©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NCERT MATHS (HINGLISH)

CONIC SECTIONS

Short Answer

1. Find the equation of the circle which
touches the both axes in first quadrant and
whose radius is a.
2. Show that the point (x, y) given by
$x=\frac{2 a t}{1+t^{2}}$ and $y=\left(\frac{1-t^{2}}{1+t^{2}}\right)$ lies on a
circle for all real values of t such that
$-1 \leq t \leq 1$, where a is any given real number.

- Watch Video Solution

3. If a circle passes through the points $(0,0),(a, 0)$ and $(0, b)$, then find the coordinates of its centre.
A. $\left(\frac{a}{2}, \frac{b}{2}\right)$
B. $\left(-\frac{a}{2},-\frac{b}{2}\right)$
C. (a, b)
D. none of these

Answer: A

- Watch Video Solution

4. Find the equation of the circle which touches the x - axis and whose center is $(1,2)$.

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-2 x-4 y+1=0 \\
& \text { B. } x^{2}-y^{2}+2 x-6 y+2=0 \\
& \text { C. } x^{2}-y^{2}+4 x-6 y+5=0 \\
& \text { D. none of these }
\end{aligned}
$$

Answer: A

D Watch Video Solution
5. If the lines $3 x-4 y+4=0$ and
$6 x-8 y-7=0$ are tangents to a circle, then
find the radius of the circle.

D Watch Video Solution

6. Find the equation of the circle which touches both the axes and the line
$3 x-4 y+8=0$ and lies in the third quadrant.

$$
\text { A. } x^{2}+y^{2}-4 x-4 y+4=0
$$

B. $x^{2}+y^{2}+4 x+4 y+4=0$
C. $x^{2}+y^{2}+2 x+2 y+4=0$
D. none of these

Answer: B

D Watch Video Solution

7. If one end of a diameter of the circle $x^{2}+y^{2}-4 x-6 y+11=0$ is $(3,4)$, then find the coordinates of the other end of the diameter.
8. Find the equation of the circle having
(1, -2) as its centre and passing through
the intersection of the lines $3 x+y=14$ and
$2 x+5 y=18$.

- Watch Video Solution

9. If the line $y=\sqrt{3}+k$ touches the circle
$x^{2}+y^{2}=16$, then find the value of k.

Watch Video Solution

10. The equation of circle concentric with circle
$x^{2}+y^{2}-6 x+12 y+15=0$ and double its area is

D Watch Video Solution

11. If the latus rectum of an ellipse is equal to
the half of minor axis, then find its eccentricity.
12. Find the eccentricity coordinates of foci length of the latus rectum of the following ellipse: $9 x^{2}+2 y^{2}=225$

D Watch Video Solution

13. If the eccentricity of an ellipse is $\frac{5}{8}$ and the
distance between its foci is 10 , then find the
latusrectum of the ellipse.

D Watch Video Solution
14. Find the equation of an ellipse whose eccentricity is $\frac{2}{3}$, the latus rectum is 5 and the centre is at the origin.

- Watch Video Solution

15. Filnd the distance between the directrices
the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$.

D Watch Video Solution
16. Find the coordinates of points on the parabola $y^{2}=8 x$ whose focal distance is 4 .

D Watch Video Solution

17. Find the length of the line segment joining
the vertex of the parabola $y^{2}=4 a x$ and a point on the parabola where the line segment make and angle θ to the x-axis.
18. If the points $(0,4) \operatorname{and}(0,2)$ are respectively the vertex and focus of a parabola, then find the equation of the parabola.

- Watch Video Solution

19. If the line $y=m x+1$ is tangent to the parabola $y^{2}=4 x$, then find the value of m.
20. If the distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$, then obtain its equation.

D Watch Video Solution

21. Find the eccentricity of the hyperbola $9 y^{2}-4 x^{2}=36$

D Watch Video Solution

22. Equation of the hyperbola with eccentricity $\frac{3}{2}$ and foci at $(\pm 2,0)$ is

D Watch Video Solution

Long Answer

1. If the lines $2 x-3 y=5$ and $3 x-4 y=7$ are the diameters of a circle of area 154 square units, then obtain the equation of the circle.
2. Find the equation of the circle which passes through the points $(2,3),(4,2)$ and the centre lies on the straight line $y-4 x+3=0$.

- Watch Video Solution

3. Find the equation of the circle whose centre is at $(3,-1)$ and which cuts off a chord of length 6units on the line $2 x-5 y+18=0$.
4. Find the equation of the circle whose radius
is 5and which touches the circle
$x^{2}+y^{2}-2 x-4 y-20=0$ externally at the point (5, 5).

- Watch Video Solution

5. Find the equation of the circle passing through the point $(7,3)$ having radius 3 units
and whose centre lies on the line $y=x-1$

- Watch Video Solution

6. Find the equation of each of the following parabola focus at $(-1,2)$ directrix $x-2 y+3=0$

D Watch Video Solution

7. Find the equation of the set of all points the
sum of whose distance from the points
$(3,0) \operatorname{and}(9,0)$ is 12.

- Watch Video Solution

8. Find the equation of the set of all points whose distances from $(0,4)$ are $\frac{2}{3}$ of their distances from the line $y=9$.

- Watch Video Solution

9. Show that the set all points such that the
$(4,0) \operatorname{and}(-4,0)$ is always equal to 2 represents a hyperbola.

D Watch Video Solution

10. Find the equation of the hyperbola with
vertices ($\pm 5,0$), foci ($\pm 7,0$).
(Watch Video Solution

True False

1. The line $x+3 y=0$ is a diameter of the circle $x^{2}+y^{2}+6 x+2 y=0$

- Watch Video Solution

2. . The shortest distance from the point ($2,-7$)
to circle $x^{2}+y^{2}-14 x-10 y-151=0$

- Watch Video Solution

3. If the line $l x+m y-1=0$ touches the circle $x^{2}+y^{2}=a^{2}$, then prove that (l, m)
lies on a circle.

D Watch Video Solution

4. The point $(1,2)$ lies inside the circle $x^{2}+y^{2}-2 x+6 y+1=0$.

D Watch Video Solution

5. If the line $l x+m y+n=0$ touches the parabola $y^{2}=4 a x$, prove that $\ln =a m^{2}$

D Watch Video Solution

6. If P is a point on the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ whose foci are S and S^{\prime}, then
$P S+P S^{\prime}=8$.

D Watch Video Solution
7. The line $2 x+3 y=12$ touches the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=2$ at the points $(3,2)$.

D Watch Video Solution

8. The locus of the point of intersection of lines

$$
\sqrt{3} x-y-4 \sqrt{3 k}=0
$$

$\sqrt{3} k x+k y-4 \sqrt{3}=0$ for different value of k
is a hyperbola whose eccentricity is 2 .

D Watch Video Solution

1. Find the equation of the circle having centre
at $(3,-4)$ and touching the line
$5 x+12 y-12=0$.

D Watch Video Solution

2. Find the equation of the circle which circumscribes the triangle formed by the line:

$$
y=x+2,3 y=4 x \text { and } 2 y=3 x
$$

3. An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm , the length of the string and distance between the pins are

- Watch Video Solution

4. The equation of the ellipse having foci
$(1,0),(0,-1)$ and minor axis of length 1 is

- Watch Video Solution

5. Find the equation of the parabola whose focus is at $(-1,-2)$ and the directrix the line $x-2 y+3=0$

- Watch Video Solution

6. The equation of the hyperbola with vertices at $(0, \pm 6)$ and eccentricity $\frac{5}{3}$ is..... And its foci are

Objective Type

1. The area of the circle centred at $(1,2)$ and passing through $(4,6)$ is
A. 5π
B. 10π
C. 25π
D. none of these

Answer: C

D Watch Video Solution

2. Equation of a circle which passes through
$(3,6)$ and touches the axes is
A. $x^{2}+y^{2}+6 x+6 y+3=0$
B. $x^{2}+y^{2}-6 x-6 y-9=0$
C. $x^{2}+y^{2}-6 x-6 y+9=0$
D. none of these

Answer: C

D Watch Video Solution

3. Equation of the circle with centre on the y^{-}
axis and passing through the origin and $(2,3)$
is

> A. $x^{2}+y^{2}+13 y=0$
> B. $3 x^{2}+3 y^{2}+13 x+3=0$
> C. $6 x^{2}+6 y^{2}-13 y=0$
> D. $x^{2}+y^{2}+13 x+3=0$

Answer: C

D Watch Video Solution

4. Find the equation of a circle with origin as
centre and which circumscribes equilateral triangle whose median of length $3 a$

> A. $x^{2}+y^{2}=9 a^{2}$
> B. $x^{2}+y^{2}=16 a^{2}$
> C. $x^{2}+y^{2}=4 a^{2}$
> D. $x^{2}+y^{2}=a^{2}$

Answer: C

D Watch Video Solution

5. If the focus of a parabola is $(0,-3)$ and its
directrix is $y=3$, then its equation is

$$
\begin{aligned}
& \text { A. } x^{2}=-12 y \\
& \text { B. } x^{2}=12 y \\
& \text { C. } y^{2}=-12 x \\
& \text { D. } y^{2}=12 x
\end{aligned}
$$

Answer: A

D Watch Video Solution

6. If the parabola $y^{2}=4 a x$ passes through
the point $(3,2)$ then find the length of its
latus rectum.
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. $\frac{1}{3}$
D. 4

Answer: B

D Watch Video Solution

7. If the vertex of a parabola is the point
$(-3,0)$ and the directrix is the line $x+5=0$, then find its equation.
A. $y^{2}=8(x+3)$
B. $x^{2}=8(y+3)$
C. $y^{2}=-8(x+3)$
D. $y^{2}=8(x+5)$

Answer: A

D Watch Video Solution

8. If question of the ellipse whose focus is
$(1,-1)$, then directrix the line
$x-y-3=0$ and eccentricity $\frac{1}{2}$ is
A. $7 x^{2}+2 x y+7 y^{2}-10 x+10 y+7=0$
B. $7 x^{2}+2 x y+7 y^{2}+7=0$
C. $7 x^{2}+2 x y+7 y^{2}+10 x-10 y-7=0$
D. none of these

Answer: A

D Watch Video Solution

9. The length of the latusrectum of the ellipse
$3 x^{2}+y^{2}=12$ is
A. 4
B. 3
C. 8
D. $\frac{4}{\sqrt{3}}$

Answer: D

D Watch Video Solution

10. If e is eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1($ where, $\mathrm{a}<\mathrm{b})$, then

$$
\text { A. } b^{2}=a^{2}\left(1-e^{2}\right)
$$

B. $a^{2}=b^{2}\left(1-e^{2}\right)$
C. $a^{2}=b^{2}\left(e^{2}-1\right)$
D. $b^{2}=a^{2}\left(e^{2}-1\right)$

Answer: B

D Watch Video Solution

11. The eccentricity of the hyperbola whose
length of the latus rectum is equal to 8 and
the length of its conjugate axis is equal to half of the distance between its foci, is :

$$
\begin{aligned}
& \text { A. } \frac{4}{3} \\
& \text { B. } \frac{4}{\sqrt{3}} \\
& \text { C. } \frac{2}{\sqrt{3}}
\end{aligned}
$$

D. none of these

Answer: C

D Watch Video Solution

12. The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$ then equation of the hyperbola is

$$
\begin{aligned}
& \text { A. } x^{2}-y^{2}=32 \\
& \text { B. } \frac{x^{2}}{4}-\frac{y^{2}}{9}=1
\end{aligned}
$$

C. $2 x-3 y^{2}=7$
D. none of these

Answer: A

D Watch Video Solution

13. Equation of the hyperbola with eccentricity
$\frac{3}{2}$ and foci at $(\pm 2,0)$ is
A. $\frac{x^{2}}{4}-\frac{y^{2}}{5}=\frac{4}{9}$
B. $\frac{x^{2}}{4}-\frac{y^{2}}{9}=\frac{4}{9}$
C. $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
D. none of these

Answer: A

- Watch Video Solution

