©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CAREER POINT

UNIT TEST 8

Physics

1. Magnetic induction at point P from shown
current-carrying long conductors is given by-

$$
\begin{aligned}
& \text { A. } \frac{5 \mu_{0} I}{2 \sqrt{2} \pi r}(\sqrt{2}-1) \\
& \text { B. } \frac{\mu_{0} I}{\sqrt{2} \pi r}(\sqrt{2}-1) \\
& \text { C. } \frac{8 \mu_{0} I}{2 \pi r}(\sqrt{2}-1) \\
& \text { D. } \frac{\mu_{0} I}{4 \pi r}(\sqrt{2}-1)
\end{aligned}
$$

Answer: D

D Watch Video Solution

2. The B-H curves (a) and (b) drawn below are associated with :
A. a diamagnetic and a ferromagnetic substance respectively
B. a paramagnetic and a ferromagnetic substance respectively
C. soft iron and steel respectively
D. steel and soft iron respectively

Answer: C

D View Text Solution

3. A long straight wire along the z -axis carries
a current I in the negative z-direction. The magnetic vector field \vec{B} at a point having coordinnates (x, y) in the $z=0$ plane is

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} I(y \hat{i}-x \hat{j})}{2 \pi\left(x^{2}+Y^{2}\right)} \\
& \text { B. } \frac{\mu_{0} I(x \hat{i}+y \hat{j})}{2 \pi\left(x^{2}+Y^{2}\right)}
\end{aligned}
$$

C. $\frac{\mu_{0} I(x \hat{j}-y \hat{i})}{2 \pi\left(x^{2}+Y^{2}\right)}$
$\mu_{0} I(x \hat{i}-y \hat{j})$
D. $\frac{}{2 \pi\left(x^{2}+Y^{2}\right)}$

Answer: A

D Watch Video Solution

4. Two long straight conductors with corrents
I_{1} and I_{2} are placed along X and Y axes. The equation of locus of points of zero magnetic
induction is :

A. $Y=X$
B. $Y=\frac{I_{2} X}{I_{2}}$
C. $Y=\frac{I_{1}}{I_{2}} X$
D. $Y=\frac{X}{I_{1} I_{2}}$

Answer: C
5. An iron rod of length L and magnetic moment M is bent in the form of a semicircle.

Now its magnetic moment will be
A. M
B. $\frac{2 M}{\pi}$
c. $\frac{M}{\pi}$
D. $M \pi$

- Watch Video Solution

6. The time of vibration of a dip needle vibration in the vertical plane in the magnetic needle is made to vibrate in the horizontal plane, the time of vibration is $3 \sqrt{2} s$. Then angle of dip will be-
A. 90°
B. 60°
C. 45°

D. 30°

Answer: B

- Watch Video Solution

7. Shown in the figure is a rectangular loop of

 conductor carrying a current i . The length and breath of the loop are respectively a and b.The magnetic field at the centre of loop is -

A. $\mu_{0} i(a+b)$
$2 \pi \sqrt{a^{2}+b^{2}}$
B. $\frac{\mu_{0} i a b}{2 \pi \sqrt{a^{2}+b^{2}}}$
c. $\mu_{0} i(a+b)$
$\pi \sqrt{a^{2}+b^{2}}$
D. $\frac{2 \mu_{0} i \sqrt{a^{2}+b^{2}}}{\pi a b}$

Answer: D

- Watch Video Solution

8. A conductor carrying current I is of the type as shown in figure. Find the magnetic field
induction at the common centre O of all the
three arcs.

A. $\frac{5 \mu_{0} I \theta}{24 \pi r}$
B. $\frac{\mu_{0} I \theta}{24 \pi r}$
C. $\frac{11 \mu_{0} I \theta}{24 \pi r}$

D. zero

Answer: A

D Watch Video Solution

9. A thin infinitely large sheet lying in yz plane carries a current of linear current density λ.

The current is in negative y direction and λ represents current per unit length measured along z-axis. Find the magnetic field near the
sheet : (Magnetic field due to the sheet will be
parallel to sheet)

(Long sheet with $\lambda=\frac{\text { current }}{\text { length }}$)
(Long sheet with $\lambda=\frac{\text { current }}{\text { length }}$)
A. $B=\frac{\mu_{0} \lambda}{2}$
B. $B=\mu_{0} 2 \lambda$
C. $B=\mu_{0} \lambda$
D. $B=\frac{\mu_{0} \lambda}{4}$

Answer: A

D Watch Video Solution

10. The resultant force on a square current loop PQRS due to a long current carrying conductor will be (if the current flow in the loop is clockwise)

A. zero
B. $0.36 \times 10^{-3} N$
C. $2.5 \times 10^{-3} N$
D. $5 \times 10^{-4} N$

Answer: D

D Watch Video Solution

11. The real angle of dip, if a magnet is suspended at an angle of 30° to the magnetic
meridian and the dip needle makes an angle of
45° with horizontal, is:

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& \text { B. } \tan ^{-1}(\sqrt{3}) \\
& \text { C. } \tan ^{-1}\left(\sqrt{\frac{3}{2}}\right) \\
& \text { D. } \tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

12. The relative permeability is represented by
μ_{r} and susceptibility is denoted by χ for a magnetic substance then for a paramagnetic substance.

$$
\begin{aligned}
& \text { A. } \mu_{r}>1, \chi<0 \\
& \text { B. } \mu_{r}>1, \chi>0 \\
& \text { C. } \mu_{r}<1, \chi<0 \\
& \text { D. } \mu_{r}<1, \chi>0
\end{aligned}
$$

Answer: B
13. In a uniform magneitc field of induced B a
wire in the form of a semicircle of radius r rotates about the diameter of hte circle with an angular frequency ω. The axis of rotation is perpendicular to hte field. If the total resistance of hte circuit is R, the mean power generated per period of rotation is

$$
\begin{aligned}
& \text { A. } \frac{B \pi r^{2} \omega}{2 R} \\
& \text { B. } \frac{\left(B \pi r^{2} \omega\right)^{2}}{8 R}
\end{aligned}
$$

C. $\frac{(B \pi r \omega)^{2}}{2 R}$
D. $\frac{\left(B \pi r \omega^{2}\right)^{2}}{8 R}$

Answer: B

D Watch Video Solution

14. An alternating current I in an inductance
coil varies with time t according to the graph
as shown: Which one of the following graph
gives the variation of voltage with time?

Answer: B

D Watch Video Solution

15. The self inductance of a solenoid of length

L , area of cross-section A and having N turns
is-
A. $\mu_{0} N l$
B. $\mu_{0} N A l$
C. $\mu_{0} \frac{N A}{l}$
D. $\mu_{0} \frac{N^{2} A}{l}$

Answer: D

D Watch Video Solution

16. In the inductive circuit given in the figure,
the current rises after the switch is closed. At
potential difference across the inductor will be-

A. zero
B. 240 V
C. 180 V
D. 60 V

Answer: C

D Watch Video Solution

17. A current $I=10 \sin (100 \pi t)$ amp. Is passed
in first coil, which induces a maximum e.m.f of
5π volt in second coil. The mutual inductance between the coils is-
A. 10 mH
B. 15 mH
C. 25 mH

D. 5 mH

Answer: D

- Watch Video Solution

18. The figure shows three circuits with
identical batteries, inductors and resistance,

Rank the circuits according to the currents
through the battery just after the switch is
closed, greatest first :

A. $i_{2}>i_{3}>i_{1}$
B. $i_{2}>i_{1}>i_{3}$
C. $i_{1}>i_{2}>i_{3}$
D. $i_{1}>i_{3}>i_{2}$

- Watch Video Solution

19. A small square loop of wire of side l is
placed inside a large square loop of wire of side $L(L \gg l)$. The loops are coplanar and their centre coincide. What is the mutual inductance of the system?
A. $\mu_{0} L^{2} l$
B. $2 \sqrt{2} \frac{\mu_{0} l^{2}}{\pi L}$
C. $2 \sqrt{2} \frac{\mu_{0} L^{2}}{\pi l}$

D. $\mu_{0} l^{2} L$

Answer: B

D Watch Video Solution

20. In adjacent circuit, switch S is closed at $t=$

0 . The time at which current in the circuit becomes half of the steady current is

A. $\tau \ln 2$
B. $\frac{\ln 2}{\tau}$
C. $2 \tau \ln 2$
D. $\frac{\tau}{2} \ln 2$

Answer: A

D Watch Video Solution

21. A generator at a utility company produces

100 A of current at 4000 V . The voltage is
stepped up to 240000 V by a transformer
before it is sent on a high voltage transmission line. The current in transmission
line is
A. 3.67 A
B. 2.67 A
C. 1.67 A
D. 2.40 A

Answer: C

D Watch Video Solution
22. One $10 \mathrm{~V}, 60 \mathrm{~W}$ bulb is to be connected to

100 V line. The required inductance coil has
self-inductance of value $(f=50 \mathrm{~Hz})$
A. 0.052 H
B. 2.42 H
C. 16.2 mH
D. 1.62 mH

Answer: A

23. An $A C$ source of angular frequency ω is
fed across a resistor R and a capacitor C in series. The current registered is I. If now the frequency of source is changed to $\omega / 3$ (but maintaining the same voltage), the current in the circuit is found to be halved. The ratio of reactance to resistance at the original frequency ω will be.
A. $\sqrt{\frac{3}{5}}$
B. $\sqrt{\frac{2}{5}}$
C. $\sqrt{\frac{1}{5}}$
D. $\sqrt{\frac{4}{5}}$

Answer: A

D Watch Video Solution

24. If the reading of the voltmeters vary with
time as: $\quad V_{1}=20 \sin \omega t \quad$ and
$V_{2}=-20 \cos \left(\omega t+\frac{\pi}{6}\right)$ then the unknown
circuit element x is a:

A. pure (or ideal) inductor
B. practical inductor
C. pure (or ideal) capacitor
D. practical capacitor

Answer: D
25. The average and effective values for the waveshaphe shown in figure are:

A. $\frac{2}{\pi} V_{m}$ and $\frac{V_{m}}{2}$
B. $\frac{V_{m}}{\pi}$ and $\frac{V_{m}}{\sqrt{2}}$
C. $\frac{2}{\pi} V_{m}$ and $\frac{V_{m}}{\sqrt{2}}$
D. $\frac{V_{m}}{\pi \sqrt{2}}$ and $\frac{V_{m}}{\sqrt{2}}$

Answer: C

D Watch Video Solution

26. An alternating current is given by
$(\sqrt{3} \sin \omega t+\cos \omega t)$. The rms current is :
A. 2
B. $\sqrt{2}$
C. $2 \sqrt{2}$
D. 4

Answer: B

- Watch Video Solution

27. The frequency of oscillation of current in
the inductor is:

> A. $\frac{1}{3 \sqrt{L C}}$
> B. $\frac{1}{6 \pi \sqrt{L C}}$
> C. $\frac{1}{\sqrt{L C}}$
> D. $\frac{1}{2 \pi \sqrt{L C}}$

Answer: B

D Watch Video Solution

28. A coil has an inductance of $0.7 H$ and is
joined in series with a resistance of 220Ω.

When an alternating e.m.f of 220 V at 50 c.p.s.
is applied to it, then the wattless component of the current in the circuit is
A. 5 ampere
B. 0.5 ampere
C. 0.7 ampere
D. 7 ampere

Answer: B
(Watch Video Solution
29. Rms value of the saw-tooth voltage of peak
value V_{0} as shown in-

> A. $\frac{V_{0}}{2}$
> B. $\frac{V_{0}}{\sqrt{2}}$
> C. $\frac{V_{0}}{3}$
> D. $\frac{V_{0}}{\sqrt{3}}$

- Watch Video Solution

30. A $2.5 / \pi \mu F$ capacitor and a 3000 ohm
resistance are joined in series to an a.c. source of 200 volt and $50 \mathrm{sec}^{-1}$ frequency. The power factor of the circuit and the power dissipated in it will respectively be-

A. $0.6,0.06 \mathrm{~W}$

B. $0.06,0.6 \mathrm{~W}$
C. 0.6, 4.8W
D. $4.8,0.6 \mathrm{~W}$

Answer: C

D Watch Video Solution

