©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

UNIT TEST 6

Physics

1. A charge q is placed at the centre of the line
joining two equal charges Q . The system of the
three charges will be in equilibrium if q is equal to:
A. $-\frac{Q}{2}$
B. $-\frac{Q}{4}$
C. $-4 Q$
D. $+\frac{Q}{2}$

Answer: B
(Watch Video Solution
2. The electric field intensity due to a thin infinity long straight wire of uniform linear charge density λ at O is-

A. $\frac{\lambda}{2 \pi \varepsilon_{0} R}$
B. $\frac{\lambda \sqrt{2}}{2 \pi \varepsilon_{0} R}$
C. $\frac{\lambda \sqrt{5}}{2 \pi \varepsilon_{0} R}$
D. zero

- Watch Video Solution

3. Figure shows a set of equipotential surfaces.

The magnitude and direction of electric field that exists in the region is-

A. $10 \sqrt{2} V / m$ at 45° with x-axis
B. $10 \sqrt{2} V / m$ at 135° with x-axis
C. $5 \sqrt{2} V / m$ at 45° with x-axis
D. $5 \sqrt{2} V / m$ at 135° with x-axis

Answer: A

D Watch Video Solution

4. The are $A B$ with the centre C and infinitely
long wire having linear charge density λ are
lying in the same plane. The minium amount of work to be done to move a point charge q_{0}
from point A to B through a circular path $A B$ of radius a is equal to

A. $\frac{q_{0}^{2}}{2 \pi \varepsilon_{0}} \log \left(\frac{2}{3}\right)$
B. $\frac{q_{0} \lambda}{2 \pi \varepsilon_{0}} \log \left(\frac{3}{2}\right)$
C. $\frac{q_{0} \lambda}{2 \pi \varepsilon_{0}} \log \left(\frac{2}{3}\right)$
D. $q_{0} \lambda / \sqrt{2} \pi \varepsilon_{0}$

Answer: B

- Watch Video Solution

5. A charged cork ball of mass m is suspended on a light string in the presence of a uniform electric field as shown in fig. When $E=(A \hat{i}+B \hat{j}) N C^{-1}$, where A and B positive numbers, the ball is in equilibrium at
θ. Find (a) the charge on the ball and (b) the
tension in the string.

$$
\begin{aligned}
& \text { A. } q=\frac{m g}{A+B \tan \theta} \\
& \text { B. } q=\frac{m g \tan \theta}{A+B} \\
& \text { C. } q=\frac{m g \tan \theta}{A+B \tan \theta} \\
& \text { D. } q=\frac{A m g}{A+B}
\end{aligned}
$$

Answer: C

- Watch Video Solution

6. An electric field is expressed as $E=2 \hat{i}+3 \hat{j}$
. Find the potential difference $\left(V_{A}-V_{B}\right)$
between two points A and B whose position
vectors are given by $r_{A}=\hat{i}+2 \hat{j}$ and
$r_{B}=\hat{j}+3 \hat{k}$
A. $-1 V$
B. $1 V$
C. 2 V
D. 3 V

Answer: A

D Watch Video Solution

7. A thin glass rod is bent into a semicircle of radius r. A charge $+Q$ is uniformly distributed along the upper half and a charge $-Q$ is uniformly distributed along the lower half, as shown in fig. The electric field E at P, the center
of the semicircle, is

A.
$\frac{Q}{{ }^{2} \varepsilon_{0} r^{2}}$

> B. $\frac{2 Q}{\pi^{2} \varepsilon_{0} r^{2}}$
> C. $\frac{4 Q}{\pi^{2} \varepsilon_{0} r^{2}}$
> D. $\frac{Q}{4 \pi^{2} \varepsilon_{0} r^{2}}$

Answer: A

- Watch Video Solution

8. A particle having charge that of an electron and mass $1.6 \times 10^{-30} \mathrm{~kg}$ is projected with an initial speed u at the angle 45° to the horizontal from the lower plate of a parallel-
plate capacitor as shown in fig. The plates are sufficiently long and have a separation of 2 cm ,
find the maximum value of the velocity of he particle so that it does not hit the upper plate.

Take the electric field between the plates as $10^{3} \mathrm{Vm}^{-1}$ directed upward.

$$
\begin{aligned}
& \text { A. } 2 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& \text { B. } 2 \sqrt{2} \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& \text { C. } \sqrt{2} \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& \text { D. } \frac{1}{\sqrt{2}} \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer: B

D Watch Video Solution

9. Three identical metal plates with large
surface areas are kept parallel to each other as
shown. The left most is given a charge Q , the right most part a charge $-2 Q$ and the middle
one remains neutral. Then which is wrong-

A. The charge appearing on outer surface
of right most plate is $-\frac{Q}{2}$
B. The charge appearing on outer surface
of left most plate is $-\frac{Q}{2}$
C. The charge appearing on left surface of
middle plate is $-\frac{3 Q}{2}$
D. The charge appearing on right surface of middle plate is $\frac{3 Q}{4}$

Answer: D

D Watch Video Solution

10. Three concentric spherical shells have radii
a,b and $c(a<b<c)$ and have surface charge
densities $\sigma,-\sigma$ and σ respectively. If V_{A}, v_{B}
and V_{c} denote the potentials of the three shells, then, for $V_{A}=V_{C}$, we get-

$$
\begin{aligned}
& \text { A. } c=\frac{a+b}{2} \\
& \text { B. } c=b-a \\
& \text { C. } c=2(a+b) \\
& \text { D. } c=a+b
\end{aligned}
$$

Answer: D

D Watch Video Solution

11. Three metal spheres A, B and C are mounted on insulating stands. The spheres are touching one another, as shown in the diagram A strong positively charged object it brought near sphere A and a strong negative charge is brought near sphere C. While the charged objects remains near spheres A anc C, sphere B is removed by means of its insulating stand. After the charged objects are removed, sphere B is first touched to sphere A and then to sphere C. The resulting charge on B would
be-

A. the same sign but $1 / 2$ the magnitude as
originally on sphere A.
B. the opposite sign but $1 / 2$ the magnitude as originally on sphere A.
C. the opposite sign but $1 / 4$ the magnitude as originally on sphere A

D. the same sign but $1 / 2$ the magnitude as

 originally on sphere C
Answer: C

D Watch Video Solution

12. Two concentric conducting thin spherical
shells A andB having radii rA and $r 8\left(r_{8}>r_{A}\right)$
are charged to Q_{A} and $-Q_{B}\left(\left|Q_{B}\right|>\left|Q_{A}\right|\right)$.
The electric field strength along a line passing
through the centre varies with the distance x as :

Answer: C
13. A point mass m and charge q is connected with massless spring of natural length L. Initially spring is in its natural length. If a horizontal uniform electric field E is switched on as shown in figure, then the maximum separation between the point mass and the wall is: (Assume all surface are frictionless)

$$
\text { A. } L+\frac{2 q E}{K}
$$

B. $L+\frac{q E}{K}$
C. L
D. None of these

Answer: A

D Watch Video Solution

14. Eight charges each of value q each are placed on a ring of radius R placed in $x-y$ plane with origin at centre -q charge having mass m
is projected from $z=\infty$ towards the centre
of the ring with velocity v. The velocity of -q when it reaches the centre of ring is (neglect gravity)-

A. $\sqrt{\frac{8 k q^{2}}{m R}}$
B. $\sqrt{\frac{8 k q^{2}}{m R}+v}$
C. $\sqrt{\frac{16 k q^{2}}{m R}+v^{2}}$
D. $\sqrt{\frac{16 k q^{2}}{m R}+v}$

Answer: C

- Watch Video Solution

15. Three charges $-q_{1},+q_{2}$ and $-q_{3}$ are placed as shown in the figure. The x component of the force on $-q_{1}$ is proportional to

A. $\frac{q_{2}}{b^{2}}-\frac{q_{3}}{a^{2}} \sin \theta$
B. $\frac{q_{2}}{b^{2}}-\frac{q_{3}}{a^{2}} \cos \theta$
C. $\frac{q_{2}}{b^{2}}+\frac{q_{3}}{a^{2}} \sin \theta$
D. $\frac{q_{2}}{b^{2}}+\frac{q_{3}}{a^{2}} \cos \theta$

Answer: A

D Watch Video Solution

16. In the given figure, two point chrges q_{1} and q_{2} are placed at distances a and b from centre of a metallic sphere having charge
Q.Find electric felds due to the metallic sphere

A. $\frac{1}{4 \pi \varepsilon_{0}} \sqrt{\left(\frac{q_{1}}{a}\right)^{2}+\left(\frac{q_{2}}{b^{2}}\right)^{2}}$
B. $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R^{2}}$
C. $\frac{1}{4 \pi \varepsilon_{0}} \sqrt{\left(\frac{Q}{R^{2}}\right)^{2}+\left(\frac{q_{1}}{a^{2}}+\frac{q_{2}}{b^{2}}\right)^{2}}$
D. None of the above

Answer: A

- Watch Video Solution

17. Let there be a spherically symmetric charge distribution with charge density varying as $\rho(r)=\rho\left(\frac{5}{4}-\frac{r}{R}\right) \quad$ upto $\quad r=R, \quad$ and $\rho(r)=0$ for $r>R$, where r is the distance from the origin. The electric field at a distance $r(r l t R)$ from the origin is given by

$$
\text { A. } \frac{\rho_{0} r}{4 \varepsilon_{0}}\left(\frac{5}{4}-\frac{r}{R}\right)
$$

B. $\frac{4 \pi \rho_{0} r}{3 \varepsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right)$
C. $\frac{\rho_{0} r}{4 \varepsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right)$
D. $\frac{4 \rho_{0} r}{3 \varepsilon_{0}}\left(\frac{5}{4}-\frac{r}{R}\right)$

Answer: C

D Watch Video Solution

18. A spherical portion has been removed from
a solid sphere having a charge distributed
uniformly in its volume as shown in the figure.

The electric field inisde the emptied space is

A. zero everywhere

B. nonzero and uniform

C. non-uniform

D. zero only at its centre

Answer: B

- Watch Video Solution

19. Eight point charges are placed at the corners of a cube of edge a as shown in figure.

The work done in disassembing this system of charges will be-

A. $\frac{q^{2}}{4 \pi \varepsilon_{0} a}$
B. $\frac{q^{2} \sqrt{3}}{4 \pi \varepsilon_{0} a}$
C. $\frac{12 q^{2}}{4 \pi \varepsilon_{0} a}$
D. $\frac{5.824 q^{2}}{4 \pi \varepsilon_{0} a}$

Answer: D

- Watch Video Solution

20. Charge on the outer sphere is q, and the inner sphere is grounded. Then the charge q^{\prime} on the inner sphere is q^{\prime}, for
$\left(r_{2}>r_{1}\right)$

A. zero
B. $q^{\prime}=q$
C. $q^{\prime}=-\frac{r_{1}}{r_{2}} q$

$$
\text { D. } q^{\prime}=\frac{r_{1}}{r_{2}}=q
$$

Answer: C

D Watch Video Solution

21. The diagram show a small bead of mass m
carrying charge q. The bead can freely move on
the smooth fixed ring placed on a smooth horizontal plane. In the same pane a charge $+Q$ has also been fixed as shown. The potential at the point P due to $+Q$ is V. The
velocity which the bead should projected from
the point P so that it can complete a circle should be greater than.

A. $\sqrt{\frac{6 q V}{m}}$
B. $\sqrt{\frac{q V}{m}}$
C. $\sqrt{\frac{3 q V}{m}}$
D. None of these

Answer: A

D Watch Video Solution

22. Four point charge $q,-q, 2 Q$ and Q are placed in order at the corners $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D of a square. If the field at the midpoint of $C D$ is zero then the value of q / Q is $\frac{5 \sqrt{5}}{x}$. Find the value of x.
A. 1
B. 2
C. $\frac{2 \sqrt{2}}{5}$
D. $\frac{5 \sqrt{5}}{2}$

Answer: D

D Watch Video Solution

23. Three charges $+Q_{1},+Q_{2}$ and q are placed on a straight line such that q is somewhere in between $+Q_{1}$ and Q_{2}. If this
system of charges is in equilibrium what should be the magnitude and sign of charge q ?
A. $\frac{Q_{1} Q_{2}}{\left(\sqrt{Q_{1}}+\sqrt{Q_{2}}\right)}$, positive
B. $\frac{Q_{1} Q_{2}}{2}$, positive
C. $\frac{Q_{1} Q_{2}}{\left(\sqrt{Q_{1}}+\sqrt{Q_{2}}\right)^{2}}$, negative
D. $\frac{Q_{1}+Q_{2}}{2}$, negative

Answer: C

24. A hollow cylinder has a charge $q C$ within it.

If ϕ is the electric flux in unit of voltmeter associated with the curved surface B the flux linked with the plance surface A in unit of voltmeter will be

$$
\begin{aligned}
& \text { A. } \frac{q}{2 \varepsilon_{0}} \\
& \text { B. } \frac{\phi}{3} \\
& \text { C. } \frac{q}{\varepsilon_{0}}-\phi
\end{aligned}
$$

$$
\text { D. } \frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\phi\right)
$$

Answer: D

- Watch Video Solution

25. A cube of edge a is kept on x-axis in a region where electric field varies with distance
as $E=k x \hat{i}$. Total electric flux associated with
the cube is-

A. $k a^{3}$
B. $-3 k a^{3}$
C. $4 k a^{3}$
D. zero

Answer: A

- Watch Video Solution

26. An infinite wire having charge density λ passes through one of the edges of a cube having length I. find the total flux passing through the cube

A. $\frac{\lambda l}{\varepsilon_{0}}$
B. $\frac{\lambda l}{4 \varepsilon_{0}}$
C. $\frac{\lambda l}{6 \varepsilon_{0}}$
D. None of these

Answer: B

- Watch Video Solution

27. The ratio of ψ_{ε} passing through the surfaces S_{1} and S_{2} is-

A. 1:1
B. $-2: 1$
C. $-3: 1$
D. $-1: 3$

Answer: C
28. A square surface of side L metre in the plane of the paper is placed in a uniform electric field $E($ volt $/ m)$ acting along the same place at an anlge θ with the horizontal side of the square as shown in figure. The electric flux linked to the surface in uint of
$V-m$ is

A. $E L^{2}$
B. $E L^{2} \cos \theta$
C. $E L^{2} \sin \theta$
D. zero

Answer: D

D Watch Video Solution

29. The inward and outward electric flux for a closed surface unit of $N-m^{2} / C$ are respectively 8×10^{3} and 4×10^{3}. Then the total charge inside the surface is [where $\varepsilon_{0}=$ permittivity constant]

$$
\text { A. } 4 \times 10^{3} C
$$

B. $-4 \times 10^{3} C$
C. $\frac{\left(-4 \times 10^{3}\right)}{\varepsilon_{0}} C$
D. $-4 \times 10^{3} \varepsilon_{0} C$

Answer: D

D Watch Video Solution

30. Charge on an originally uncharged
conductor is separated by holding a positively
charged rod very closely nearby, as shown in
figure. Assume that the induced negative
charge on the conductor is equal to the
positive charge q on the rod. Then the flux through surface S_{1} is

A. zero
B. q / ε_{0}
C. $-e / \varepsilon_{0}$
D. none of these

Answer: B

Watch Video Solution

