©゙"doubtnut

MATHS

BOOKS - NCERT MATHS (HINGLISH)

PRINCIPLE OF MATHEMATICAL INDUCTION

Short Answer Type Question

1. Given an example of a statement $P(n)$ which is true for all
$n \geq 4$ but $P(1), P(2)$ and $P(3)$ are not true. Justify your answer.
2. Given an example of a statement $P(n)$ such that it is true of all $n N$.

(Watch Video Solution

3. prove that $4^{n}-1$ is divisible by 3 , for each natural number n.

(D) Watch Video Solution

4. Using the principle of mathematical induction, prove that
$\left(2^{3 n}-1\right)$ is divisible by 7 for all $n \in N$.

- Watch Video Solution

5. Prove the following by the principle of mathematical induction: $n^{3}-7 n+3$ is divisible 3 for all $n \in N$.

D Watch Video Solution

6. prove that $3^{2 n}-1$ is divisible by 8 , for all natural numbers
n.

(D) Watch Video Solution

7. Prove that for any natural numbers $n, 7^{n}-2^{n}$ is divisible by 5 .

(D) Watch Video Solution

8. If $x \neq y$, then for every natural number $\mathrm{n}, x^{n}-y^{n}$ is divisible by
A. $x+y$
B. $x-y$
C. 1
D. None of these

Answer: B

- Watch Video Solution

9. If n be any natural number then by which largest number $\left(n^{3}-n\right)$ is always divisible ?
A. 3
B. 6
C. 12
D. 18

Answer: B

D Watch Video Solution

10. prove that $n\left(n^{2}+5\right)$ is divisible by 6 , for each natural number n .

D Watch Video Solution

11. prove that $n^{2}<2^{n}$, for all natural number $n \geq 5$.

D Watch Video Solution

12. prove that $2 n<(n+2)$! for all natural numbers n .

(D) Watch Video Solution

13. Using principle of mathematical induction prove that $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots+\frac{1}{\sqrt{n}}$ for all natural numbers $n \geq 2$.

D Watch Video Solution

14. prove that $2+4+6+\ldots 2 n=n^{2}+n$, for all natural numbers n .
15. Prove that $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$, for all natural number n.

- Watch Video Solution

16. prove that $1+5+9+\ldots .+(4 n-3)=n(2 n-1)$, for all natural number n.

D Watch Video Solution

Long Answer Type Question

1. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by letting $a_{1}=3$ and $a_{k}=7 a_{k-1}$, for all natural numbers $k \geq 2$. Show that $a_{n}=3 \cdot 7^{n-1}$ for natural numbers.

D Watch Video Solution

2. A sequence $b_{0}, b_{1}, b_{2}, \ldots$ is defined by letting $b_{0}=5$ and $b_{k}=4+b_{k-1}$, for all natural number k. Show that $b_{n}=5+4 n$, for all natural number n using mathematical induction.

D Watch Video Solution

3. A sequence $d_{1}, d_{2}, d_{3} \ldots$ is defined by letting $d_{1}=2$ and $d_{k}=\frac{d_{k-1}}{k}$, for all natural numbers, $k \geq 2$. Show that
$d_{n}=\frac{2}{n!}$, for all $n \in N$.

- Watch Video Solution

4.

Prove
that
for
all
$n \in N$
$\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(n-1) \beta]$
$=\frac{\cos \left[\alpha+\left(\frac{n-1}{2}\right) \beta\right] \sin \left(\frac{n \beta}{2}\right)}{\sin \frac{\beta}{2}}$

D Watch Video Solution

5.

Using

induction,
prove
$\cos \theta \cdot \cos 2 \theta \cdot \cos 2^{2} \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$
6.
$\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots \sin n \theta=\frac{\sin \frac{n \theta}{2} \sin \frac{n+1}{2} \theta}{\sin \frac{\theta}{2}}$ for all $n \in N$.

D Watch Video Solution

7. Prove that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number.

D Watch Video Solution
8. Prove that $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$,for all natural number $n>1$.

Watch Video Solution

9. What is the total number of proper subsets of a set containing n elements?

D Watch Video Solution

Objective Type Questions

1. If $10^{n}+3 \cdot 4^{n+2}+k$ is divisible by 9 , for all $n \in N$, then the least positive integral value of k is
A. 5
B. 3
C. 7
D. 1

Answer: A

(D) Watch Video Solution

2. For all $\mathrm{n} \in N, 3 \cdot 5^{2 n+1}+2^{3 n+1}$ is divisible by (A) 19 (B)

17 (C) 23 (D) 25
A. 19
B. 17
C. 23
D. 25

Answer: B::C

3. If $x^{n}-1$ is divisible by $x-k$ then the least positive integral value of k is
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution
4. If $P(n): 2 n<n!, n \in N$ then $\mathrm{P}(\mathrm{n})$ is true for all $n \geq \ldots$.
5. State whether the following statement is true or false. Justify If $\mathrm{P}(\mathrm{n})$ is a statement $(n \in N)$ such that if $\mathrm{P}(\mathrm{k})$ is true, $P(k+1)$ is true for $k \in N$, then $\mathrm{P}(\mathrm{n})$ is true.

- Watch Video Solution

