

MATHS

BOOKS - NCERT EXEMPLAR MATHS (HINGLISH)

INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS

Introduction To Trigonometry And Its Applications

1. If
$$\cos A = \frac{4}{5}$$
, then the value of $\tan A$ is

A.
$$\frac{3}{5}$$

$$\mathsf{B.}\;\frac{3}{4}$$

c.
$$\frac{4}{3}$$

D.
$$\frac{5}{3}$$

Answer: B

Watch Video Solution

2. if $\sin A = \frac{1}{2}$, then the value of $\cot A$

A.
$$\sqrt{3}$$

B.
$$\frac{1}{\sqrt{3}}$$

B.
$$\frac{1}{\sqrt{3}}$$
 C. $\frac{\sqrt{3}}{2}$

D. 1

Answer: A

3. The value of the expression
$$\cos ac(75^{\circ} + \theta) - \sec(15^{\circ} - \theta) - \tan(55^{\circ} + \theta) + \cot(35^{\circ} - \theta)$$

$$\cos ec (75^{\circ} +$$

$$\cos ec(75^\circ+ heta)-\sec(15^\circ- heta)-\tan(55^\circ+ heta)+\cot(35^\circ- heta)$$
 is

A.
$$-1$$

D. $\frac{3}{2}$

Answer: B

Watch Video Solution

4. If $\sin \theta = \frac{a}{h}$, then $\cos \theta$ is equal to

A.
$$\dfrac{b}{\sqrt{b^2-a^a}}$$

B.
$$\frac{b}{a}$$

C.
$$\dfrac{\sqrt{b^2-a^2}}{b}$$

D.
$$\frac{a}{\sqrt{b^2 - a^2}}$$

Answer: C

5. If
$$\cos(lpha+eta)=0$$
, then $\sin(lpha-eta)$ can be reduced to

A.
$$\cos \beta$$

B.
$$\cos 2\beta$$

$$\mathsf{C}.\sinlpha$$

D.
$$\sin 2\alpha$$

Answer: B

Watch Video Solution

- **6.** The value of $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} ... \tan 89^{\circ}$ is
 - **A**. 0
 - B. 1
 - C. 2
 - $\mathsf{D.}\,\frac{1}{2}$

Answer: B

7. If $\cos 9 lpha = \sin lpha$ and $9 lpha < 90^\circ$, then the value of $\tan 5 lpha$ is

A.
$$\frac{1}{\sqrt{3}}$$

B.
$$\sqrt{3}$$

Answer: C

Watch Video Solution

8. If ΔABC is right angled at C, then the value of $\cos(A+B)$ is

A. 0

- B. 1
- C. $\frac{1}{2}$ D. $\frac{\sqrt{3}}{2}$

Answer: A

- **9.** If $\sin A + \sin^2 A = 1$, then the value of $\cos^2 A + \cos^4 A$ is
 - A. 1
 - $\mathsf{B.}\;\frac{1}{2}$
 - C. 2
 - D. 3

Answer: A

Watch Video Solution

10. If $\sin \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$, then the value of $(\alpha + \beta)$ is

A. 0°

B. 30°

C. 60°

D. 90°

Answer: D

Find

the

value

of

$$\left\lceil rac{\sin^2 22^\circ + \sin^2 68^\circ}{\cos^2 22^\circ + \cos^2 68^\circ} + \sin^2 63^\circ + \cos 63^\circ \sin 27^\circ
ight
ceil$$

- A. 3
- B. 2
- C. 1
- D. 0

Answer: B

Watch Video Solution

12. If 4 an heta=3, then $\left(rac{4\sin heta-\cos heta}{4\sin heta+\cos heta}
ight)$ is equal to

B.
$$\frac{1}{3}$$

D.
$$\frac{3}{4}$$

Answer: C

13. if
$$\sin \theta - \cos \theta = 0$$
, then the value of $\left(\sin^4 \theta + \cos^4 \theta\right)$

- A. 1
- $\operatorname{B.}\frac{3}{4}$ $\mathsf{c.}\,\frac{1}{2}$
- D. $\frac{1}{4}$

Answer: C

Watch Video Solution

14. Find the value of $\sin(45^{\circ} + \theta) - \cos(45^{\circ} - \theta)$

A. $2\cos\theta$

B. 0

 $C. 2\sin\theta$

D. 1

Answer: B

15. A pole 6 m high casts a shadow $2\sqrt{3}$ m long on the ground, then find the angle oi elevation of the sun.

- A. 60°
- B. 45°
- C. 30°
- D. 90°

Answer: A

- **16.** value of $\frac{ an 47^{\circ}}{\cot 43^{\circ}} =$
 - **A.** 0

- C. 2
- D. 1

Answer: D

- **17.** The value of the expression $\left(\cos^2 23^\circ \sin^2 67^\circ
 ight)$ is
 - **A.** 1
 - B. 2
 - **C**. 3
 - D. 0

Answer: D

Watch Video Solution

18. The value of the expression $(\sin 80^{\circ} - \cos 80^{\circ})$ is negative.

19.
$$\sqrt{(1-\cos^2\theta)\sec^2\theta}=\tan\theta$$

Watch Video Solution

20. If $\cos A + \cos^2 A = 1$, then $\sin^2 A + \sin^4 A = -1$ (b) 0 (c) 1 (d) None of these

21.
$$(\tan \theta + 2)(2 \tan \theta + 1) = ?$$

A.
$$5 an heta + \sec heta$$

B.
$$5 an heta+2\sec^2 heta$$

C.
$$5 an^2 heta+\sec^2 heta$$

D. none of these

Answer: B

Watch Video Solution

22. If the length of the shadow of a tower is increasing, then the angle of elevation of the Sun is also increasing. Is it true?

Justify your answer.

23. If a man standing on a platform 3 m above the surface of a lake observes a cloud and its reflection in the lake, then the angle of elevation of the cloud is equal to the angle of depression of its reflection.

24. The value of $2\sin\theta$ can be $a+\frac{1}{a}$, where a is a positive number and $a\neq 1$.

25. $\cos \theta = \frac{a^2 + b^2}{2ab}$, where a and b are two distinct numbers such that ab > 0.

Watch Video Solution

26. The angle of elevation θ of the top of a tower is 30° . If the height of the tower is doubled, then new $\tan\theta$ will be

A.
$$\frac{\sqrt{3}}{2}$$

$$\mathsf{B.}\;\frac{3}{2}$$

$$\operatorname{C.}\frac{2}{3}$$

D.
$$\frac{2}{\sqrt{3}}$$

Answer: D

27. If the height of a tower and the distance of the point of observation from its foot, both are increased by $10\,\%$, then the angle of elevation of its top remains unchanged.

28. Prove that
$$rac{\sin heta}{1+\cos heta}+rac{1+\cos heta}{\sin heta}=2\cos ec heta$$

29.
$$rac{ an A}{1+\sec A}-rac{ an A}{1-\sec A}=2\cos ecA$$

30. If $\tan A = \frac{3}{4}$, then $\sin A \cos A = .$

A.
$$\frac{12}{24}$$

$$\mathsf{B.}\;\frac{12}{25}$$

$$\mathsf{C.}\;\frac{9}{25}$$

D.
$$\frac{16}{25}$$

Answer: B

Watch Video Solution

31. $(\sin \alpha + \cos \alpha)(\tan \alpha + \cot \alpha) = \sec \alpha + \cos ec\alpha$

$$\left(\sqrt{3}+1
ight)\left(3-\cot30^{\circ}
ight)= an^{3}\left(60
ight)^{\circ}-2\sin60^{\circ}$$

Watch Video Solution

33. Show that $1+\dfrac{\cot^2\alpha}{1+\cos ec\alpha}=\cos ec\alpha$

34.
$$\tan \theta + \tan(90^{\circ} - \theta) = \sec \theta \times \sec(90^{\circ} - \theta)$$

35. Find the angle of elevation of the Sun when the shadow of a pole $h\ m$ high is $\sqrt{3}h\ m$ long.

- A. 30°
- B. 45°
- C. 60°
- D. 90°

Answer: A

36. If
$$\sqrt{3} an heta = 1$$
 then find value of $\sin^2 heta - \cos^2 heta$

A.
$$-\frac{1}{2}$$

B.
$$\frac{1}{2}$$

C. 1

D. None

Answer: A

Watch Video Solution

37. A ladder 15 m long just reaches the top of a vertical wall. If the ladder makes an angle of 60^{0} with the wall, then the height of the wall is $15\sqrt{3}m$ (b) $\frac{15\sqrt{3}}{2}m$ (c) $\frac{15}{2}m$ (d) 15m

- **A.** 0
- B. 1
- $\mathsf{C.}\ 2$
- D. 3

Answer: B

- **39.** If $2\sin^2\theta \cos^2\theta = 2$, find the value of θ .
 - A. 30°
 - B. 60°
 - C. 90°
 - D. None

Answer: C

Watch Video Solution

40. Evaluate :

$$rac{\cos^2(45+ heta)+\cos^2(45- heta)}{ an(60^\circ+ heta) an(30^\circ- heta)} + \cos ec(75^\circ+ heta) - \sec(15^\circ- heta)$$

Watch Video Solution

41. An observer, 1.5m tall, is 20.5m away from a tower 22m high. Determine the angle of elevation of the top of the tower from the eye of the observer.

A. 60°

B. 45°

C. 30°

D. 90°

Answer: B

42.

Watch Video Solution

 $\sec^4 \theta - \sec^2 \theta = \tan^4 \theta + \tan^2 \theta$

Prove

Watch Video Solution

43. If $\cos ec\theta + \cot \theta = p$, then $\cos \theta =$

the

following

identity:

A. $\dfrac{p^2-1}{p^2+1}$ B. $\dfrac{p^2-2}{p^2+1}$

C.
$$rac{p^2-1}{p^2+2}$$

D. None

Answer: A

Watch Video Solution

- **44.** Prove that $\sqrt{\sec^2 \theta + \cos ec^2 \theta} = \tan \theta + \cot \theta$.
 - Watch Video Solution

45. The angle of elevation of the top of a tower from a certain point is 30° . If the observer moves 20 m towards the tower, the angle of elevation of the top of the tower increases by 15° . The height of the tower is

A. 17.3m

B. 21.9m

C.27.3m

D.30m

Answer: C

Watch Video Solution

46. If $1+\sin^2\theta=3\sin\theta\cos\theta$, then prove that $\tan\theta=1$ or $\frac{1}{2}$.

- **A.** 1
- B. 3
- $\mathsf{C.}\ 0$
- D. 2

Answer: D

48. The angle of elevation of the top of a tower from two distinct points s and t from foot are complementary. Prove that the height of the tower is \sqrt{st} .

49. The shadow of a tower standing on a level ground is found to be 40 m longer when the Suns altitude is 30° than when it is 60° . Find the height of the tower.

- A. $20\sqrt{3}$
- B. $10\sqrt{3}$
- C. $15\sqrt{3}$
- D. None

Answer: A

Watch Video Solution

50. A vertical tower Stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on

the plane, the angles of Elevation of the bottom and the top of the flag staff are α and β respectively Prove that the height of the tower is $\frac{h\tan\alpha}{\tan\beta-\tan\alpha}$

Watch Video Solution

51. if
$$\tan \theta + \sec \theta = l$$
 then $\tan \theta =$

A.
$$\frac{l^2+2}{2}$$

B.
$$\frac{l^2+1}{l}$$

$$\mathsf{C.}\ \frac{l^2+l}{2}$$

D. None

Answer: B

52. If $\sin \theta + \cos \theta = p$ and $\sec \theta + \cos ec\theta = q$; show that $q(p^2-1)=2p$

53. If
$$a\sin\theta+b\cos\theta=c$$
, then prove that $a\cos\theta-b\sin\theta=\sqrt{a^2+b^2-c^2}$

54. Prove that
$$rac{1+\sec heta- an heta}{1+\sec heta+ an heta}=rac{1-\sin heta}{\cos heta}$$

55. The angle of elevation of the top of a tower 30 m high from the foot of another tower in the same plane is 60° and the angle of elevation of the top of the second tower from the foot of the first tower is 30° . Find the distance between the two and also the height of the tower.

Watch Video Solution

56. From the top of a tower h m high, angles of depression of two objects, which are in line with the foot of the tower are α and $\beta(\beta>\alpha)$. Find the distance between the two objects.

57. A ladder rests against a vertical wall at inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that it's upper end slides q down the wall and then ladder make an angle β to the horizontal show that $\frac{p}{q} = \frac{\cos \beta - \cos \alpha}{\sin \alpha - \sin \beta}.$

Watch Video Solution

58. The angle of elevation of the top of a vertical tower from a point on the ground is 60° . From another point 10 m vertically above the first, its angle of elevation is 30° . Find the height of the tower.

A. 5

B. 10

C. 15

D.20

Answer: C

Watch Video Solution

59. From a window (h meter above ground) the angle of elevation of other house is θ and angle of depression is ϕ . Find the height of the house.

Watch Video Solution

60. The lower window of a house is at a height of 2m above the ground and its upper window is 4m vertically above the

tower window. At certain instant the angles of elevation of a balloon from these windows are observed to be 60° and 30° , respectively. Find the height of the balloon above the ground.

