©゙’doubtnut

PHYSICS

BOOKS - CAREER POINT

UNIT TEST 9

Physics

1. Two blocks each of mass m lie on a smooth
table. They are attached to two other masses
as shown in the figure. The pulleys and strings
are light. An object O is kept at rest on the table. The sides $A B \& C D$ of the two blocks are made reflecting. The acceleration of two images formed in those two reflecting surfaces w.r.t. each other is:

A. $5 g / 6$
B. $5 g / 3$

C. $g / 3$

D. $17 g / 6$

Answer: B

D Watch Video Solution

2. An object is approaching a fixed plane mirror with velocity $5 \mathrm{~ms}^{-1}$ making an angle of 45° with the normal. The speed of image w.r.t. the mirror is
A. $5 m / s$

$$
\text { B. } \frac{5}{\sqrt{2}} m / s
$$

C. $5 \sqrt{2} m / s$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

3. A boy of height H is standing in front of a mirror, which has been fixed on the ground as
shown in figure. What length of his body can
the man see in the mirror? The length of the
mirror is $(H / 2)$.

A. H
B. $H^{2} /\left(H^{2}+L^{2}\right)^{1 / 2}$
C. Zero
D. $2 H^{2} / L$

Answer: C
4. Two plane mirror M_{1} and M_{2} are placed parallel to each other 20 cm apart. A luminous point object ' O ' is placed between them at 5 cm from M_{1} as shown in figure-

(a) The distances (in cm) of first three nearest images from mirror M_{1} are 5,35 and 45 respectively
(b) The distances (in cm) of first three nearest images from mirror M_{2} are 5,35 and 45 respectively
(c) The distances (in cm) of first three nearest
images from mirror M_{1} are 15,25 and 55 respectively.
(d) The distances (in cm) of first three nearest images from mirror M_{2} are 15,25 and 55 respectively
A. a, b
B. b,c
C. a,d

D. c,d

Answer: C

D Watch Video Solution

5. A linear object is placed along the axis of a mirror as shown in figure. If ' f ' is the focal length of the mirror then the length of image
is-

A. $\frac{2 f}{3}$
B. f
C. $\frac{f}{3}$
D. None of these

Answer: B

D Watch Video Solution
6. Concave mirror and convex mirror having equal focal lengths $2 f$ are placed on same principal axis. If the object $A B$ is placed between these mirros, find the height ratio of the images of this object on two mirrors $H_{x} / H_{y}=?$

A. $1 / 2$
B. $3 / 2$
C. $4 / 3$
D. $1 / 1$

Answer: B

- Watch Video Solution

7. An infinitely long rod lies along the axis of a concave mirror of focal length f. The near end of the rod is distance $u>f$ from the mirror. Its image will have length
A. $\frac{f^{2}}{u-f}$
B. $\frac{u f}{u-f}$
C. $\frac{f^{2}}{u+f}$
D. $\frac{u f}{u+f}$

Answer: A

- Watch Video Solution

8. In the figure shown $\frac{\sin i}{\sin r}$ is equal to:

A. $\frac{\mu_{2}^{2}}{\mu_{3} \mu_{1}}$
B. $\frac{\mu_{3}}{\mu_{1}}$
μ_{1}
C. $\frac{\mu_{3} \mu_{1}}{\mu_{2}^{2}}$
D. None of the above

Answer: B

D Watch Video Solution

9. The refracting angle of a prism is A and
refractive index of the material of prism is
$\cot (A / 2)$. The angle of minimum deviation
will be
A. $180^{\circ}-3 A$
B. $180^{\circ}+2 A$
C. $90^{\circ}-A$

D. $180^{\circ}-2 A$

Answer: D

D Watch Video Solution

10. A man looks down on a fish of length 20
cm . His eye is 2 m above the surface of the
water $(\mu=4 / 3)$ and the fish is 2 m below the
surface as shown in the figure the ratio of angular width $\Delta \theta$ of the fish as seen by the man in presence of water to the $\Delta \theta$ in the
absence of water is ($\Delta \theta$ is small)

A. $\frac{6}{5}$
B. $5 / 6$
C. $7 / 8$
D. $8 / 7$

Answer: D

- Watch Video Solution

11. A prism having an apex angle 4° and refractive index 1.5 is located in front of a vertical plane mirror as shown in figure.

Through what total angle is the ray is deviated

A. 176°
B. 4°
C. 178°
D. 2°

Answer: C

12. A ray of light is incident on a prism as
shown in fig. Find the total deviation suffered
by the ray if $\angle B A C=1^{\circ}$ and $\angle C A D=2^{\circ}$.

A. 1°
B. 1.5°
C. 2.5°
D. 2°

Answer: C

- Watch Video Solution

13. An optical fibre consists of core of μ_{1} surrounded by a cladding of $\mu_{2}<\mu_{1}$. A beam of light enters from air at an angle α with axis of fibre. The highest α for which ray can be
travelled through fibre is

A. $\cos ^{-1} \sqrt{\mu_{2}^{2}-\mu_{1}^{2}}$
B. $\sin ^{-1} \sqrt{\mu_{1}^{2}-\mu_{2}^{2}}$
C. $\tan ^{-1} \sqrt{\mu_{1}^{2}-\mu_{2}^{2}}$
D. $\sec ^{-1} \sqrt{\mu_{1}^{2}-\mu_{2}^{2}}$

Answer: B
14. Two identical glass ($\mu_{g}=3 / 2$) equiconvex lenses of focal length f are kept in contact. The space between the two lenses is filled with water ($\mu_{w}=4 / 3$). The focal length of the combination is
A. f
B. $\frac{f}{2}$
C. $\frac{4 f}{3}$
D. $\frac{3 f}{4}$

Answer: D

- Watch Video Solution

15. A uniform, horizontal parallel beam of light
is incident upon a prism as shown. The prism
is in the shape of a quarter cylinder, of radius
5 cm , and has refractive index $5 / 3$. The width of
the regionat which the incident rays after normal incidence on plane surface and subsequent refraction at curved surface intersect on x axis is (Neglect the ray which

travels along x-axis)

A. 4 cm
B. $5 / 4 \mathrm{~cm}$
C. $9 / 4 \mathrm{~cm}$
D. $25 / 4 \mathrm{~cm}$

Answer: D
16. Two thin lens have a combined power of

10D in contact. When separated by 20 cm their
equivalent power is 6.25 D . Find teir in dividual
powers in dioptres-
A. 3.5 and 6.5
B. 5 and 5
C. 7.5 and 2.5
D. 9 and 1

Answer: C

D Watch Video Solution
17. A beam of plane polarized light falls normally on a polarizer of cross sectional area
$3 \times 10^{-4} m^{2}$. Flux of energy of incident ray in
$10^{-3} W$. The polarizer rotates with an angular frequency of $31.4 \mathrm{rad} / \mathrm{sec}$. The energy of light passing through the polarizer per revolution will be
A. 10^{-4} Joule
B. 10^{-3} Joule
C. 10^{-2} Joule

D. 10^{-1} Joule

Answer: A

D Watch Video Solution

18. A screen is placed 50 cm from a single slit,
which is illuminated with $6000 \AA$ light. If distance between the first and third minima in
the diffraction pattern is 3.0 mm , what is the width of the slit?
A. $0.1 m m$
B. $0.2 m m$
C. 0.3 mm
D. $0.4 m m$

Answer: B

D Watch Video Solution

19. A slit of width is illuminated by white light.

For red light $(\lambda=6500 \AA)$, the first minima is obtained at $\theta=30^{\circ}$. Then the value of will be
A. $3250 \AA$
B. $6.5 \times 10^{-4} \mathrm{~cm}$
C. 1.3 micron
D. $2.6 \times 10^{-4} \mathrm{~cm}$

Answer: C

D Watch Video Solution

20. A beam of light AO is incident a glass slab
($\mu=1.54$) in the direction show. The reflected ray $O B$ is passed through a Nicol
prism. On viewing through a Nicol prism, we find on rotating the prism that
A. the intensity is reduced to zero and remains zero
B. the intensity reduces down somewhat
and rises again
C. there is no change in intensity
D. intensity gradually reduces to zero and
then again increases

Answer: D

D Watch Video Solution

21. Magnification produced by astronominal telescope for normal adjustment is 10 and
length of telescope is 1.1 m . The magnification when the image is formed at least distance of distinct vision $(D=25 \mathrm{~cm})$ is-
A. 14
B. 6
C. 16
D. 18

Answer: A

D Watch Video Solution

22. In a compound microscope, the focal lengths of two lenses are 1.5 cm and 6.25 cm an object is placed at 2 cm form objective and
the final image is formed at 25 cm from eye lens. The distance between the two lenses is
A. 6.00 cm
B. 7.75 cm
C. 9.25 cm
D. 11.00 cm

Answer: D

D Watch Video Solution

23. A telescope of diameter $2 m$ uses light of wavelength $5000 \AA$ for viewing stars.The minimum angular separation between two
stars whose is image just resolved by this

telescope is

A. $4 \times 10^{-4} \mathrm{rad}$
B. $0.25 \times 10^{-6} \mathrm{rad}$
C. $0.31 \times 10^{-6} \mathrm{rad}$
D. $5 \times 10^{-3} \mathrm{rad}$

Answer: C
(Watch Video Solution
24. In a Young's double-slit experiment, let S_{1}
and S_{2} be the two slits, and C be the centre of
the screen. If $\angle S_{1} C S_{2}=\theta$ and λ is
wavelength, the fringe width will be
A. $\frac{\lambda}{\theta}$
B. $\lambda \theta$
C. $\frac{2 \lambda}{\theta}$
D. $\frac{\lambda}{2 \theta}$

Answer: A
25. In Young's double-slit experiment, the intensity of light in front of one of the slits on
a screen is $I_{0} / 2$ where I_{0} is the maximum intensity. The distance between the slits is 5λ where λ is the wavelength of monochromatic light. How far away is the screen from the slit?
A. 20λ
B. 25λ
C. 40λ

D. 50λ

Answer: D

D Watch Video Solution

26. In Young's double slit experiment, the intensity of light at a point on the screen where path difference is λ is I. If intensity at another point is $1 / 4$, then possible path differences at this point are

$$
\text { А. } \lambda / 2, \lambda / 3
$$

B. $\lambda / 3,2 \lambda / 3$
C. $\lambda / 3, \lambda / 4$
D. $2 \lambda / 3, \lambda / 4$

Answer: B

D Watch Video Solution

27. In the ideal double-slit experiment, when a glass-plate(refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wave-length λ), the
intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is
A. 2λ
B. $2 \lambda / 3$
C. $\lambda / 3$
D. λ

Answer: A

28. If ratio of maximum to minimum intensity
in an interference experiment is 16:1 then ratio
of amplitudes of individual waves is-
A. $4: 1$
B. $16: 1$
C. $5: 3$
D. $25: 9$

Answer: C

- Watch Video Solution

29. An observer can see through a pin-hole the top end of a thin rod of height h, placed as shown in the figure. The beaker height is 3 h and its radius h. When the beaker is filled with a liquid up to a height 2 h , he can see the lower end of the rod. Then the refractive index of the liquid is

5

A. $\frac{5}{2}$
B. $\sqrt{\frac{5}{2}}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{3}{2}$

Answer: B

D Watch Video Solution

30. If white light traveling in air incidents over glass and undergoes refraction then which colour light deviates maximum-
A. Red
B. Yellow
C. Violet
D. All colours deviates by same angle

Answer: A

- Watch Video Solution

