びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - NCERT MATHS (HINGLISH)

APPLICATION OF DERIVATIVES

Application Of Derivatives

1. A spherical ball of salt is dissolving in water
in such a manner that the rate of decrease of
volume at any instant is proportional to the
surface. Prove that the radius is decreasing at a constant rate.

D Watch Video Solution

2. If the area of a circle increases at a uniform
rate, then prove that perimeter varies
inversely as the radius.

D Watch Video Solution
3. A kite is moving horizontally at a height of
151.5 m . If the speed of the kite is $10 \frac{\mathrm{~m}}{\mathrm{~s}}$, how fast is the string being let out, when the kite is

250 m away from the boy who is flying the kite? The height of the boy is 1.5 m . (A) $8 \mathrm{~m} / \mathrm{s}$ (B) $12 \mathrm{~m} / \mathrm{s}$ (C) $16 \mathrm{~m} / \mathrm{s}$ (D) $19 \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

4. Two men A and B start with velocities v at the same time from the junction of two roads
inclined at 45° to each other.If they travel by
different roads,find the rate at which they are being separated.

D Watch Video Solution

5. Find angle $\theta, 0<\theta<\frac{\pi}{2}$, which increase twice as fast as sine

D Watch Video Solution
6. Using differentials, find the approximate value of $(1.999)^{5}$

D Watch Video Solution

7. Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm , respectively.
8. A man $2 m$ tall, walks at the rate of $1 \frac{2}{3} \mathrm{~m} / \mathrm{sec}$ towards a street light which is $5 \frac{1}{3}$ m above the ground. At what rate is tip of his
shadow moving? At what rate is the length of the shadow changing when he is $3 \frac{1}{13} m$ from the base of the light?

D Watch Video Solution

9. A swimming pool is to be drained by
cleaning. If L represents the number of litres
of water in the pool t seconds after the pool
has been plugged off to drain and $L=2000(10-t)^{2}$. How fast is the water ruining out at the end of 5 seconds? What is the average rate at which the water flows out during the first 5 seconds?

D Watch Video Solution

10. The volume of a cube is increasing at a constant rate. Prove that the increase in surface area varies inversely as the length of the edge of the cube.

Watch Video Solution

11. $x a n d y$ are the sides of two squares such
that $y=x-x^{2}$. Find the rate of the change
of the area of the second square with respect to the first square.

D Watch Video Solution

12. Prove that the curve $y=x^{2}$ and $x y=k$ intersect orthogonally if $8 k^{2}=1$.

13.
 Prove
 that
 the
 curves

$x y=4 a n d x^{2}+y^{2}=8$ touch each other.

- Watch Video Solution

14. Find the required point be $P\left(x_{1}, y_{1}\right)$. The
tangent to the curve $\sqrt{x}+\sqrt{y}=4$ at which tangent is equally inclined to the axes.
15. Find the angle of intersection of the curves

$$
y=4-x^{2} \text { and } y=x^{2}
$$

$$
\begin{aligned}
& \text { A. } \theta=\tan ^{-1}\left(\frac{4 \sqrt{2}}{7}\right) \\
& \text { B. } \theta=\tan ^{-1}\left(\frac{\sqrt{2}}{7}\right)
\end{aligned}
$$

$$
\text { C. } \theta=\tan ^{-1}(4 \sqrt{2})
$$

D. $\theta=\tan ^{-1}(\sqrt{2})$

Answer: A

- Watch Video Solution

16. Prove that the curves
 $y^{2}=4 x a n d x^{2}+y^{2}-6 x+1=0 \quad$ touch

 each other at the point (1,2).
- Watch Video Solution

17. Find the equation(s) of normal(s) to the curve $3 x^{2}-y^{2}=8$ which is (are) parallel to the line $x+3 y=4$.

D Watch Video Solution

18. At what points on the curve $x^{2}+y^{2}-2 x-4 y+1=0$, the tangents are parallel to the $y-a \xi s ?$

D Watch Video Solution

19. Show that the line $\frac{d}{a}+\frac{y}{b}=1$ touches
the curve $y=b e^{-\frac{x}{a}}$ at the point where it crosses the y-axis.
$f(x)=2 x+\cot ^{-1} x+\log \left(\sqrt{1+x^{2}}-x\right)$
is increasing in R

D Watch Video Solution

21. Show that for $a \leq 1, f(x)=\sqrt{3}$ $\sin x-\cos x-2 a x+b$ is decreasing on R.

D Watch Video Solution

22. Show that $f(x)=\tan ^{-1}(\sin x+\cos x)$ is
an increasing function on the interval
$(0, \pi / 4)$.

- Watch Video Solution

23. At what points, the slope of the curve
$y=-x^{3}+3 x^{2}+9 x-27$ at point (x, y)
is given by maximum slope.

D Watch Video Solution

24. Prove that $f(x)=\sin x+\sqrt{3} \cos x$ has maximum value at $x=\frac{\pi}{6}$.

- Watch Video Solution

25. If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is $\frac{\pi}{3}$.
26. Find the points of local maxima, local minima and the points of inflection of the function $f(x)=x^{5}-5 x^{4}+5 x^{3}-1$. Also,
find the corresponding local maximum and local minimum values

D Watch Video Solution

27. A telephone company in a town has 500
subscribers on its list and collects fixed charges of Rs 300 per subscriber. The company proposes to increase the annual subscription
and it is believed that every increase of Rs 1 one subscriber will discontinue the service.

Find what increase will bring maximum revenue?

D Watch Video Solution

28. If the straight line $x \cos \alpha+y \sin \alpha=p$
touches the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$.

D Watch Video Solution

29. An open box with a square base is to be made out of a given quantity of card board of area c^{2} square units. Show that the maximum volume of the box is $\frac{c^{3}}{6 \sqrt{3}}$ cubic units.

D Watch Video Solution

30. Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides.
31. The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

D Watch Video Solution

32. $A B$ is a diameter of a circle and C is any
point on the circle. Show that the area of $A B C$ is maximum, when it is isosceles.

- Watch Video Solution

33. A metal box with a square base and vertical
sides is to contain 1024 cm 3 of water, the material for the top and bottom costs Rs 5 per cm 2 and the material for the sides costs Rs 2.50 per cm 2 . Find the least cost of the box.

- Watch Video Solution

34. The sum of the surface areas of the rectangular parallelopiped with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of the volumes is minimum, if x is equal to three times the radius of the sphere. Also, find the minimum value of the sum of their volumes.

D Watch Video Solution

35. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. How far is the area increasing when the side is 10 cms ?

> A. $10 \mathrm{~cm}^{2} / \mathrm{s}$
> B. $\sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
> C. $10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
> D. $\frac{10}{3} \mathrm{~cm}^{2} / \mathrm{s}$

Answer: C

D Watch Video Solution
36. A ladder 5 m long is leaning against a wall.

The bottom of the ladder is pulled along the ground,away from the wall at the rate of 10 cm / s. How fast is the angle between the ladder and the ground decreasing when the foot of the ladder is 2 m away from the wall?
A. $\frac{1}{10} \mathrm{rad} / \mathrm{s}$
B. $\frac{1}{20} \mathrm{rad} / \mathrm{s}$
C. $20 \mathrm{rad} / \mathrm{s}$
D. $10 \mathrm{rad} / \mathrm{s}$

D Watch Video Solution

37. The curve $y=x^{\frac{1}{5}}$ has at $(0,0)$
A. a vertical tangent (parallel to Y-axis)
B. a horizontal tangent (parallel to X-axis)
C. an oblique tangent
D. no tangent
38. Find the equation(s) of normal(s) to the curve $3 x^{2}-y^{2}=8$ which is (are) parallel to the line $x+3 y=4$.

$$
\begin{aligned}
& \text { A. } 3 X-Y=8 \\
& \text { B. } 3 X+Y+8=0 \\
& \text { C. } X+3 Y \pm 8=0 \\
& \text { D. } X+3 Y=0
\end{aligned}
$$

39. If the curves $a y+x^{2}=7$ and $x^{3}=y$ cut orthogonally at $(1,1)$ then $a=$ (A) 1 (B) -6
(C) 6 (D) $\frac{1}{6}$
A. 1
B. 0
C. -6
D. 6
40. If $y=x^{4}-12$ and if x changes from 2 to 1.99. what is the appoinmate change in y.
A. 0.32
B. 0.032
C. 5.68
D. 5.968

Answer: A
41. Find the equation of the tangent to the
curve $\left(1+x^{2}\right) y=2-x$, where it crosses the x-axis.
A. $x+5 y=2$
B. $x-5 y=2$
C. $5 x-y=2$
D. $5 x+y=2$
42. The points at which the tangents to the curve $y=x^{3}-12 x+18$ are parallel to the X axis are

$$
\begin{aligned}
& \text { А. }(2-2),(-2,-34) \\
& \text { B. }(2,34),(-2,0) \\
& \text { С. }(0,34),(-2,0) \\
& \text { D. }(2,2),(-2,34)
\end{aligned}
$$

43. The tangent to the curve $y=e^{2 x}$ at the point $(0,1)$ meets X-axis at
A. $(0,1)$
B. $\left(-\frac{1}{2}, 0\right)$
C. $(2,0)$
D. $(0,2)$

Answer: B
44. The slope of the tangent to the curve
$x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at \quad the
point $(2,1)$ is(A) $\frac{22}{7}$ (B) $\frac{6}{7}$ (C) $\frac{7}{6}$ (D) $\frac{-6}{7}$

$$
\begin{aligned}
& \text { A. } \frac{22}{7} \\
& \text { B. } \frac{6}{7} \\
& \text { C. }-\frac{6}{7} \\
& \text { D. }-6
\end{aligned}
$$

45. The two curves $x^{3}-3 x y^{2}+2=0$ and
$3 x^{2} y-y^{3}-2=0$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: C
46. 24. Find the intervals in which the following function is (a) increasing and (b) decreasing $f(x)=2 x^{3}+9 x^{2}+12 x-1$

$$
\begin{aligned}
& \text { A. }[-1, \infty] \\
& \text { B. }[-2,-1] \\
& \text { C. }(-\infty,-2) \\
& \text { D. }[-1,1]
\end{aligned}
$$

47. The function $f: R \rightarrow R$ be defined by
$f(x)=2 x+\cos x$ then f
A. has minimum at $x=\pi$
B. has a maximum at $x=0$
C. is a decreasing function
D. is in increasing function

Answer: D

48. If $y=x(x-3)^{2}$ decreases for the values of x given by
A. $1<x<3$
B. $x<0$
C. $x>0$
D. $0<x<\frac{3}{2}$

Answer: A

- Watch Video Solution

49.

The
function
$f(x)=4 \sin ^{3} x-6 \sin ^{2} x+12 \sin x+100$ is
strictly
A. increasing in $\pi, \frac{3 \pi}{2}$
B. decreasing in $\left(\frac{\pi}{2}, \pi\right)$
C. decreasing in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
D. decreasing in $\left[0, \frac{\pi}{2}\right]$

Answer: B

D Watch Video Solution
50. Which of the following functions are decreasing on $(0, \pi / 2)$? (i) $\cos x$ (ii) $\cos 2 x$
(iii) $\tan x$ (iv) $\cos 3 x$
A. $\sin 2 x$
B. $\tan x$
C. $\cos x$
D. $\cos 3 x$

Answer: C

D Watch Video Solution
51. The function $f(x)=\tan x-x$
A. always increases
B. always decreases
C. never increases
D. sometimes increases and sometimes
decreases

Answer: A
(Watch Video Solution

52. If x is real, then the minimum value of the

 expression $x^{2}-8 x+17$ isA. -1
B. 0
C. 1
D. 2

Answer: C

- Watch Video Solution

53. Show that the least value of the function
$f(x)=x^{3}-18 x^{2}+96 x$ in the interval $[0,9]$
is 135 .

- Watch Video Solution

54. Show that the least value of the function
$f(x)=2 x^{3}-3 x^{2}-12 x+1$ on $[-2,2.5]$
has one maxima and one minima.

- Watch Video Solution

55. Show that The maximum value of $\sin x \cdot \cos x$
in R is $\frac{1}{2}$

- Watch Video Solution

56. At $x=\frac{5 \pi}{6}, f(x)=2 \sin 3 x+3 \cos 3 x$ is
A. maximum
B. minimum
C. zero
D. neither maximum nor minimum

Answer: D

D Watch Video Solution

57. The maximum slope of curve y
$=-x^{3}+3 x^{2}+9 x-27$ is
A. 0
B. 12
C. 16
D. 32

Answer: B

D Watch Video Solution

58. The function $f(x)=x^{x}$ has a stationary point at
A. $x=e$
B. $x=\frac{1}{e}$
C. $x=1$
D. $x=\sqrt{e}$

Answer: B

D Watch Video Solution

59. Show that the maximum value of $\left(\frac{1}{x}\right)^{x}$ is $e^{1 / e}$.
A. e
B. e^{e}
C. $e^{1 / e}$
D. $\left(\frac{1}{e}\right)^{1 / e}$

Answer: C

- Watch Video Solution

60. The curves $y=4 x^{2}+2 x-8$ and
$y=x^{3}-x+13$ touch each other at the point

- Watch Video Solution

61. The equation of normal to the curve $y=\tan x$ at $(0,0)$ is

- Watch Video Solution

62. Find the values of ' a ' for which the
function $f(x)=\sin x-a x+4$ is increasing
function on R.

- Watch Video Solution

63. The function $f(x)=\frac{2 x^{2}-1}{x^{4}}, x>0$ decreases in the interval
64. The least function value of function $f(x)$
$=a x+\frac{b}{x}$ (where, $a>0, b>0, x>0$) is

- Watch Video Solution

