びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NCERT PHYSICS (HINGLISH)

LAWS OF MOTION

Mutiple Choice Questions Mcqs

1. A ball is travelling with uniform translatory
motion. This means that
A. it is at rest
B. the path can be straight line or circular and the ball travels with uniform speed
C. all parts of the ball have the same
velocity (magnitude and direction) and
the velocity is constant
D. the centre of the ball moves with
constant velocity and the ball spins
about its centre uniformly

- Watch Video Solution

2. A metre scale is moving with uniform velocity . This implies
A. the force acting on the scale is zero , but a torque about the center of mass can act on the scale
B. the force acting on the scale is zero and
the torque acting about center of mass
of the scale is also zero
C. the total force acting on it need not be
zero but the torque on it is zero
D. neither the force nor the torque need to
be zero

Answer: B

D Watch Video Solution

3. A cricket ball of mass 150 g has an intial velocity $\mathrm{u}=(3 \hat{i}+4 \hat{j}) m s^{-1}$ and a final
velocity $v=-(3 \hat{i}+4 \hat{j}) m s^{-1}$, after being
hit. The change in momentum (final momentum - initial momentum) is (in $K g m s^{1}$
)
A. zero
B. $-(0.45 \hat{i}+0.6 \hat{j})$
C. $-(0.9 \hat{j}+1.2 \hat{j})$
D. $-5(\hat{i}+\hat{j}) \hat{i}$

Answer: C

- Watch Video Solution

4. In the previous problem 3 the magnitude of the momentum transferred during the hit is .
A. zero
B. $0.75 K g-m s^{-1}$
C. $1.5 \mathrm{~kg}-m s^{-1}$
D. $14 k g m s^{-1}$

Answer: C

5. Conservation of momentum in a collision between particles can be understood from
A. conservation of energy
B. Newton's first law only
C. Newton's second law only

D. Both Newton's second and third law

Answer: D

6. A hockey player is moving northward and
suddenly turns westward with the same speed
to avoid an opponet. The force that acts on
the player is.
A. frictional force along westward
B. muscle force along southward
C. frictional force along south - West
D. muscle force along south-West

Answer: C

7. A body of mass 2 kg travels according to the
law $\mathrm{x}(\mathrm{t})=p t+q t^{2}+r t^{3}$ where $, \mathrm{q}=4 m s^{-2}, \mathrm{p}$
$=3 \mathrm{~ms}^{-1}$ and $r=5 \mathrm{~ms}^{-3}$. The force acting on
the body at $t=2 s$ is
A. 136 N
B. 134 N
C. 158 N
D. 68 N

- Watch Video Solution

8. A body with mass 5 kg is acted upon by a force $\vec{F}=(-3 \hat{i}+4 \hat{j}) N$. If its initial velocity at $\mathrm{t}=0$ is $\vec{v}=6 \hat{i}-12 \hat{j} m s^{-1}$, the time at which it will just have a velocity along the y-axis is :
A. never
B. 10 s
C. 2 s
```
D. 15 s
```


Answer: B

D Watch Video Solution

9. A car of mass m starts from rest and acquires a velocity along east $v=v \hat{i}(v>0)$ in two seconds Assuming the car moves with uniform acceleration the force exerted on the car is .
A. $\frac{m v}{2}$ eastward and is exerted by the car
engine
B. $\frac{m v}{2}$ eastward and is due to the friction
on the tyres exerted by the road
C. more than $\frac{m v}{2}$ eastward exerted due to
the engine and overcomes the friction of
the road
D. $\frac{m v}{2}$ exerted by the engine

Answer: B

Mutiple Choice Questions More Than One

 Options1. The motion of a particle of mass m is given by $\mathrm{x}=0$ for $t<0 \quad \mathrm{~s}, \quad \mathrm{x} \quad$ (t$) \quad=$
$A \sin 4 \pi t f$ or $0<t(1 / 4) s(A>0)$ and $\mathrm{x}=0$
for $t>(1 / 4)$ s Which of the following statement(s) is (are) true?
A. The force at $t=(1 / 8) s$ on the particle is

$$
-16 \pi^{2} A-m
$$

B. The particle is acted upon by on impulse
of magnitude $4 \pi^{2} A-m$ at $t=0 \mathrm{~s}$ and t
(1/4) s
C. The particle is not acted upon by any
force
D. The particle is not acted upon by a
constant force

Answer: A::B::D

D Watch Video Solution

2. In the co-efficinet of friction between the floor and the body B is 0.1. The co-efficient of friction beteen the bodies B and A is 0.2 A fore F is applied as shown B The mass of A is $m / 2$ and of B is m Which of the following statements are ture ?

A. The bodies will move together if $\mathrm{F}=0.25$
mg
B. The body A will slip with respect to B if F
$=0.5 \mathrm{mg}$
C. The bodies will be rest if $\mathrm{F}=0.1 \mathrm{mg}$
D. The maximum value of F for which the
two bodies will move together is 0.45
mg

Answer: A::B::D
3. Mass m_{1} moves on a slope making an angle θ with the horizontal and is attached to mass
m_{2} by a string passing over a frictionless pulley as shown in The coefficient of friction between m_{1} and the slopping surface is μ Which of the following statements are true ?

A. If $m_{2}>m_{1} \sin \theta$, the body will move up
the plane
B. If $m_{2}>m_{1}(\sin \theta+\mu \cos \theta)$, the body
will move up the plane
C. If $m_{2}<m_{1}(\sin \theta+\mu \cos \theta)$, the body
will move up the plane
D. If $m_{2}<m_{1}(\sin \theta-\mu \cos \theta)$, the body
will move down the plane

Answer: B::D

4. A body a of mass m slides on plane inclined at angle θ_{0} to the horizontal and μ_{1} is the coefficient of friction between A and the plane
A is connected by a light string passing over a frictionless pulley to another body B also of mass m slidding on a frictionless plane inclined at angle θ_{2} to the horizontal Which of
the following statements are ture ?

A. A will never move up the plane
B. A will just start moving up the plane
when $\mu=\frac{\sin \theta_{2}-\sin \theta_{1}}{\cos \theta_{1}}$
C. For A to move up the plane θ_{2}, must
always be greater than θ_{1}

D. B will always slide down with constant

speed

Answer: B::C

D Watch Video Solution

5. Two billiard balls A and B each of mass 50 g and moving in opposite directions with speed of $5 \mathrm{~m} / \mathrm{s}$ each, collide and rebound with the same speed if the collision lasts for $10^{-3} \mathrm{~s}$
which of the following statement(s) is (are)

true?

A. The impulse imparted to each ball is
$0.25 k g-m s^{-1}$ and the force on each
ball is 250 N
B. The impulse imparted to each ball is
$0.25 k g-m s^{-1}$ and the force exerted
on each ball is $25 \times 10^{-5} \mathrm{~N}$
C. The impulse imparted to each ball is 0.5

N-s

D. The impulse and the force on each ball

 are equal in magnitude and opposite directions
Answer: C::D

D Watch Video Solution

6. A body of mass 10 kg is acted upon by two perpendicular forces , 6 N and 8 N . The resultant acceleration of the body is

6 N force
B. $0.2 m s^{-2}$ at an angle of $\tan ^{-1}\left(\frac{4}{3}\right)$
w.r.t. 6 N force
C. $1 m s^{-2}$ at an angle of $\tan ^{-1}\left(\frac{3}{4}\right)$ w.r.t.

8 N force
D. $0.2 \mathrm{~ms}^{-2}$ at an angle of $\tan ^{-1}\left(\frac{3}{4}\right)$
w.r.t. 8 N force

Answer: A::C

Very Short Answer Type Questions

1. A girl ridding a bicycle along a straight road with a speed of $5 m s^{-1}$ throws a stone of mass 0.5 kg which has a speed of $15 \mathrm{~ms}^{-1}$ with respect to the ground along her direction of motion. The mass of the girl and bicycle is

5 kg . Does the speed of the bicycle change after the stone is thrown ? What is the change in speed, if so ?
2. A person of mass 50 kg stands on a weighing scale on a lift. If the lift is descending with a downward acceleration of $9 m s^{-2}$ what would be the reading of the weighing scale? $\left(g=10 m s^{-2}\right)$.

D Watch Video Solution

3. The position time graph of a body of mass
$2 k g$ is as given in What is the impulse on the
body at $t=0 \mathrm{~s}$ and $t=4 \mathrm{~s}$?

(Watch Video Solution
4. A person driving a car suddenly applies the brakes on seeing a child on the road ahead. If
he is not wearing seat belt, he falls forward and hits his head against the steering weel. Why?

D Watch Video Solution

5. The velocity of a body of mass $2 k g$ as a function of t is given by $v(t)=2 t \hat{i}+t^{2} \hat{j}$ Find the momentum and force acting on it at time $t=2 s$.
6. A block placed on a rough horizontal surface
is pulled by a horizontal force F Let f be the force applied by the rough surface on the block. Plot a graph of f versus F.

- Watch Video Solution

7. Why are porcelain objects wrapped in paper or straw before packing for transportation ?
8. Why does a child feel more pain when she falls down on a hard cement floor, than when she falls on the soft muddy ground in the garden ?

D Watch Video Solution

9. A woman throws an object of mass 500 g with a speed of $25 m s^{-1}$.
(a) What is the impulse imparted to the object ?
(b) If the object hitts a wall and rebounds with
the half the original speed, what is the change in momentum of the object?

D Watch Video Solution

10. Why are mountain roads generally made winding upwards rather than going straight up ?

D Watch Video Solution
11. A mass of $2 k g$ is suspended with thread
$A B$ (figure) Thread $C D$ of the same type is attached to the other end of 2 kg mass. Lower thread is pulled gradually, harder and harder
in the downward gradually, harder and harder in the downward direction so as to apply force on $A B$. which of the threads will break and
why?

 A
 2 kg
 D

12. In the above given problem if the lower thread is pulled with a jerk, what happens ?

D View Text Solution

Short Answer Type Questions

1. Two masses of 5 kg and 3 kg are suspended with help of massless inextensible strings as
shown in figure. Calculate T_{1} and T_{2} when
whole system is going upwards with
acceleration $=2 m / s^{2}\left(u s e g=9.8 m s^{-2}\right)$.

 5 kg
 3 kg

2. Block A of weight $100 N$ rests on a frictionless inclined plane of slope angle 30° (Fig. 5.7). A flexible cord attached to A passes over a frictonless pulled and is connected to block B of weight W. Find the weight W for which the system in equilibrium.

3. A block of mass M is held against a rough vertical wall by pressing it with a finger. If the coefficient of friction between the block and the wall is μ and the acceleration due to gravity is g, calculate the minimum force required to be applied by the finger to hold the block against the wall.

D Watch Video Solution

4. a 100 kg gun fires a ball of 1 kg horizontally
from a cliff of height 500m. If falls on the
ground at a distance of 400 m from the bottom of the cliff. The recoil velocity of the gun is (Take g: $10 \mathrm{~ms}^{-2}$

D Watch Video Solution

5. Figure shows (x, t) (y, t) diagram of a particle moving in 2-dimensions.

If the particle has a mass of 500 g , find the
force (direction and magnitude) acting on the particle.

D Watch Video Solution

6. A person in an elevator accelerating upwards with an acceleration of $2 m s^{-2}$, tosses a coin vertically upwards with a speed of $20 \mathrm{~ms}^{-1}$. After how much time will the coin fall back into his hand ? $\left(g=10 m s^{-2}\right)$

- Watch Video Solution

1. There are three forces F_{1}, F_{2} and F_{3} acting on a body, all acting on a point P on the body
. The body is found to move with uniform speed.
(a) Show that the forces are coplanar.
(b) Show that the torque acting on the body about any point due to these three forces is zero.
2. When body slides down from rest along smooth inclined plane making angle of 45° with the horizontal, it takes time T When the same body slides down from rest along a rough inclined plane making the same angle and through the same distance it is seen to take time $p T$, where p is some number greater
that 1. Calculate late the coefficient of friction
beween the body and the rough plane.

D Watch Video Solution

$$
\left(\mathrm{ms}^{-1}\right) \text { (a) }
$$

Figure shows $\left(v_{x}, \mathrm{t}\right)$ and $\left(v_{y}, \mathrm{t}\right)$ diagram for a body of unit mass. Find the force as a function of time.

D Watch Video Solution

4. A racing car travels on a track (without banking) $A B C D E F A . A B C$ is a circular arc of radius $2 R . C D$ and $F A$ are straight paths of length R and $D E F$ is a circular arc of radius $R=100 \mathrm{~m}$. The co-efficient of friction on the road is $1 / 4=0.1$. the maximum speed of the
car is $50 m s-1$. Find the minimum time for completing one round.

D Watch Video Solution

5. The displacement vector of a particle of mass m is given by r (t) =
$\hat{i} A \cos \omega t+\hat{j} B \sin \omega t$.
(a) Show that the trajectory is an ellipse.
(b) Show that $\mathrm{F}=-m \omega^{2} r$.

D Watch Video Solution

6. A cricket bowler releases the ball in two
different ways
(a) giving it only horizontal velocity and
(b) giving it horizontal velocity and a small downward velocity.

The speed v_{s} at the time of release is the same
. Both are released at a height H from the ground . which one will have greater speed when the ball hits the ground ? Neglect air resistance .

D Watch Video Solution

7. There are four force acting at a point p produced by strings as shown in figure, which
is at rest. The force F_{1} and F_{2} are .

- Watch Video Solution

8. A rectangular box lies on a rough inclined
surface . The coefficient of friction between
the surface and the box is μ. Let the mass of
the box be m.
(a) At what angle of inclination θ of the plane to the horizontal will the box just start to slide down the plane?
(b) What is the force acting on the box down
the plane, if the angle of inclination of the plane is increased to $\alpha>\theta$?
(c) What is the force needed to be applied upwards along the plane to make the box either remain stationary or just move up with uniform speed?
(d) What is the force needed to be applied
upwards along the plane to make the box move up the plane with acceleration a?

D Watch Video Solution

9. A helicopter of mass 2000 kg rises with a vertical acceleration of $15 \mathrm{~ms}^{-2}$. The total mass of the crew and passengers is 500 kg .

Give the magnitude and direction of the (g $=10 \mathrm{~ms}^{-2}$)
(a) Force on the floor of the helicopter by the crew and passengers.
(b) action of the rotor of the helicopter on the
surrounding air.
(c) force on the helicopter dur to the surrounding air.

