# ©゙’doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - NCERT PHYSICS (HINGLISH)

## WORK, ENERGY AND POWER

Mcq

1. An electron and a proton are moving under
the influence of mutual forces. In calculating
the change in the kinetic energy of the system
during motion, one ignores the magnetic force of one on another. This is because,
A. the two magnetic forces are equal and opposite, so they produce no net effect
B. the magnetic forces do not work on each
particle
C. the magentic forces do equal and
opposite (but non-zero) work on each
particle

# D.the magnetic forces are necessarily 

 negligible
## Answer:

## D Watch Video Solution

## Very Short Answer

1. A rough inclined plane is placed on a cart moving with a constant velocity $u$ on horizontal ground. A block of mass $M$ rest on
the incline. Is any work done by force of friction between the block and incline ? Is there then a dissipation of energy ?

## D Watch Video Solution

Short Answer 0

1. A graph of potential energy $V(x)$ verses x is
shown in figure. A particle of energy $E_{0}$ is executing motion in it. Draw graph of velocity and kinetic energy versus x for one complete
cycle AFA.


## - Watch Video Solution

## Long Answer

1. A block of mass 1 kg is pushed up a surface
inclined to horizontal at angle of $30^{\circ}$ by a
force of 10 N parallel to the inclined surface
[figure]. The coefficient of friction between block and the incline is 0.1 . If the block is pushed up by 10 m along the incline, calculate
(a) work done against gravity
(b) work done against force of friction
(c) increase in potential energy
(d) increase in kinetic energy
(e) work done by applied force.

- Watch Video Solution

1. A proton is kept at rest. A positively charged particle is released from rest at a distance $d$ in its field. Consider two experiments, one ini which the charged particle is also a proton and in another, a position. In the same time $t$, the work done on the two moving charged particles is
A. Same as the same force law is involved in
the two experiments
B. less for the case of a postrion, as the positron moves away more rapidly and the force on it weakness,
C. more for the case of a poistron, as the poistron moves away a larger distance
D. same as the work done by charged

## particle on the stationary proton

## Answer:

## - Watch Video Solution

2. A man squatting on the ground gets straight up and stand. The force of reaction of ground on the man during the process is.
A. constant and equal to mg in magnitude
B. constant and greater than mg in magnitude
C. variable but always greater than mg
D. at first greater than mg and later becomes equal to mg

## Answer:

## D Watch Video Solution

3. A bicyclist comes to a skidding stop in 10 m .

During this process, the force on the bicycle due to the road is $200 N$ and is directly opposed to the motion. The work done by the cycle on the road is
A. $+200 j$
B. $-200 j$

## C. zero

## D. $-20000 j$

## Answer: C

## D Watch Video Solution

4. A body is falling freely under the action of gravity alone in vacuum. Which of the following quantities remain constant during the fall ?
A. Kinetic energy
B. Potential energy
C. Total mechanical energy
D. Total linear momentum

## Answer:

D Watch Video Solution
5. During inelastic collision between two bodies, which of the following quantities always remain conserved?
A. Total kinetic energy
B. Total mechanical energy
C. Total liner momentum
D. Speed of each body

## Answer:

## - Watch Video Solution

6. Two inclined frictionless tracks, one gradual and the other steep meet at $a$ from where two stones are allowed to slide down from rest,
one on each track as shown in Figure. Which of the following statement is correct ?

A. Both the stones the bottom at the same
time but not with the same speed
B. Both the stones reach the bottom with
the same speed and stone i reaches the
botom earlier than stone II

# C. Both the stones reach the bottom with 

the same speed and stone II reaches the
botom earlier than stone I
D. Both the stones reach the bottom
different times and with different speeds

## Answer:

## - Watch Video Solution

7. The potential energy function for a particle executing simple harmonic motion is given by $V(x)=\frac{1}{2} k x^{2}$, where k is the force constant of the oscillatore. For $k=\frac{1}{2} N m^{-1}$, show that a particle of total energy 1 joule moving under this potential must turn back when it reaches $x= \pm 2 m$.
A. $V=0, K=E$
B. $V=E, K=O$
C. $V<E, \mathrm{~K}=\mathrm{O}$

## D. V=O, $K<E$

## Answer:

## D Watch Video Solution

8. Two identical ball bearings in contact with
each other and resting on a frictionless table
are hit heat-on by another ball bearing of the
same mass moving initially with a speed $V$ as
shown in figure.


If the collision is elastic, which of the following
(figure) is a possible result after collision ?

A.

(a)

B.
(b)

C.
D.


## Answer:

## - Watch Video Solution

9. A particle of mass $0.5 k g$ travels in a straight
line with velocity $v=a x^{3 / 2} \quad$ where
$a=5 m^{-1 / 2} s^{-1}$. What is the work done by
the net force during its displacement from
$x=0$ to $x=2 m$ ?
A. 1.5J
B. 50 J
C. 10J
D. 100J

Answer: B

## D Watch Video Solution

10. A body is moving unidirectionally under the influence of a source of constant power supplying energy. Which of the diagrams
shown in figure. Correctly shows the

## displacement-time curve for its motion ?



## Answer:

## D Watch Video Solution

11. Which of the diagrams shown in figure.

Most closely shows the variation inkinetic energy of the earth as it moves once around the sun in its elliptical orbit?



Answer:

- Watch Video Solution

12. Which of the diagram shown in figures
respresents variation of total mechanical
energy of a pendulam oscillation in air as
function of time?

A.
B.


(c)
C.
D.

## Answer:

## D Watch Video Solution

13. A mass of $5 k g$ is moving along a circular path or radius $1 m$. If the mass moves with 300 revolutions per minute, its kinetic energy would be
A. $250 \pi^{2}$
B. $100 \pi^{2}$
C. $5 \pi^{2}$
D. 0

## Answer:

## D Watch Video Solution

14. A raindrop falling from a height $h$ above ground, attains a near terminal velocity when
it has fallen through a height $(3 / 4) h$. Which
of the diagrams shown in figure correctly
shows the change in kinetic and potential energy of the drop during its fall up to the ground ?


## Answer:

## D Watch Video Solution

15. In a shotput event, an athlete throws the shotput of mass 10 kg with an initial speed of $1 m s^{-1}$ at $45^{\circ}$ from a heigth $1.5 m$ above ground. Assuming air resistance to be negligible and acceleration due to gravity to be $10 \mathrm{~ms}^{-2}$, the kinetic energy of the shotput when it just reaches the ground will be
A. 2.5 j
B. 5.0 j
C. 52.5 j
D. 155.0j

## Answer:

## D Watch Video Solution

16. Which of the diagrams in figure, correctly shows the change in kinetic energy of an iron
sphere falling freely in a lake having sufficient depth to impart if a terminal velocity?


## - Watch Video Solution

17. A cricket ball of mass $150 g$ moving with a speed of $126 \mathrm{~km} / \mathrm{h}$ hits at the middle of the bat, held firmly at its position by the batman.

The ball moves straight back to the bowler after hitting the bat. Assuming that collision between ball and bat is completely elastic and the two remain in contact for $0.001 s$, the force that the batsman had to apply to hold the bat firmly at its place would be

## A. 10.5 N

B. 21 N
C. $1.05 \times 10^{4} N$
D. $2.1 \times 10^{4} N$

## Answer:

## D Watch Video Solution

18. A man of mass $m$, standing at the bottom
of the staircase of height $L$ climbs it and stands at its top .
A. Work done by all forces on man is equal
to the rise in potentail energy mgL
B. Work done by all forces on man is zero
C. Work done by the gravitational force on
man is mgL
D. The reaction force from a step does not
do work because the point of application
of the force does not move while the
force exists

## - Watch Video Solution

19. A bullet of mass $m$ fired at $30^{\circ}$ to the horizontal leaves the barrel of the gun with a velocity $v$. The bullet hits a soft target at a height $h$ above the ground while it is moving downward and emerges out with half the kinetic energy it had before hitting the target.

Which of the following statements are correct in respect of bullet after it emerges out of the target ?
A. The velocity of the bullet will be more than half of its earlier velocity
B. The bullet will move in a different parabolic path
C. The internal energy of the particles of
the target will increase
D. The bullet will fall vertically downward after hiting the target

## Answer:

20. Two blocks $M_{1}$ and $M_{2}$ having equal mass are free to move on a horizontal frictionless
surface. $M_{2}$ is attached to a massless spring as shown in figure. Initially $M_{2}$ is at rest and
$M_{1}$ is moving toward $M_{2}$ with speed $v$ and collides head-on with $M_{2}$.
A. While spring is fully compressed all the KE is $M_{1}$ is stored as PE of spring
B. While spring is fully compressed the system momentum is not conserved though final momentum is equal to initial momentum
C. If spring is massless, the final state of
the $M_{1}$ is state of rest
D. If the surface on which blocks are moving has friction, the collison cannot be elastic


## Answer:

## - Watch Video Solution

21. Why is electrical power required at all when
the elevatore is descending ? Why should there be a limit on the number of passengers in this case?

- Watch Video Solution

22. A body is being raised to a height $h$ from
the surface of earth. What is the sign of work done by
(a) applied force (b) gravitational force?

## D Watch Video Solution

23. Calculate the work done by a car against gravity in moving along a straight horizontal road. The mass of the car is 400 kg and the distance moved is 2 m .
24. A body falls towards earth in air. Will its total mechanical energy be conserved during the fall ? Justify.

## D Watch Video Solution

25. A body is moved along a closed loop. Is the work done in moving the body necessarily zero
? If not, state the condition under which work done over a closed path is always zero.

## - Watch Video Solution

26. In an elastic collision of two billiard balls,
which of the following quantities remain conserved during the short time of collision of the balls (i.e., when they are in contact).
(a) Kinetic energy . (b) Total linear momentum
?

Give reason for your answer in each case.

## - Watch Video Solution

27. Calculate the power of a crane in watts, which lifts a mass of 100 kg to a height of 10 m in $20 s$.

## - Watch Video Solution

28. The average work done by a human heart while it beats once is 0.5 J . Calculate the power used by heart if it beats 72 times in a minute.

- Watch Video Solution

29. Give example of a situation in which an applied force does not result in a change in kinetic energy.

## D Watch Video Solution

30. Two bodies of unequal mass are moving in
the same direction with equal kinetic energy.
The two bodies are brought to rest by applying retarding force of same magnitude.

How would the distance moved by them before coming to rest compare ?
31. A bob of mass $m$ suspended by a light string of length $L$ is whirled into a vertical circle as shown in figure. What will be the trajectory of the particle if the string is cut at
(a) Point B ? (b) Point C? (c) Point X?


D Watch Video Solution
32. A ball of mass $m m$, moving with a speed
$2 v_{0}$, collides inelasticaly $(e>0)$ with an identical ball at rest. Show that $(a)$ For head on collision, both the balls move forward.
(b) For a genergcollision, the angle between the two velocities of scattered balls is less that $90^{\circ}$.

## D Watch Video Solution

33. Consider a one-dimensional motion of a
particle with total energy E. There are four
regions $A, B, C$ and $D$ is which the relation between potential energy U , kinetic energy ( K )
and total energy E is as given below
RegionA: $U>E$ Region $\mathrm{B}: U<E$
Region C: $K<E$ Region D: $U>E$

State with reason in each case whether a particle can be found in the given region or not.
34. The bob $A$ of a pendulum released from
horizontal to the vertical hits another bob B of
the same mass at rest on a table as shown in
figure.

If the length of the pendulum is 1 m , calculate
(a) the height to which bob $A$ will rise after collision.
(b) the speed with which bob $B$ starts moving.

Neglect the size of the bobs and assume the
collision to be elastic.


## D Watch Video Solution

35. A raindrop of mass $1 g$ falling from a height of 1 km hits is the ground with a speed of $50 \mathrm{~ms}^{-1}$. Which of the following statements is correct? (Taking $g=10 \mathrm{~ms}^{-2}$ ).

## - Watch Video Solution

36. Two pendulums with identical bobs and lengths are suspended from a common support such that in rest position, the two bobs are in constact, . One of the bobs is released after being displaced by $10^{\circ}$ so that it collides elastically head - on with the other bob.
(a) Describe the motion of two bobs.
(b) Draw a graph showing variation in energy of either pendulum with time,for $0 \leq t \leq 2 T$,
where $T$ is the period of each pendulum.


## (D) Watch Video Solution

37. Suppose the average mass of raindrops is
$3.0 \times 10^{-5} \mathrm{~kg}$ and their average terminal
velocity $9 m s^{-1}$. Calculate the energy
transferred by rain to each square metre of the surface at the place which receives 100 cm of rain in a year.

## D Watch Video Solution

38. An engine is attahed to a wagon through a
shock absorber of length 1.5 m . The system
with a total mass of $50,000 \mathrm{~kg}$ is moving with a
speed of $36 \mathrm{kmh}^{-1}$ when the brakes are applied to bring it to rest. In the process of the system being brought to rest, the spring
of the shock absorber gets compressed by 1.0 m . If $90 \%$ of energy of the wagon is lost due to friction, calculate the spring constant.

## D Watch Video Solution

39. An adult weighing 600 N raises the centre of gravity of his body by 0.25 m while taking each step of 1 m lenth in jogging. If he jogs for 6 km , calculate the energy utilised by him in jogging assuming that there is no energy loss dur to friction of ground and air. Assuming
that the body of the adult is capable of converting $10 \%$ of energy intake in the form of food, calculate the energy equivalent fo food that would be required to compensate energy utilised for jogging.

## D Watch Video Solution

40. On complete combustion, a litre of petrol
gives off heat equivalent to $3 \times 10^{7} \mathrm{~J}$. In a test drive, a car weighing 1200 kg , including the mass of driver, runs 15 kg per litre while moving
with a uniform speed on a straight track.

Assuming that friction offered by the road
surface and air to be uniform, calculate the force of friction acting on the car during the test drive. If the efficiency of the car engine were `0.5.


A curved suface is shown in figure. The portion
$B C D$ is free of friction. There are three
spherical balls of identical radii and masses.
Balls are released from rest one by one from $A$
which is at a slightly greater height than C .
Wioth the surface $A B$, ball 1 has large enough
friction to cause rolling down without slipping, ball 2 has a small friction and ball 3 has a negligible friction.
(a) For which ball is total mechanical energy

## conserved?

(b) Which ball(s) can reach D ?
(c )For ball which do not reach D, which of the balls can reach back $A$ ?

## D Watch Video Solution

42. A rocket accelerates straight up by ejecting
gas downwards. In a small time interval $\Delta t$, it ejects a gas of mass $\Delta m$ at a relative speed $u$.

Calculate KE of the entire system at $t+\Delta t$
and $t$ and show that the device that ejects gas
does work $=\left(\frac{1}{2}\right) \Delta m . u^{2}$ in this time interval (neglect gavity).

## D Watch Video Solution

43. Two identical steel cubes (masses 50 g , side

1 cm ) collide head on face to face with a speed of $10 \mathrm{~cm} / \mathrm{s}$ each . Find the maximum compression of each. Young's modulus for steel $=Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.
44. A baloon filled with helium rises against gravity increasing its potential energy. The speed of the baloon also increases as it rises.

How do you reconcile this with the law of conservation of mechanical energy ? You can neglect viscous drag of air and assume that density of air is constant.

## - Watch Video Solution

