

CHEMISTRY

BOOKS - NCERT CHEMISTRY (HINGLISH)

HYDROCARBONS

Multiple Choice Questions Mcqs

1. Arrange the following in decreasing order of their boiling points.

(A). N-butane

- (B). 2-methylbutane
- (C). N-pentane
- (D). 2,2-dimethylpropane

A.
$$A > B > C > D$$

B. $B > C > D > A$
C. $D > C > B > A$

 $\mathsf{D}.\, C > B > D > A$

Answer: D

2. Arrange the halogens F_2 , Cl_2 , Br_2 , I_2 , in order of their increasing reactivity with alkanes.

A.
$$I_2 < Br_2 < Cl_2 < F_2$$

B. $Br_2 < Cl_2 < F_2 < I_2$

C. $F_2 < Cl_2 < Br_2 < I_2$

D.
$$Br_2 < I_2 < Br_2 < I_2$$

Answer: A

3. The increasing order of reduction of alkyl halides with zinc and dilute HCl is

A. R - Cl < R - I < R - Br

 $\mathsf{B.}\,R-Cl < R-Br < R-I$

 $\mathsf{C.}\,R-I < R-Br < RCl$

D.
$$R - Br < R - I < R - Cl$$

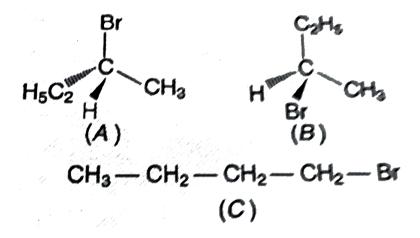
Answer: B

4. The correct IUPAC name of the following alkane is

A. 3, 6-diethyl-2-methyloctane

B. 5-isopropyl -3-ethyloctane

C. 3-ethyl-5-isopropyloctane


D. 3-isopropyl-6-ethyloctane

Answer: A

5. The addition of HBr of 1-butene gives a mixture of products

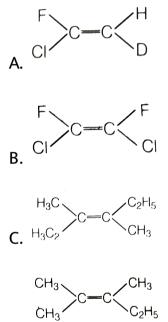
A,B and C

(C)
$$CH_3 - CH_2 - CH_2 - CH_2 - Br$$

The mixture consists of


A. A and B as major and C as minor products

B. B as major, A and C as major products

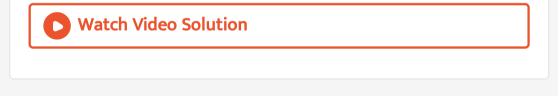

C. B as minor, A and C as major products

D. A and B as minor and C as major products

Answer: A

6. Which of the following will not show geometrical isomerism?

Answer: D



7. Arrange the following hydrogen halides in order of their decreasing reactivity with propene.

A. HCl > HBr > HIB. HBr > HI > NClC. HI > NBr > HCl

D. HCl > HI > HBr

Answer: C

8. Arrange the carbanions, $(CH_3)_3\overline{C}, \overline{C}Cl_3, (CH_3)_2\overline{C}H, C_6H_5\overline{C}H_2$, in order of their decreasing stability

A. A > B > C

 ${\rm B.}\,B>A>C$

 $\mathsf{C}.\, C > B > A$

 $\mathsf{D}.\, C > A > B$

Answer: **B**

9. Arrange the following alkyl halides in decreasing order of the rate or β -elimination reaction alcoholic KOH.

A.
$$CH_3 - \displaystyle \mathop{C}\limits_{l}^{H} - CH_2Br$$

B. $CH_3 - CH_2 - Br$
C. $CH_3 - CH_2 - Br$
A. $A > B > C$

$\mathsf{B.}\, C > B > A$

 $\mathsf{C}.\,B>C>A$

 $\mathsf{D}.\, A > C > B$

Answer: D

10. Which of the following reactions of methane is incomplete combustion:

$$\begin{array}{l} \mathsf{A.}\ 2CH_4+O_2 \xrightarrow{\mathrm{Cu}/523\mathrm{K}/100\mathrm{atm}} 2CH_3OH \\\\ \mathsf{B.}\ CH_4+O_2 \xrightarrow{Mo_2O_3} HCHO+H_2O \\\\ \mathsf{C.}\ CH_4+O_2 \rightarrow C(S)+2H_2O(l) \\\\\\ \mathsf{D.}\ CH_2+2O_2 \rightarrow CO_2(g)+2H_2O(l) \end{array}$$

Answer: C

Watch Video Solution

Multiple Choice Questions More Than One Options

1. Some oxidation reactions of methane are given below. Which of them is/are controlled oxidation reactions?

$$\begin{array}{l} \text{A. } CH_4(g) + 2O_2(g) \to CO_2(g) + 2H_2O(l) \\\\ \text{B. } CH_4(g) + O_2(g) \to C(s) + 2H_2O(l) \\\\ \text{C. } CH_4(g) + O_2(g) \xrightarrow{Mo_2O_3} HCHO + H_2O \\\\ 2CH_4(g) + O_2(g) \xrightarrow{\text{Cu}//523//100\text{atm}} 2CH_3OH \\\\ \text{D. } 2CH_4(g) + O_2(g) \xrightarrow{\text{Cu}//523//100\text{atm}} 2CH_3OH \end{array}$$

Answer: C::D

~ ~ ~ /

2. Which of the following alkenes on ozonolysis give a mixture of ketones only?

A.
$$CH_3 - CH = CH - CH_3$$

B. $CH_3 - C - CH = CH_3$
 \downarrow_{CH_3}
C.

Answer: C

Watch Video Solution

 $\mathsf{D}. \, CH_3 - CH = CH_2$

3. Which are the correct IUPAC names of the following compound?

A. 5-Butyl-4-isopropyldecane

B. 5-Ethyl-4-propyldecane

C. 5-sec-Butyl-4-iso-propyldecane

D. 4-(1-methylenthyl)-5-(1-methylpropyl)-decane

Answer: C::D

Watch Video Solution

$$\begin{array}{c} H_{3}C - CH_{2} - CH_{3} \\ | \\ CH_{2} \\ | \\ H_{3}C \\ C \\ C \\ H_{3} \end{array}$$

Which are the correct IUPAC names of the following compound?

A. 5-(2', 2'-Dimethylpropyl)-decane

B. 4-Butly-2'2-dimethylnonane

C. 2'2-Dimethyl-4-pentlyoctane

D. 5-neo-Pentyldecane

Answer: A::D

5. For an electrophilic substitution reaction , the presence of a halogen atom in the benzene ring

A. deactivates the ring by inductive effect

B. deactivates the ring by reasonance

C. increases the charge density at ortho and para position

relative to meta position by resonance.

D. directs the incoming electrophile to meta position by

increasing the charge density relative to ortho and para

position.

Answer: A::C

Watch Video Solution

6. In an electrophilic substitution reactitution reaction of nitrobenzene, the presence of nitro group.....

A. deactivates the ring by inductive effect

B. activates the ring by inductive effect

C. decreases the charge density at ortho and para position

of the ring relative to meta position by resonance

D. increases the charge density at meta position relative to

the ortho and para positions of the ring by resonance

Answer: A::C

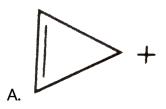
7. Which of the following are correct ?

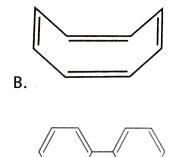
A. $CH_3 - O - CH_2^{\,\oplus}$ is more stable than $CH_3 - CH_2^{\,\oplus}$

 $\mathsf{B}.\,(CH_3)_2 CH^{\,\oplus}\, \text{is less stable than} CH_3 - CH_2 - CH_2^{\,\oplus}$

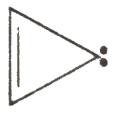
C.

 $C_2=CH-CH_2^{\,\oplus} ext{ is more stable than } CH_3-CH_2-CH_2^{\,\oplus}$


D. $CH_2 = CH^{\oplus}$ is more stable than $CH_3 - CH_2^{\oplus}$


Answer: A::C

Watch Video Solution


8. Four structures are given in options (a) to (d) . Examine them

and select the aromatic structures.

Answer: A::C

9. The molecules having dipole moment are :

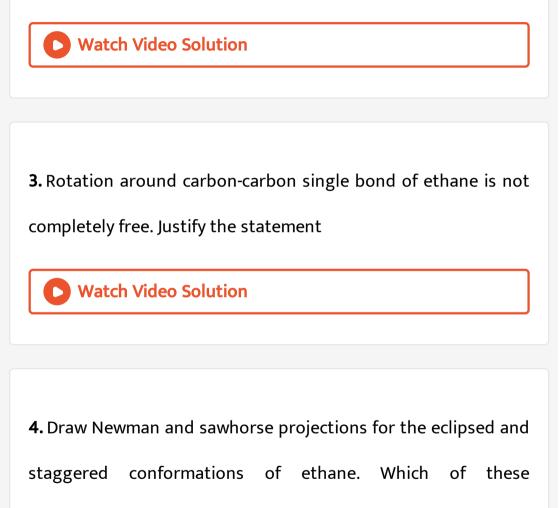
A. 2,2-Dimethylpropane

B. trans-Pent-2-ene

C. cis-Hex-3-ene

D. 2,2,3,3-Tetramethylbutane

Answer: B::C


Short Answer Type Questions

1. Why do alkenes prefer to undergo electrophilec addition reaction while arenes prefer electrophilic substitution reactions

? Explain.

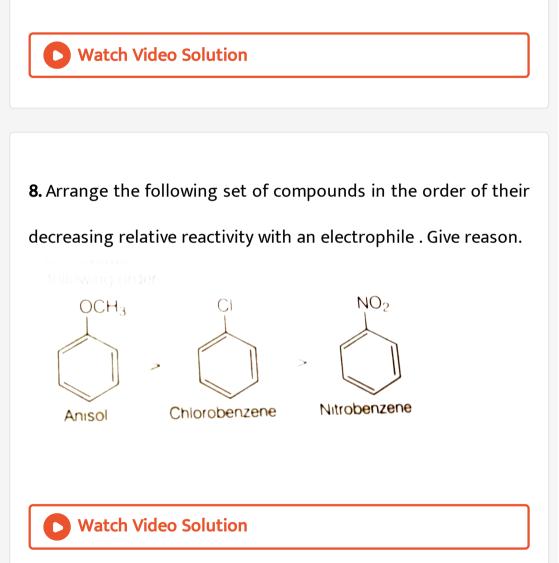
Watch Video Solution

2. Alkynes on reduction with sodium in liquid ammonia form trans alkenes. Will the butene thus formed on reduction of 2-butyne show the geometrical isomerism ?

conformations is more stable and why?

5. The intermediate carbocation formed in the reactions of HI,HBr, and HCl with propene is the same and the bond energy of HCl, HBr, and HI is $430.5KJmol^{-1}$, $363.7KJmol^{-1}$ and $296.8KJmol^{-1}$ respectively. What will be the order of reactivity of these halogen acids?

6. What will be the product obtain as a result of the following


reaction?

+
$$CH_3 - CH_2 - CH_2 - Cl$$
 Anhy AlCl₃

Watch Video Solution

7. How will you convert benzene into (a) p-nitrobromobenzene

(b) m-nitrobromobenzene

9. Despite their-I effect, halogens are o- and p- directing in haloarenes. Explain .

10. Why does presence of a nifro group make the benzene ring less reactive in comparison to the unsubstituted benzene ring . Explain .

Watch Video Solution

11. Suggest a route for the preparation of nitrobenzene starting

from acetylene ?

Watch Video Solution

12. Predict the major product(S) of the following reactions and

explain their formation .

$$H_3C-CH=CH_2 \xrightarrow{(Ph-CO-0)_2} H_3C-CH=CH_2 \xrightarrow{HBr}$$

Watch Video Solution

13. Nucleophiles and electrophiles are reaction intermediates having electron rich and electron deficient centres respectively. Hence, they tend to attack electron deficient and electron rich centres respectively. Classify the following species as electrophiles and uncheophiles.

(i) H_3CO^- (ii) $H_3C - \overset{||}{C} - O^-$ (iii)Cl (iv) Cl_2C : (v) $(H_3C)_3C^+$

(vi) Br^{-}

(vii) H_3COH

(viii) R-NH-R

Watch Video Solution

14. The relative reactivity of 1° , 2° and 3° hybrogen's towards chlorination is 1:3.8:5. Calculate the percentages of all monochlorinated products obtained from 2-methylbutane.

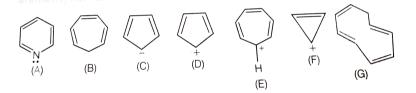
Watch Video Solution

15. Write the structures and names of products obtained in the reactions of sodium with a mixture of 1-iodo-2-methylpropane and 2-iodopropane.

16. Write hydrocarbon radicals that can be formed as intermediates during monochlorination of 2-methylpropane ? Which of them is more stable? Give reasons.

17. An alkane C_8H_{18} is obtained as the only product on subjecting a primary alkyl halide to Wurtz reaction. On monobromination this alkane yields a single isomer of a tertiary bromide. Write the structure of alkane and the tertiary bromide.

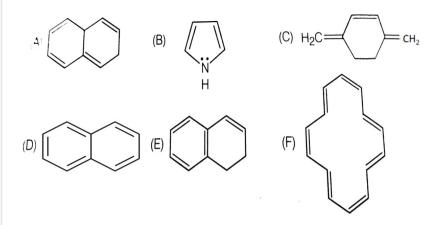
18. The ring systems having following characteristics are aromatic.


(i) Planar ring containing conjugated π bonds .

(ii) complete dolocalisation of the π -electron in ring system i.e.

, each atom in the ring has unbybridised p-orbital , and

(iii) Presence of $(4n + 2)\pi$ -electrons in the ring where n is an integer(n = 0, 1, 2,) [Huckel rule]. Using this information


classify the following compounds as aromatic/non-aromatic.

Watch Video Solution

19. Which of the following compounds are aromatic according

to Huckel's rule?

A. A,B,C

B. B,D,E,F

C. B,D,E

D. All are correct

Answer: C

20. Suggest a route to prepare ethyl hydrogensulphate $(CH_3 - CH_2 - OSO_2 - OH)$ starting from ethanol (C_2H_5OH) .

Watch Video Solution

Matching The Columns

1. Match the reagent from Column I which on reaction with

 $CH_3 - CH = CH_2$ gives some product given in Column II as

per the codes given below

Column I		Column II		
Α.	$O_3 / Zn + H_2O$	1.	Acetic acid and CO ₂	
В.	KMnO ₄ / H ⁺	2.	Propan-1-ol	
C.	KMnO ₄ / OH	3.	Propan-2-ol	
D:	Ӊ <mark>0/н⁺</mark>	4.	Acetaldehyde and formaldehyde	
E.	B_2H_6 / NaOH ⁺ and H_2O_2	5.	Propane-1, 2-diol	

2. Match the hydrocarbons in column I with the boiling points

given in column II.

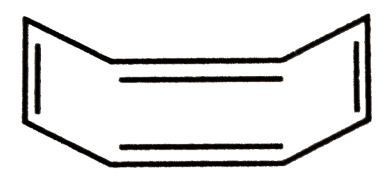
Column I	Column II		
(i). n-Pentane	(a).	$282.5~{ m K}$	
(ii). iso-Pentane	(b).	$309~{ m K}$	
(iii). neo-Pentane	(c).	$301\mathrm{K}$	

3. Match the follwing reactants in Column I with the

corresponding reaction products in Column II.

	Column I	Translad Column II
A.	Benzene + $Cl_2 \xrightarrow{AlCl_3} \rightarrow$	1. Benzoic acid
В.	$Benzene + CH_3CI \xrightarrow{AlCl_3} \to$	2. Methyl phenyl ketone
. C.	$Benzene + CH_3COCI \xrightarrow{AICI_3} \rightarrow$	3. Toluene
D.	Toluene — KMnO₄ / NaOH →	4. Chlorobenzene
	n generalise Beneralise National States and States States and States and St	5. Benzene hexachloride

4. Match the reactions given in Column I with the reaction


types in Column II.

	Column I		Column
А.	$CH_2 = CH_2 + H_2O \xrightarrow{H^+} CH_3CH_2OH$	1.	Hydrogenation
В.	$CH_2 = CH_2 + H_2 \xrightarrow{Pd} CH_3 CH_3$	2.	Halogenation
C.	$CH_2 = CH_2 + CI_2 \longrightarrow CI - CH_2 - CH_2 - CH_2$	3.	Polymerisation
D.	$3 \text{ CH} \equiv \text{CH} \xrightarrow{\text{Cutube}}_{\text{Heat}} \text{C}_6 \text{H}_6$	4.	Hydration
		5.	Condensation

Watch Video Solution

Assertion And Reason

1. Assertion (A) The compound tetraene has the following structural formul.

It is cyclic and has conjugated 8π -electron system but it is not an aromatic compound.

Reason (R) $(4n+2)\pi$ electrons rule does not hold good and ring is not planar.

A. Both A and B are correct and R is the correct explanation

of A

B. Both A and R are not correct

C. Both A and R are not correct

D. A is not correct but R is correct

Answer: a

2. Assertion (A) Toluene on Friedal Crafts methylation gives o - and p-xylene.

Reason (R) CH_3 -group bonded to benzene ring increases density at o - and p- position.

A. Both A and B are correct and R is the correct explanation

of A

B. Both A and R are not correct

C. Both A and R are not correct

D. A is not correct but R is correct

Answer: a

3. S-I: Nitration of benzene with nitric acid requires the use of concentrated sulphuric acid

S-II: The mixture of concentrated sulphuric acid and concentrated nitric acid produces the electrophile, nitronium ion.

A. Both A and B are correct and R is the correct explanation

of A

B. Both A and R are not correct

C. Both A and R are not correct

D. A is not correct but R is correct

Answer: a

Watch Video Solution

4. Assertion (A) Amon isomeric isomeric pentanes, 2, 2dimethylpentane has highest boiling point.

Reason (R) Branching does not affect the boiling point.

A. Both A and B are correct and R is the correct explanation

of A

B. Both A and R are not correct

C. Both A and R are not correct

D. A is not correct but R is correct

Answer: c

Long Answer Type Questions

1. An alkyl halide C_5H_{11} (A) reacts with ethanolic KOH to give an alkene 'B' which reacts with Br_2 to give a compound 'C' which on dehydromination gives an alkyne 'D' . On treatment with sodium metal in liquid ammonia one mole of 'D' give one mole of the sodium salt of 'D' and half a mole of hydrogen gas . Complete hydrogenation of 'D' yields a straight chain alkane. Identify A, B, C and D. Give the the reactions involved.

Watch Video Solution

2. 448mL of a hydrocarbon (A) having C (87.80%), H (12.19%) weight 1.64g at NTP. On hydrogenation it gives 2 methyl pentane. Treatment of (A) with acidic $HgSO_4$ gives a new compound (B) of molecular weight $C_6H_{12}O$. Compound (A) does not react with ammoniacal $AgNO_3$. What is the structure of (A)?

3. An unsaturated hydrocarbon 'A' adds two molecules of H_2 and on reductive ozonolysis gives butane-1, 4-dial, ethanal and propanone. Give the structure of 'A', write its IUPAC name and explain the reactions involved.

4. In the presence of peroxide addition of HBr to propene takes

place according to anti Markownikoff's rule but peroxide effect

is not seen in the case of HCl and HI. Explain.

