

MATHS

BOOKS - NCERT EXEMPLAR MATHS (HINGLISH)

CONSTRUCTIONS

Constructions

1. To divide a line segment AB in the ratio 5:7,

first a ray AX is drawn, so that $\angle BAX$ is an

acute angle and then at equal distances point are marked on the ray AX such that the minimum number of these points is

- A. 8
- B. 10
- C. 11
- D. 12

Answer: D

Watch Video Solution

2. To divide a line segment AB in the ratio 4:7, a ray AX is drawn first such that $\angle BAX$ is an acute angle and then points A_1, A_2, A_3, \ldots are located at equal distance on the ray AX and the point B is joined to

- A. A_{12}
- B. A_{11}
- $\mathsf{C.}\,A_{10}$
- D. A_9

Answer: B

3. To divide a line segment AB in the ratio 5:6, draw a ray AX such that $\angle BAX$ is an acute angle, the draw a ray BY parallel to AX and the points

 A_1, A_2, A_3, \ldots and B_1, B_2, B_3, \ldots are located to equal distances on ray AX and BY, respectively. Then, the points joined are

A. A_5 and B_6

 $B. A_6 \quad \text{and} \quad B_5$

 $\mathsf{C}.\,A_4$ and B_5

 $D. A_5$ and B_4

Answer: A

Watch Video Solution

4. To construct a triangle similar to a given ΔABC with its sides $\frac{3}{7}$ of the corresponding sides of ΔABC , first draw a ray BX such that $\angle CBX$ is an acute angle and X lies on the opposite side of A with respect to BC. Then,

locate points $B_1,\,B_2,\,B_3,\,\dots$ on BX at equal distances and next step is to join

- A. B_{10} to C
- B. B_3 to C
- $\mathsf{C}.\,B_7$ to C
- D. B_4 to C

Answer: C

Watch Video Solution

5. To construct a triangle similar to a given ΔABC with its sides $\frac{3}{7}$ of the corresponding sides of ΔABC , first draw a ray BX such that $\angle CBX$ is an acute angle and X lies on the opposite side of A with respect to BC. The minimum number of points to be located at equal distances on ray BX is

A. 5

B. 8

C. 13

Answer: B

Watch Video Solution

6. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60° , it is required to draw tangents at end points of those two radii of the circle, the angle between them should be

A. 135°

B.
$$90^{\circ}$$

C.
$$60^{\circ}$$

D.
$$120^{\circ}$$

Answer: D

Watch Video Solution

7. By geometrical construction, it is possible to divide a line segment in the ratio $\sqrt{3}$: $\frac{1}{\sqrt{3}}$.

A. True

B. False

C

D.

Answer: True

Watch Video Solution

8. To constuct a triangle similar to a given ΔABC with its sides $\frac{7}{3}$ of the corresponding side of ΔABC , draw a ray BX making acute angle with BC and X lies on the opposite side

of A with respect of BC. The points B_1, B_2, \ldots, B_7 are located at equal distances on BX, B_3 is joined to C and then a line segment B_6C' is drawn parallel to B_3C , where C' lines on BC produced. Finally line segment A'C' is drawn parallel to AC.

Watch Video Solution

9. A pair of tangents can be constructed from a point P to a circle of radius 3.5 cm situated at a distance of 3 cm from the centre.

10. A pair of tangents can be constructed to a circle inclined at an angle of 170°

Watch Video Solution

Exercise 10 3 Short Answer Type Questions

1. Draw a line segment of length 7cm. Find a point P on it which divides it in the ratio 3:5.

Watch Video Solution

2. Draw a right $\triangle ABC$ in which BC=12 cm, AB=5 cm, and $\angle B=90^{\circ}$. Construct a triangle similar to it and of scale factor $\frac{2}{3}$. Is the new triangle also a right triangle?

Watch Video Solution

3. Draw A $\triangle ABC$ in which BC=6 cm, CA=5 cm and AB=4 cm. Construct a triangle similar to it and of scale factor $\frac{5}{3}$

4. Construct a tangent to a circle of radius 4cm from a point which is at a distance of 6 cm from its centre.

Exercise 10 4 Long Answer Type Questions

1. Two line segment AB and AC include an angle of 60° , where AB=5 cm and AC= 7 cm. Locate points P and Q on AB and AC, respectively such that $AP=\frac{3}{4}AB$ and $AQ=\frac{1}{4}AC$. Join P and Q and measure the length PO.

2. Draw a parallelogram ABCD in which BC=5cm and $\angle ABC=60^{\circ}$, divide it into triangles

BCD and ABD by the diagonal BD. Construct the triangle BD'C' similar to ΔBDC with scale factor $\frac{4}{3}$. Draw the line segment D'A' parallel of DA, where A' lies on extended side BA. Is A'BC'D' a parallelogram ?

View Text Solution

3. Draw two concentric circles of radii 3 cm and 5 cm. Taking a point on outer circle construct the pair of tangents to the other. Measure the

length of a tangent and verify it by actual calculation.

View Text Solution

4. Draw an isosceles triangle ABC in which AB=AC= 6 cm and BC=5 cm. Construction a triangle POR similar to ΔABC in which PQ=8 cm. Also justify the construction.

View Text Solution

5. Draw a ΔABC in which AB=5 cm, BC= 6 cm and $\angle ABC=60^\circ$. Construct a triangle similar to ABC with scale factor $\frac{5}{7}$. Justify the construction.

View Text Solution

6. Draw a circle of radius 4 cm. Construct a pair of tangents to it, the angle between which is 60° . Also justify the construction. Measure the

distance between the centre of the circle and the point of intersection of tangents.

Watch Video Solution

7. Draw a ΔABC in which AB=4 cm, BC=6 cm and AC=9cm. Construct a triangle similar to ΔABC with scale factor $\frac{3}{2}$. Justify the construction. Are the two triangles congruent? Note that all the three angles and two sides of the two triangles are equal.

