

PHYSICS

BOOKS - CAREER POINT

UNIT TEST 6

1. A charge q is placed at the centre of the line

joining two equal charges Q. The system of the

three charges will be in equilibrium if q is equal to:

A.
$$-rac{Q}{2}$$

B. $-rac{Q}{4}$
C. $-4Q$
D. $+rac{Q}{2}$

Answer: B

Watch Video Solution

2. The electric field intensity due to a thin infinity long straight wire of uniform linear charge density λ at O is-

D. zero

Answer: A

The magnitude and direction of electric field that exists in the region is-

A. $10\sqrt{2}V\,/\,m$ at $45\,^\circ\,$ with x-axis

B. $10\sqrt{2}V/m$ at $135^{\,\circ}$ with x-axis

C. $5\sqrt{2}V/m$ at $45^{\,\circ}$ with x-axis

D. $5\sqrt{2}V/m$ at 135° with x-axis

Answer: A

Watch Video Solution

4. The are AB with the centre C and infinitely long wire having linear charge density λ are lying in the same plane. The minium amount of work to be done to move a point charge q_0 from point A to B through a circular path AB

of radius a is equal to

D. $q_0\lambda/\sqrt{2}\piarepsilon_0$

Answer: B

5. A charged cork ball of mass m is suspended on a light string in the presence of a uniform electric field as shown in fig. When $E = \left(A\hat{i} + B\hat{j}\right)NC^{-1}$, Where A and B positive numbers, the ball is in equilibrium at θ . Find (a) the charge on the ball and (b) the

tension in the string.

A.
$$q = rac{mg}{A+B an heta}$$

B. $q = rac{mg an heta}{A+B an heta}$
C. $q = rac{mg an heta}{A+B an heta}$
D. $q = rac{Amg}{A+B}$

Answer: C

6. An electric field is expressed as $E=2\hat{i}+3\hat{j}$. Find the potential difference (V_A-V_B) between two points A and B whose position vectors are given by $r_A=\hat{i}+2\hat{j}$ and $r_B=\hat{j}+3\hat{k}$

A. -1V

$\mathsf{B}.\,1V$

 $\mathsf{C}.\,2V$

D. 3V

Answer: A

7. A thin glass rod is bent into a semicircle of radius r. A charge +Q is uniformly distributed along the upper half and a charge -Q is uniformly distributed along the lower half, as shown in fig. The electric field E at P, the center

of the semicircle, is

Answer: A

8. A particle having charge that of an electron and mass 1.6×10^{-30} kg is projected with an initial speed u at the angle 45° to the horizontal from the lower plate of a parallelplate capacitor as shown in fig. The plates are sufficiently long and have a separation of 2 cm, find the maximum value of the velocity of he particle so that it does not hit the upper plate. Take the electric field between the plates as $10^3 Vm^{-1}$ directed upward.

A. $2 imes 10^6m/s$ B. $2\sqrt{2} imes 10^6m/s$ C. $\sqrt{2} imes 10^6m/s$ D. $rac{1}{\sqrt{2}} imes 10^6m/s$

Answer: B

9. Three identical metal plates with large surface areas are kept parallel to each other as shown. The left most is given a charge Q, the right most part a charge -2Q and the middle

one remains neutral. Then which is wrong-

A. The charge appearing on outer surface of right most plate is $-\frac{Q}{2}$ B. The charge appearing on outer surface of left most plate is $-\frac{Q}{2}$

10. Three concentric spherical shells have radii a,b and c(a < b < c) and have surface charge densities $\sigma, \ -\sigma$ and σ respectively. If V_A, v_B and V_c denote the potentials of the three shells, then, for $V_A = V_C$, we get-

A.
$$c=rac{a+b}{2}$$

$$\mathsf{B.}\, c = b - a$$

C.
$$c=2(a+b)$$

D.
$$c = a + b$$

Answer: D

Watch Video Solution

11. Three metal spheres A,B and C are mounted insulating stands. The spheres are on touching one another, as shown in the diagram A strong positively charged object it brought near sphere A and a strong negative charge is brought near sphere C. While the charged objects remains near spheres A anc C, sphere B is removed by means of its insulating stand. After the charged objects are removed, sphere B is first touched to sphere A and then to sphere C. The resulting charge on B would

be-

A. the same sign but 1/2 the magnitude as originally on sphere A. B. the opposite sign but 1/2 the magnitude as originally on sphere A. C. the opposite sign but 1/4 the magnitude as originally on sphere A

D. the same sign but 1/2 the magnitude as

originally on sphere C

Answer: C

Watch Video Solution

12. Two concentric conducting thin spherical shells A and B having radii rA and $r8(r_8 > r_A)$ are charged to Q_A and $-Q_B(|Q_B| > |Q_A|)$. The electric field strength along a line passing through the centre varies with the distance x

as :

Answer: C

Watch Video Solution

13. A point mass m and charge q is connected with massless spring of natural length L. Initially spring is in its natural length. If a horizontal uniform electric field E is switched on as shown in figure, then the maximum separation between the point mass and the wall is: (Assume all surface are frictionless)

A. $L + \frac{2qE}{\kappa}$

$$\mathsf{B.}\,L+\frac{qE}{K}$$

C. L

D. None of these

Answer: A

Watch Video Solution

14. Eight charges each of value q each are placed on a ring of radius R placed in x-y plane with origin at centre -q charge having mass m is projected from $z = \infty$ towards the centre of the ring with velocity v. The velocity of -q when it reaches the centre of ring is (neglect gravity)-

Answer: C

15. Three charges $-q_1$, $+q_2$ and $-q_3$ are placed as shown in the figure. The xcomponent of the force on $-q_1$ is proportional to

A.
$$\frac{q_2}{b^2} - \frac{q_3}{a^2} \sin \theta$$

B. $\frac{q_2}{b^2} - \frac{q_3}{a^2} \cos \theta$
C. $\frac{q_2}{b^2} + \frac{q_3}{a^2} \sin \theta$
D. $\frac{q_2}{b^2} + \frac{q_3}{a^2} \cos \theta$

Answer: A

16. In the given figure, two point chrges q_1 and q_2 are placed at distances a and b from centre of a metallic sphere having charge

Q.Find electric felds due to the metallic sphere

D. None of the above

Answer: A

17. Let there be a spherically symmetric charge distribution with charge density varying as $\rho(r) = \rho\left(\frac{5}{4} - \frac{r}{R}\right)$ upto r = R, and $\rho(r) = 0$ for r > R, where r is the distance from the origin. The electric field at a distance r(rltR) from the origin is given by

A.
$$rac{
ho_0 r}{4arepsilon_0} igg(rac{5}{4} - rac{r}{R} igg)$$

$$\begin{array}{l} \mathsf{B.} \ \displaystyle \frac{4\pi\rho_0 r}{3\varepsilon_0} \bigg(\displaystyle \frac{5}{3} - \displaystyle \frac{r}{R} \bigg) \\ \mathsf{C.} \ \displaystyle \frac{\rho_0 r}{4\varepsilon_0} \bigg(\displaystyle \frac{5}{3} - \displaystyle \frac{r}{R} \bigg) \\ \mathsf{D.} \ \displaystyle \frac{4\rho_0 r}{3\varepsilon_0} \bigg(\displaystyle \frac{5}{4} - \displaystyle \frac{r}{R} \bigg) \end{array}$$

Answer: C

18. A spherical portion has been removed from a solid sphere having a charge distributed uniformly in its volume as shown in the figure.

The electric field inisde the emptied space is

A. zero everywhere

B. nonzero and uniform

- C. non-uniform
- D. zero only at its centre

Answer: B

19. Eight point charges are placed at the corners of a cube of edge a as shown in figure. The work done in disassembing this system of charges will be-

B.
$$\frac{q^2\sqrt{3}}{4\pi\varepsilon_0 a}$$
C.
$$\frac{12q^2}{4\pi\varepsilon_0 a}$$
D.
$$\frac{5.824q^2}{4\pi\varepsilon_0 a}$$

Answer: D

Watch Video Solution

20. Charge on the outer sphere is q, and the inner sphere is grounded. Then the charge q' on the inner sphere is q', for

A. zero

B.
$$q^{\,\prime}\,=\,q$$

C. $q^{\,\prime}\,=\,-\,rac{r_1}{r_2}q$

D.
$$q^{\,\prime}=rac{r_1}{r_2}=q$$

Answer: C

Watch Video Solution

21. The diagram show a small bead of mass m carrying charge q. The bead can freely move on the smooth fixed ring placed on a smooth horizontal plane . In the same pane a charge +Q has also been fixed as shown. The potential at the point P due to +Q is V. The

velocity which the bead should projected from the point P so that it can complete a circle should be greater than .

A.
$$\sqrt{\frac{6qV}{m}}$$

B. $\sqrt{\frac{qV}{m}}$

D. None of these

Answer: A

Watch Video Solution

22. Four point charge q, -q, 2Q and Q are placed in order at the corners A, B, C and D of a square. If the field at the midpoint of CD is zero then the value of q/Q is $\frac{5\sqrt{5}}{x}$. Find the value of x.

A. 1

B. 2

C.
$$\frac{2\sqrt{2}}{5}$$

D. $\frac{5\sqrt{5}}{2}$

Answer: D

Watch Video Solution

23. Three charges $+Q_1$, $+Q_2$ and q are placed on a straight line such that q is somewhere in between $+Q_1$ and Q_2 . If this system of charges is in equilibrium what should be the magnitude and sign of charge q?

Answer: C

Watch Video Solution

24. A hollow cylinder has a charge qC within it. If ϕ is the electric flux in unit of voltmeter associated with the curved surface B the flux linked with the plance surface A in unit of voltmeter will be

A.
$$rac{q}{2arepsilon_0}$$

B. $rac{\phi}{3}$
C. $rac{q}{arepsilon_0}-\phi$

$$\mathsf{D}.\,\frac{1}{2} \bigg(\frac{q}{\varepsilon_0} - \phi \bigg)$$

Answer: D

Watch Video Solution

25. A cube of edge a is kept on x-axis in a region where electric field varies with distance as $E = kx \hat{i}$. Total electric flux associated with

the cube is-

- A. ka^3
- $B. 3ka^3$
- $C.4ka^3$
- D. zero

Answer: A

26. An infinite wire having charge density λ passes through one of the edges of a cube having length I. find the total flux passing through the cube

A.
$$\frac{\lambda l}{\varepsilon_0}$$

B. $\frac{\lambda l}{4\varepsilon_0}$
C. $\frac{\lambda l}{6\varepsilon_0}$

D. None of these

Answer: B

27. The ratio of $\psi_{arepsilon}$ passing through the surfaces S_1 and S_2 is-

A.1:1

B. - 2:1

- C. 3:1
- D. 1:3

Answer: C

Watch Video Solution

28. A square surface of side L metre in the plane of the paper is placed in a uniform electric field $E(\operatorname{volt}/m)$ acting along the same place at an anlge θ with the horizontal side of the square as shown in figure. The electric flux linked to the surface in unit of

A. EL^2

 $\mathsf{B.}\, EL^2\cos\theta$

C. $EL^2 \sin \theta$

D. zero

Answer: D

Watch Video Solution

29. The inward and outward electric flux for a closed surface unit of $N - m^2/C$ are respectively 8×10^3 and 4×10^3 . Then the total charge inside the surface is [where $\varepsilon_0 =$ permittivity constant]

A. $4 imes 10^3 C$

 ${\sf B.}-4 imes 10^3 C$

$$\mathsf{C}.\,\frac{\left(\,-\,4\times\,10^3\right)}{\varepsilon_0}C$$

D. $-4 imes 10^3arepsilon_0 C$

Answer: D

30. Charge on an originally uncharged conductor is separated by holding a positively charged rod very closely nearby, as shown in figure. Assume that the induced negative charge on the conductor is equal to the

positive charge q on the rod. Then the flux

through surface S_1 is

A. zero

B. $q/arepsilon_0$

$$\mathsf{C}.-e/\varepsilon_0$$

D. none of these

Answer: B

