be drowned in the water

A. 12 kg

B. 10 kg
C. 14 kg

## D. 15 kg

## Answer: A

## D Watch Video Solution

30. A homogeneous solid cylinder of length
$\mathrm{L}(\mathrm{LltH} / 2)$, cross-sectional area $\mathrm{A} / 5$ is immersed
such that it floats with its axis vertical at the liquid-liquid interface with length L/4 in the denser liquid as shown in the figure. The lower density liquid is open to atmosphere having
pressure $P_{0}$. Then density D of solid is given by


> A. $\frac{5}{4} d$ B. $\frac{4}{5} d$ C. 4 d D. $\frac{d}{5}$

Answer: A

## D Watch Video Solution

