©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

UNIT TEST 7

Physics

1. In the given circuit, with steady current, the potential drop across the capacitor must be

A. V
B. $\mathrm{V} / 2$
C. $\mathrm{V} / 3$
D. $2 \mathrm{~V} / 3$

Answer: C
2. For the circuit shown in figure the charges
on three capacitors, A, B and C are respectively

A. $96 \mu C, 96 \mu C$, and $48 \mu C$
B. $32 \mu C, 64 \mu C$, and $48 \mu C$
C. $64 \mu C, 32 \mu C$, and $48 \mu C$
D. $32 \mu C, 32 \mu C$, and $48 \mu C$

Answer: A

D Watch Video Solution

3. A capacitor of $2 \mu F$ is charged to a potential of 4 V using a battery, and then the battery is disconnected and the changed capacior is connected to an uncjharged caspacitor of $4 \mu F$ capacitance. When the equilibrium is
established the total energy stored in the capacitors is
A. $16 \mu \mathrm{~J}$
B. $\frac{16}{3} \mu J$
C. $\frac{32}{3} \mu J$
D. $\frac{32}{9} \mu J$

Answer: B

D View Text Solution
4. Six metallic plated each with a surface area of one side A. are placed at a distanced d from each other. The alternate plates are connected to points P and Q as shown in figure :

The capacitance of the system is :
A. $\varepsilon_{o} A / d$
B. $5 \varepsilon_{o} A / d$

C. $6 \varepsilon_{o} A / d$

$$
\text { D. } \varepsilon_{o} A / 5 d
$$

Answer: B

- Watch Video Solution

5. In the given circuit when $S_{1} \& S_{2}$ are clossed,

The potential of point A will be

A. $\frac{5}{3} V$
B. $-\frac{5}{3} V$
C. $\frac{10}{3} V$
D. $-\frac{10}{3} V$

Answer: A

D View Text Solution
6. The amount of heat generated in 500Ω resisttance, when the kye is thrown over from contanct 1 to 2 , as shown in figure, is

A. $6.25 \times 10^{-2} J$
B. $6.25 \times 10^{-3} \mathrm{~J}$
C. $3.75 \times 10^{-3} \mathrm{~J}$
D. $3.75 \times 10^{-2} J$

Answer: A

D View Text Solution

7. The capacity of an isolated sphere is increased n times when it is enclosed by an earthed concentric sphere. The ratio of their radii is
A. $\frac{n^{2}}{n-1}$
B. $\frac{n}{n-1}$
C. $\frac{2 n}{n+1}$
D. $\frac{2 n+1}{n+1}$

Answer: B

D Watch Video Solution

8. Initially K_{1} is closed, now if K_{2} is also closed, find heat dissipated in the resistances
of connecting wires

A. $\frac{1}{2} C V^{2}$
B. $\frac{2}{3} C V^{2}$
C. $\frac{1}{3} C V^{2}$
D. $\frac{1}{4} C V^{2}$

Answer: C

- Watch Video Solution

9. The capacitance of a parallel plate condenser is C_{0} If a dielectric of relative permittivity ε_{r} and thickness equal to one fourth the plate separation is placed between the plates, then its capacity becomes C. The value of $\frac{C}{C_{0}}$ will be -
A. $\frac{5 \varepsilon_{r}}{4 \varepsilon_{r}+1}$
B. $\frac{4 \varepsilon_{r}}{3 \varepsilon_{r}+1}$
C. $\frac{3 \varepsilon_{r}}{2 \varepsilon_{r}+1}$

$$
\text { D. } \frac{2 \varepsilon_{r}}{2 \varepsilon_{r}+1}
$$

Answer: B

D Watch Video Solution

10. A fully charged capacitor has a capacitance
' C '. It is discharged through a small coil of resistance wire embedded in a thermally insulated block of specific heat capacity 's' and mass ' m '. If the temperature of the block is
raised by 'DeltaT', the potential difference ' V ' across the capacitance is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 m C \Delta T}{s}} \\
& \text { B. } \frac{m C \Delta T}{s} \\
& \text { C. } \frac{m s \Delta T}{C} \\
& \text { D. } \sqrt{\frac{2 m s \Delta T}{C}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

11. Find equivalent capacitance between $A \& B$

A. $\frac{C}{4}$
B. $\frac{3 G}{4}$
C. $\frac{3 G}{2}$
D. $\frac{4 G}{3}$

Answer: D

- View Text Solution

12. The potential at point A in the circuit is - $(\mathrm{N}$ point is grounded. Grounding menas that potential of that point is zero.)

A. 10 V
B. 7.5 V
C. 5 V
D. 2.5 V

Answer: B

(D) View Text Solution
13. Equivalent dielectric constant of given arrangement is

A. 7.2
B. 9.7
C. 2.5
D. None of these

Answer: B

- View Text Solution

14. A parallel plate capacitor having
capacitance C Farad is connected with a bettery of emf V volts. Keeping the capacitor connected with the bettery, a dieletric slab of dielectric consutant K is inserted between the plates. The dimensions of the slab are such that it fills the space between the capacitor plates, consider the following sttements
(i) Potential difference between the capacitor plated remains the same
(ii) The capacitance increases by a factor K
(iii) The energy stored increases by a factor K Then the correct statements are
A. (i),(ii)
B. (ii),(iii)
C. (i),(ii),(iii)
D. None of these

Answer: C

D View Text Solution
15. A dielectric slab of area A and thickness d is inderted between then plates of a capaitor of area $2 A$ with constant speed v as shown in.

Dustance between the plates is (d).

The capacitor is connected to a battery of emf E. The current in the ciruit varies with time as.
(1)

Answer: D

D Watch Video Solution

16. n identical cells, each of emf ε and internal resistance r, are joined in series to from a
closed circuit. One cell a is joined with reversed polarity. The potential difference across each cell, except A, is

$$
\begin{aligned}
& \text { A. } \frac{2 \varepsilon}{n} \\
& \text { B. } \frac{n-1}{n} \varepsilon \\
& \text { C. } \frac{n-2}{n} \varepsilon \\
& \text { D. } \frac{2 n}{n-2} \varepsilon
\end{aligned}
$$

Answer: A

D Watch Video Solution
17. The three light bulbs in the circuit below are identical, and the battery has zero internal resistance, When switch S is closed to cause buil 1 to light, which of the ther two bulbs increase (s) in brightness ?

A. Neither bulb
B. Bulb 2 only
C. Bulb 3 only
D. Both bulbs

Answer: C

D View Text Solution

18. Twelve wires each of resistance 6Ω are connected to from a cube as shown in the adjoining figure. The current enters at a cornet A and leaves at erhe diagonally opposite corner G. The equivalent resistance
across the corners A and G is

A. 12Ω
B. 6Ω
C. 3Ω
D. 5Ω

Answer: D
19. The reading of ammeter in the adjoining diagram will be

A. $\frac{2}{17} A$
B. $\frac{3}{11} A$
C. $\frac{1}{13} A$
D. $\frac{4}{15} A$

Answer: C

D View Text Solution

20. If a given volume of water in a 220 V heater
is boiled in 5 min , then how much time will it
take for the same volume of water in a 110 V heater to be boiled?
A. 20 min

B. 30 min

C. 25 min
D. 40 min

Answer: A

- Watch Video Solution

21. The temperature co-effcient of resistance of a wire is $0.00125^{\circ} \mathrm{C}$. At 500 K , its resistance is 1Ω. The resistance of the wire will be 2Ω at
A. 1154 K
B. 1100 K
C. 1400 K
D. 1300 K

Answer: D

- Watch Video Solution

22. In figure, the e.m.f. of the cell is 120 V and internal resistance is negligible. The resistance of the voltmeter is 80 ohm. The \% error in
reading of voltmeter will be

A. 20%
B. 16.7%
C. 21.2%
D. 12.8%

Answer: B
23. The charge flowing through a resistance R
varies with time $\operatorname{tas} Q=a t-b t^{2}$. The total
heat produced in R is
A. $\frac{a^{3} R}{6 b}$
B. $\frac{a^{2} R}{27 b}$
C. $\frac{a^{3} R}{3 b}$
D. None of these
24. The V-I graph is given for two conductors of same area and length. If σ_{1} and σ_{2} are the cnductivities of the conductors 1 and 2 respectively, $\frac{\sigma_{1}}{\sigma_{2}}=$ $\xrightarrow{\left(60^{\circ}\right.}$
A. 2:1
B. $3: 1$
C. $1: \sqrt{2}$
D. $1: 3$

Answer: D

D View Text Solution
25. The potential of C is :

A. 51 V
B. 0
C. +3 V

D. 69 V

Answer: D

D Watch Video Solution

26. If a copper wire is stretched so that its
length increases by 20% then what is the percentage increase in its resistance
(assuming its volume remaing constant) ?
A. 10%
B. 21%
C. 44%
D. 120%

Answer: C

- Watch Video Solution

27. For the part of the circuit gives in figure,
find the current following through 2Ω resistor:

A. $1 A$
B. $3 A$
C. $4 A$
D. information insufficient

- Watch Video Solution

28. Twelve cells each having the same e.m.f are connected in series and are kept to a closed box. Some of the cell are connected in reverse order .The battery is connected in series with an ammeter an external resistance R and two cells of the same type as an in the battery .The current when they and support each other is 3 ampere and current is 2 ampare when the two oppose each other. How many cells are connected in servese order ?
A. 4
B. 3
C. 2
D. 1

Answer: D

D Watch Video Solution

29. The current density varies radical distance
r as $J=a r^{2}$, in a cylindrical wire of radius R .

The current passing through the wire between
radical distance $R / 3$ and $R / 2$ is,
A. $\frac{65 \pi a R^{4}}{2592}$
B. $\frac{25 \pi a R^{4}}{72}$
C. $\frac{65 \pi a^{2} R^{3}}{2938}$
D. None of these

Answer: A

D Watch Video Solution

30. The current (I) and voltage (V) graphs for a given metallic wire at two different temperature $\left(T_{1}\right)$ and $\left(T_{2}\right)$ are shown in fig. It is concluded that

A. $T_{1}=T_{2}$
B. $T_{1}>T_{2}$
C. $T_{1}<T_{2}$
D. None of these

Answer: C

- Watch Video Solution

