

MATHS

BOOKS - NCERT MATHS (HINGLISH)

PRINCIPLE OF MATHEMATICAL INDUCTION

Short Answer Type Question

1. Given an example of a statement P(n) which is true for all

 $n \geq 4$ but $P(1), \ P(2) and \ P(3)$ are not true. Justify your

answer.

2. Given an example of a statement P(n) such that it is true of all nN.

3. prove that 4^n-1 is divisible by 3, for each natural number

n.

4. Using the principle of mathematical induction, prove that

$$\left(2^{3n}-1
ight)$$
 is divisible by 7 for all $n\in N_{2}$

5. Prove the following by the principle of mathematical induction: n^3-7n+3 is divisible 3 for all $n\in N.$

6. prove that $3^{2n} - 1$ is divisible by 8, for all natural numbers

n.

7. Prove that for any natural numbers n, 7^n-2^n is divisible

by 5.

8. If $x \neq y$, then for every natural number n, $x^n - y^n$ is divisible by

A. x + y

 $\mathsf{B.}\,x-y$

C. 1

D. None of these

Answer: B

9. If n be any natural number then by which largest number $\left(n^3-n
ight)$ is always divisible ?

A. 3

B. 6

C. 12

D. 18

Answer: B

Watch Video Solution

10. prove that $nig(n^2+5ig)$ is divisible by 6, for each natural

number n.

Watch Video Solution

11. prove that $n^2 < 2^n$, for all natural number $n \geq 5$.

14. prove that $2+4+6+\ldots 2n=n^2+n$, for all natural

numbers n.

16. prove that 1+5+9+ . . .+(4n-3)=n(2n-1), for all natural

number n.

Watch Video Solution

Long Answer Type Question

1. A sequence a_1, a_2, a_3, \ldots is defined by letting $a_1 = 3$ and $a_k = 7a_{k-1}$, for all natural numbers $k \ge 2$. Show that $a_n = 3 \cdot 7^{n-1}$ for natural numbers.

Watch Video Solution

2. A sequence b_0, b_1, b_2, \ldots is defined by letting $b_0 = 5$ and $b_k = 4 + b_{k-1}$, for all natural number k. Show that $b_n = 5 + 4n$, for all natural number n using mathematical induction.

Watch Video Solution

3. A sequence $d_1, d_2, d_3...$ is defined by letting $d_1 = 2$ and

 $d_k = rac{d_{k-1}}{k},$ for all natural numbers, $k \geq 2.$ Show that

$$d_n=rac{2}{n!}$$
 , for all $n\in N.$

5. Using induction, prove that
$$\cos \theta \cdot \cos 2\theta \cdot \cos 2^2 \theta \dots \cos 2^{n-1} \theta = \frac{\sin 2^n \theta}{2^n \sin \theta}$$

Prove

that,

$$\sin heta+\sin2 heta+\sin3 heta+\ldots\sin n heta=rac{\sinrac{n heta}{2}\sinrac{n+1}{2} heta}{\sinrac{ heta}{2}}$$
 for

all $n \in N$.

9. What is the total number of proper subsets of a set

containing n elements?

Objective Type Questions

1. If $10^n + 3 \cdot 4^{n+2} + k$ is divisible by 9, for all $n \in N$, then

the least positive integral value of k is

A. 5

B. 3

C. 7

D. 1

Answer: A

Watch Video Solution

2. For all n $\in N, 3 \cdot 5^{2n+1} + 2^{3n+1}$ is divisible by (A) 19 (B) 17 (C) 23 (D) 25

A. 19

B. 17

C. 23

D. 25

Answer: B::C

3. If $x^n - 1$ is divisible by x - k then the least positive integral value of k is

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

4. If $P(n) : 2n < n!, n \in N$ then P(n) is true for all $n \geq \ldots$.

5. State whether the following statement is true or false. Justify If P(n) is a statement $(n \in N)$ such that if P(k) is true, P(k+1) is true for $k \in N$, then P(n) is true.