©゙doubtnut

CHEMISTRY

BOOKS - NCERT CHEMISTRY (HINGLISH)

STRUCTURE OF ATOM

Others

1. Which of the following conclusions couldnot be derived from Rutehrford's α-particle scattering experiment?
A. Most of the space in the atom is empty
B. The radius of the atom is about $10^{-10} \mathrm{~m}$ while that of nucleus is

$$
10^{-15} \mathrm{~m}
$$

C. Electrons move in a circular path of fixed energy called orbits.
D. Electrons and the nucleus are held together by electrostatic forces of attraction

Answer: C

- Watch Video Solution

2. Which of the following options does not represent ground state electronic configuration of an atom?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 d^{8} 4 s^{2}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9} 4 s^{2}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 d^{10} 4 s^{1}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$

Answer:

3. The probability density plots of 1 s and 2 s orbitals are given in figure.

The density of dots in a region represetns the probability density of finding electrons in the region. On the basis of above diagram which of the following statements is incorrect?
A. 1s and 2 s orbitals are spherical in shape
B. The probability of finding the electron is maximum near the nucleus
C. The probability of finding the electron at a given distance is equal in all directions
D. The probability density of electrons for 2 s orbital dec reases uniformly as distance from the nucleus increases.

Answer:

- Watch Video Solution

4. Which of the following statement is not correct regarding cathode rays
A. They star from the cathode and move towards the anode
B. They travel in straight line in the absence of an external electrical or magnetic field
C. Characteristics of cathoe rays do not depend upn the material of electrodes in cathode ray tube
D. Characteristics of cathode rays depend upon the nature of gas present in the cathode ray tube

Answer:

5. Which of the following statements about the electron is incorrect?
A. It is a negatively charged particle
B. The mass of electron is equal to the mass of neutron
C. It is a basic consituent of all atoms
D. It is a constituent cathode rays.

Answer: B

- Watch Video Solution

6. Which of the following properties of atom could be explained correctly by Thomson model of atom?
A. Overall neutrality of atom
B. Spectra of hydrogen atom
C. Position of electrons, Protons and neutrons in atom
D. Stability of atom.

D Watch Video Solution

7. Two atoms are said to be isobars is
A. they have same atomic number but different mass number
B. they h ave same number of electrons but different number of neutrons
C. they have same number of neutrons but different number of electrons.
D. sum of the number of protons and neutrons is same but the number of protons is different.

Answer: D

- Watch Video Solution

8. The number of radial nodes for $3 p$ orbital is..
A. 3
B. 4
C. 2
D. sum of the number of protons and neutrons is same but the number of protons is different.

Answer:

9. Number of angular nodes for 4d orbtial is
A. 4
B. 3
C. 2
D. 1

Answer:

D Watch Video Solution

10. Which of the following is responsible to rule out the existence of definite paths or trajectories of electrons?
A. Pauli's exclusion principle
B. Heisenberg's uncertianity principle
C. Hund's rule of maximum multiplicity
D. Aufbau principle

Answer:

D Watch Video Solution

11. Total number of orbitals associated with thrid shell will be.....
A. 2
B. 4
C. 9
D. 3

Answer:

- Watch Video Solution

12. Orbital angular momentum depends on
A. 1
B. n and I
C. n and m
D. m and s

Answer:

13. Chlorine exists in two isotopic forms $\mathrm{Cl}-37$ and $\mathrm{Cl}-35$ but its atomic mass is 35.5 . this indicates the ratio of $\mathrm{Cl}-37$ and $\mathrm{Cl}-35$ is approximately
A. 1:2
B. 1:1
C. 1:3
D. 3: 1

Answer:

Watch Video Solution

14. Which of the following pairs of ions have the same electronic
configuration A) $\mathrm{Cr}^{+3}, \mathrm{Fe}^{+3}$
B) $\mathrm{Fe}^{+3}, \mathrm{Mn}{ }^{+2}$
C) $\mathrm{Fe}^{+3}, \mathrm{Co}^{+3}$
D)
$S c^{+3}, C r^{+3}$
A. $\mathrm{Cr}^{3+}, \mathrm{Fe}^{3+}$
B. $F e^{3+}, M n^{2+}+$
C. $\mathrm{Fe}^{3+}, \mathrm{CO}^{3+}$
D. $S c^{3+}, C r^{3+}$

Answer:

D Watch Video Solution

15. For the electrons of oxygen atom, which of the following statemetns correct?
A. $Z_{\text {eff }}$ for an electron in a 2 s orbital is the same as $Z_{e f f}$ for an electron in a $2 p$ orbtial
B. An electron in the 2 s orbtial has the same energy as an electron in the $2 p$ orbital
C. $z_{\text {eff }}$ for an electron in 1 s orbital is the same as $z_{e f f}$ for an electron in a 2 s orbital
D. The two electrons present in the 2 s orbtial have spin quantum numbers m_{s} but of opposite sign.

Answer:

- Watch Video Solution

16. It travelling at same speeds, which of the following matter waves have the shortest wavelength?
A. Electron
B. Alpha partice $\left(H e^{2+}\right)$
C. Neutron
D. Proton

Answer:

17. Identify the paris which are not of isotopes?
A. ${ }_{6}^{12}{ }_{6}^{13} Y$
B. ${ }_{17}^{35} X \cdot{ }_{17}^{37} Y$
C. $._{6}^{14},{ }_{6}^{12} Y$
D. ${ }_{4}^{8} X,{ }_{5}^{8} Y$

Answer: D

Watch Video Solution

18. Out of the folowing paris of electorns, identify the pairs of electrons present in degenrate orbitals.
A. in

$$
=3, l=2, m_{1}=-2, m_{s}=-\frac{1}{2} i \in=3, l=2, m_{1}=-1, m_{s}=
$$

B.

$$
\in=3, l=1, m_{1}=1, m_{s}=+\frac{1}{2} i \in=3, l=2, m_{1}=1,=+\frac{1}{2}
$$

C.

$$
i n=4, l=1, m_{1}=1, m_{s}=+\frac{1}{2} i i n=3, l=2, m_{1}=1, m_{s}=+
$$

D.

$$
\in=3, l=2, m_{1}=+2, m_{s}=-\frac{1}{2} i i n=3, l=2, m_{1}=+2, m_{s}
$$

Answer:

- Watch Video Solution

19. Which of the following sets of quantum numbers are correct? nlmnlm
A. $11+2$
B. $21+1$
C. 3 2-2
D. 3-2
20. In which of the following pairs the ions are isoelectronic?
A. $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}$
B. $A l^{3+} . O^{-}$
C. $\mathrm{Na}^{+}, \mathrm{O}^{-}$
D. $\mathrm{Na}^{3-}, \mathrm{Cl}^{-}$

Answer: A

- Watch Video Solution

21. Which of the following statements concerning the quantum numbers are correct?
A. Angular quantum number determines the three dimensional shape of the orbital
B. The principal quantum number determines the orientation and energy of the orbital
C. Magnetic quantum number determ ines the size of the orbital
D. Spin quantum number of an electron determines the orientation of the spin of electron relative to the choses axis.

Answer:

- Watch Video Solution

22. Arrange s, p and d subshells of a shell in the increasing order of effective nuclear charge ($Z_{e f f}$) experienced by the electron present in them.

- Watch Video Solution

23. Show the distribution of electrons in oxygen atom (atomic number 8) using orbital diagram.

Watch Video Solution

24. Nickel atom can lose two electrons to form Ni^{2+} ion. The atomic number of nickel is 28 . From which orbital will nickel lose two electrons?

- Watch Video Solution

25. Which of the following orbitals are degernate?
$3 d_{x y}, 4 d_{x y}, 3 d_{z^{2}, 3 d_{y z} z}, 4 d_{y z}, 4 d_{z}{ }^{2}$

- Watch Video Solution

26. Calculate the total number of angular nodes and radical nodes present in 3p orbital.
27. The arrangement of orbitals on the basis of energy is based upon their $(\mathrm{n}+\mathrm{I})$ value. Lower the value of $(\mathrm{n}+\mathrm{l})$, lower is the energy . For orbitals having same values of $(n+1)$. The orbital with lower value of n will have lower energy.
I. Based upon the baove information arrange the following orbitals in the increasing order of energy.
(a) $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 2 \mathrm{p}$ (b) $4 \mathrm{~s}, 3 \mathrm{~s}, 3 \mathrm{p}, 4 \mathrm{~d}$
(c) $25 \mathrm{p}, 4 \mathrm{~d}, 5 \mathrm{~d}, 4 \mathrm{f}, 6 \mathrm{~s}$ (d) $5 \mathrm{f}, 6 \mathrm{~d}, 7 \mathrm{~s}, 7 \mathrm{p}$
II. Based upon the above information Solve the question. give below.
(a) hich of the following orbitals has the lowest energy
$4 d, 4 f, 5 s, 5 p$
(b) which of the following orbitals has the higher energy?
$5 p, 5 d, 5 f, 6 s, 6 p$

- Watch Video Solution

28. Which of the following will not show deflection from the path on passing through an electric field?

Proton,cathode rays, electron,neutron.

- Watch Video Solution

29. An atom having atomic mass number 13 has 7 neutrons. What is the atomic number of the atom.

- Watch Video Solution

30. Wavelength of different ra diations are given below.
$\lambda(\mathrm{A})=300 n m \lambda(\mathrm{~B})=300 \mu m \lambda(\mathrm{C})=3 n m \lambda(\mathrm{D})=30{ }^{\circ}$
Arrange these radiations in the increasing order of their energies.

- Watch Video Solution

31. The electronic configuration of valence shell of Cu is $3 d^{10} 4 s^{1}$ and not $3 d^{9} 4 s^{2}$. How is this configuration explained?
32. The Balmer series in the hydrogen spectrum corresponds to the transition from $n_{1}=2$ to $n_{2}=3,4 \ldots$. . This series lies in the visible region. Calculate the wave number of line associated with the transition in Balmer series when the electron moves to $\mathrm{n}=4$ orbit.

$$
\left(R_{H}=109677 \mathrm{~cm}^{-1}\right)
$$

- Watch Video Solution

33. According to de-Brogile, matter should exhibit dual behaviour, that is both particle and wave like properties. However, a cricket ball of mass 100 g does not move like a wave when it is thrown by abowler at a speed of $100 \mathrm{~km} / \mathrm{h}$. calculate the wavelength of the ball and explain why it does not show wave nature.

- Watch Video Solution

34. What is the experimental evidence in support of the diea that electronic energies in an atom are quantized?

Watch Video Solution

35. Out of electron and proton which one will have, a higher velocity to produce matter waves of the same wavelength ? Explain it.

- Watch Video Solution

36. A hypothetical electromagnetic wave is shown in figure. Find out the wavelength of the radiation.

37. Chlorophyll present in green leaves of plants absorbs light at $4.620 \times 10^{14} \mathrm{~Hz}$. Calculate the wavelength of radiation in nanometer. Which part of the electromagnetic spectrum does it belong to?

- Watch Video Solution

38. What is the difference between the terms orbit and orbital?

- Watch Video Solution

39. Table-tennis ball has mass 10 g and s peed of $90 \mathrm{~m} / \mathrm{s}$. if speed can be meausred within an accuracy of 4%. What will be the uncertainly in speed and position?

- Watch Video Solution

40. The effect of uncertainty principle is significant only for motion of microscopic particles and is negligible for the macroscopic particles. Justify the statement with the help of a suitable example.

- Watch Video Solution

41. Hydrogen atom has only one electron, So, mutual repulsion between electrons is absent. However, in multielectron atoms mutual repulsion between the electrons is significant. How does this affect the energy of an electron in the orbitals of the same prinicipal quantum number in multielectron atoms?

- Watch Video Solution

42. Match the following species with their corresponding ground state electronic configuration

	Atom/ Ion	Electronic configuration	
A.	Cu	1.	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$
B.	Cu	2.	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}$
C.	$2 n^{2+}$	3.	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$
D.	Cr^{3+}	4.	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{\circ}$
		5.	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1}$

- Watch Video Solution

43. Match the quantum numbers with the information provided by these.

Quantum number	Information provided	
A. Principal quantum number	1.	Orientation of the orbital
B. Azimuthal quantum number	2.	Energy and size of orbital
C. Magnetic quantum number	3.	Spin of electron
D. Spin quantum number	4.	Shape of the orbital

- Watch Video Solution

44. Match the following rules with their statements.

Rules	Statements
A. Hund's Rule	1.No two electrons in an atom can have the same set of four quantum numbers. B. Aufbau Principle
2.Half-filled and completely filled orbitals have extra stability.	
C. Pauli Exclusion Principle	3.Pairing of electrons in the orbitals belonging to the same subshell does not take place until each orbital is singly occupied. D. Heisenberg's Uncertainty Principle
4. It is impossible to determine the exact position and	
exact momentum of a subatomic particle	
simultaneously.	

- Watch Video Solution

45. Match the following.

Column I		Column II
A. X-rays	1.	$v=10^{0}-10^{4} \mathrm{~Hz}$
B. Ultraviolet wave (UV)	2.	$v=10^{10} \mathrm{~Hz}$
C. Long radio waves	3.	$v=10^{16} \mathrm{~Hz}$
D.	Microwave	4.

View Text Solution
46. Match the following.

Column I		Column II
A.	Photon	1.
V. Value is 4 for N-shell		
B. Electron	2.	Probability density
C. ψ^{2}	3.	Always positive value
D.Principal quantum number n	4.Exhibits both momentum and wavelength	

- View Text Solution

47. Match species given in column I with the electronic configuration given in column II.

	Column I	Column II
A. Cr	1.	$[\mathrm{Ar}] 3 d^{8} 4 s^{0}$
B. Fe^{2+}	2.	[Ar]3 $d^{10} 4 s^{1}$
C. Nr^{2+}	3.	$[\mathrm{Ar}] 3 d^{6} 4 s^{0}$
D. Cu	4.	$[\operatorname{Ar}] 3 d^{5} 4 s^{1}$
	5.	$[\operatorname{Ar}] 3 d^{6} 4 s^{2}$

48. Assertion(A): All isotopes of a given element show the same type of chemical behaviour.

Reason(R) The chemical properties of an atom are controlled by the numb er of electron s in the atom.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. Both A and R are false.

Answer:

- Watch Video Solution

49. Assertion(A) Black body is an ideal body that emits and absorbs radiations of all frequencies.

Reason(R) The frequency of radiation emitted by a body goes from a lower frequency to higher frequency with an increase in temperature.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. Both A and R are false.

Answer:

- Watch Video Solution

50. Assertion (A) It is impossible to determine the exact position and exact momentum of an electron simultaneously. Reason (R) The path of an electron in an atom is clearly defiened.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A
C. A is true and R is false
D. Both A and R are false.

Answer:

- Watch Video Solution

51. What is photoelectric effect? State the result of photoelectric effect experiment.

- Watch Video Solution

52. Thershold frequency, v_{0} is the minimum frequency which a photon must possess to eject an electron from a metal. It is different for different metals. When a photon of frequency $1.0 \times 10^{15} s^{-1}$ was allowed to hit a metal surface, an electron having $1.988 \times 10^{-19} \mathrm{~J}$ of kinetic energy was emitted. Calculated the threshold frequency of this metal. equal to 600 nm hits the metal surface.

- Watch Video Solution

53. When an electric discharge is passed through hydrogen gas, the hydrogen molecules dissociate to produce excited to produce excited hydrogen atoms. These excited atoms emit electromagnetic radiation of discrete frequencies which can be given by the general formula
$\vec{v}=109677\left[\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right]$
What points of Bohr's model of an atom can be used to arrive at this formula? Based on these points derive the above formula giving description of each step and each term.

- Watch Video Solution

54. Calculate the energy and frequency of the radiation emitted when an electron jumps from $n=3$ to $n=2$ ina hydrogen atom.

- Watch Video Solution

55. Why was a chagne in the Bohr Model of atom required? Due to which important development concept of movement of an electron in an orbit was replaced by the concept of probabiltiy of finding electron in an orbital? what is the name given to the changed model fo atom?

- Watch Video Solution

