

MATHS

BOOKS - NCERT MATHS (HINGLISH)

APPLICATION OF INTEGRALS

Application Of Integrals

1. Find the area of the region bounded by the

curve $y^2 = 9x$ and y = 3x.

2. Find the area of the region bounded by the parabola $y^2 = 2px$ and $x^2 = 2py$.

A. $\frac{4p^2}{3}$ sq units B. $\frac{5p^2}{3}$ sq units C. $\frac{7p^2}{3}$ sq units D. $\frac{8p^2}{3}$ sq units

Answer: A

3. Find the area of the region bounded by the

$$\text{curve } y = x^3, y = x + 6 \ \text{ and } \ x = 0 \\$$

Watch Video Solution

4. Find the area of the region bounded by the curve $y^2 = 4x$ and $x^2 = 4y$.

A.
$$\frac{15}{7}$$
 sq units
B. $\frac{16}{7}$ sq units
C. $\frac{16}{3}$ sq units

D.16 sq units

Answer: C

5. Find the area of the region included between $y^2 = 9x$ and y = x.

6. Find the area of the region enclosed by the

parabola $x^2 = y$ and the line y = x+ 2.

7. Find the area of the region bounded by line

x = 2 and parabola $y^2 = 8x$.

8. Sketch the region $\left\{(x,0): y=\sqrt{4-x^2}
ight\}$ and X-axis. Find the area of the region using integration.

9. Calculate the area under the curve $y=2\sqrt{x}$

included between the lines x = 0 and x = 1.

10. Using integration, find the area of the region bounded by the line 2y = 5x + 7, X-axis and the line x = 2 and x = 8.

12. Determine the area under the curve $y = \sqrt{a^2 - x^2}$ included between the lines x =0 and x = a.

13. Find the area if the region bounded by

$$y = \sqrt{x}$$
 and $y = x$.

15. Find the area bounded by the curve $y = \sqrt{x}, \, x = 2y + 3$ in the first quadrant and X-axis.

16. Find the area of the region bounded by the

curve
$$y^2 = 2x$$
 and $x^2 + y^2 = 4x$.

- 17. Find the area of region by the curve $y = \sin x$ between x = 0 and $x = 2\pi$.
 - A. 5 sq units
 - B. 4 sq units
 - C. 3 sq units

D. 7 sq units

Answer: B

Watch Video Solution

18. Using integration, find the area of the triangle ABC whose vertices are A(-1, 1), B(0, 5) and C(3, 2).

19. Find the area of the region $\{(x, y): y^2 \le 6ax \text{ and } x^2 + y^2 \le 16a^2\}$ using method of integration .

20. Compute the area bounded by the lines

x + 2y = 2, y - x = 1 and 2x + y = 7.

21. Find the area bounded by the lines y = 4x + 5, y = 5 - x and 4y = x + 5.

Watch Video Solution

22. Find the area bounded by the curve $y=2\cos x$ and the X-axis from x = 0 to $x=2\pi.$

23. Draw a rough sketch of the given curve $y = 1 + |x + 1|, x = -3, x \equiv 3, y = 0$ and find the area of the region bounded by them, using integration.

24. The area of the region bounded by the $Y-{
m axis}, \ y={
m cos}x$ and $y={
m sin}x$ Where $0\leq x\leq rac{\pi}{2},$ is

A. $\sqrt{2}$ sq units

B. $\left(\sqrt{2}+1\right)$ sq units C. $\left(\sqrt{2}-1\right)$ sq units D. $\left(2\sqrt{2}-1\right)$ sq units

Answer: C

Watch Video Solution

25. The area of the region bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2 is

A.
$$\frac{3}{8}$$
 sq units
B. $\frac{5}{8}$ sq unit
C. $\frac{7}{8}$ sq unit
D. $\frac{9}{8}$ sq units

Answer: D

Watch Video Solution

26. The area of the region bounded by the curve $y\sqrt{16-x^2}$ and X-axis is

- A. 8π sq units
- B. 20π sq units
- C. 16π sq units
- D. 256π sq units

Answer: A

27. Area of the region in the first quadrant exclosed by the X-axis, the line y=x and the circle $x^2 + y^2 = 32$ is

- A. 16π sq units
- B. 4π sq units
- C. 32π sq units
- D. 24π sq units

Answer: B

28. Area of the region bounded by the curve

 $y=\mathrm{cos}x$ between x=0 and $x=\pi$ is

- A.2 sq units
- B.4 sq units
- C.3 sq units
- D.1 sq unit

Answer: A

Watch Video Solution

29. The area of the region bounded by parabola $y^2=x$ and the straight line 2y=x

A.
$$\frac{4}{3}$$
 sq units

B.1 sq unit

C.
$$\frac{2}{3}$$
 sq unit
D. $\frac{1}{3}$ sq units

Answer: A

30. The area of the region bounded by the curve $y=\sin x$ between the ordinates x=0, $x=rac{\pi}{2}$ and the X- axis is

- A.2 sq units
- B.4 sq units
- C.3 sq units
- D.1 sq unit

Answer: D

Watch Video Solution

31. The area of the region bounded by the

ellipse
$$\displaystyle rac{x^2}{25} + \displaystyle rac{y^2}{16} = 1$$
 is

A. 20π sq units

B. $20\pi^2$ sq units

C. $16\pi^2$ sq units

D. 25π sq units

Answer: A

32. The area of the region by the circle $x^2 + y^2 = 1$ is

- A. 2π sq units
- B. π sq units
- C. $3\pi^2$ sq units
- D. 4π sq units

Answer: B

33. The area of the region bounded by the curve y = x + 1 and the lines x = 2, x = 3,

A.
$$\frac{7}{2}$$
 sq units
B. $\frac{9}{2}$ sq unit
C. $\frac{11}{2}$ sq unit
D. $\frac{13}{2}$ sq units

Answer: A

Watch Video Solution

34. The area of the region bounded by the curve x=2y+3 and the lines y=1, y=-1 is

A.4 sq units

B.
$$\frac{3}{2}$$
 sq units

- C.6 sq units
- D.8 sq unit

Answer: C

Watch Video Solution

35. Find the area of the region bounded by the

curve
$$y^2 = 9x$$
 and $y = 3x$.

36. Find the area of the region bounded by the

parabole
$$y^2=2p imes^2=2py$$
.

Watch Video Solution

37. Find the area of the region bounded by the

curve
$$y = x^3, y = x + 6$$
 and $x = 0$

38. Find the area of the region bounded by the

curve
$$y^2 = 4x$$
 and $x^2 = 4y$.

Watch Video Solution

39. Find the area of the region included between $y^2 = 9x$ and y = x.

40. Find the area of the region enclosed by the

parabola $x^2 = y$ and the line y = x+ 2.

41. Find the area of the region bounded by line

x = 2 and parabola $y^2 = 8x$.

42. Sketch the region $\left\{(x,0): y=\sqrt{4-x^2}
ight\}$ and X-axis. Find the area of the region using integration.

46. Determine the area under the curve $y = \sqrt{a^2 - x^2}$ included between the lines x =0 and x = a. **Vatch Video Solution**

47. Find the area if the region bounded by

$$y = \sqrt{x}$$
 and $y = x$.

49. Find the area bounded by the curve $y = \sqrt{x}, x = 2y + 3$ in the first quadrant and X-axis.

50. Find the area of the region bounded by the curve $y^2 = 2x$ and $x^2 + y^2 = 4x$.

Watch Video Solution

 $y = \sin x$ between x = 0 and $x = 2\pi$.

Watch Video Solution

52. Using integration find the area of region bounded by the triangle whose vertices are

(1, 0), (1, 3) and (3, 2).

53. Find the area of the region $\{(x,y): y^2 \leq 6ax ext{ and } x^2 + y^2 \leq 16a^2\}$

using method of integration .

Watch Video Solution

54. Compute the area bounded by the lines x + 2y = 2; y - x = 1 and 2x + y = 7

56. Find the area bounded by the curve $y=2\cos x$ and the X-axis from x = 0 to $x=2\pi.$

57. Draw a rough sketch of the given curve $y = 1 + |x + 1|, x = -3, x \equiv 3, y = 0$ and find the area of the region bounded by them, using integration.

Watch Video Solution

58. The area of the region bounded by the Y-axisy=cos x and y=sin x Where $0 \le x \le rac{\pi}{2}$, is

A. $\sqrt{2}$ sq units

B. $\left(\sqrt{2}+1\right)$ sq units C. $\left(\sqrt{2}-1\right)$ sq units D. $\left(2\sqrt{2}-1\right)$ sq units

Answer: C

Watch Video Solution

59. The area of the region bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2 is

A.
$$\frac{3}{8}$$
 sq units
B. $\frac{5}{8}$ sq unit
C. $\frac{7}{8}$ sq unit
D. $\frac{9}{8}$ sq units

Answer: D

Watch Video Solution

60. The area of the region bounded by the curve $y = \sqrt{16 - x^2}$ and *X*-axis is

- A. 8π sq units
- B. 20π sq units
- C. 16π sq units
- D. 256π sq units

Answer: A

61. Area of the region in the first quadrant exclosed by the X-axis, the line y=x and the circle $x^2 + y^2 = 32$ is

- A. 16π sq units
- B. 4π sq units
- C. 32π sq units
- D. 24π sq units

Answer: B

62. Area of the regionbounded by the curve y

=cos xbetween x = 0 and $x=\pi$ is

- A.2 sq units
- B.4 sq units
- C.3 sq units
- D.1 sq unit

Answer: A

Watch Video Solution

63. The area of the region bounded by parabola $y^2 = x$ and the straight line 2y = x is

A.
$$\frac{4}{3}$$
 sq units

B.1 sq unit

C.
$$\frac{2}{3}$$
 sq unit
D. $\frac{1}{3}$ sq units

Answer: A

64. The area of the region bounded by the
curve y = sin x between the ordinates
$$x = 0, x = \frac{\pi}{2}$$
 and the X-axis is

- A.2 sq units
- B.4 sq units
- C.3 sq units
- D.1 sq unit

Answer: D

Watch Video Solution

65. The area of the region bounded by the

ellipse
$$\displaystyle rac{x^2}{25} + \displaystyle rac{y^2}{16} = 1$$
 is

A. 20π sq units

B. $20\pi^2$ sq units

C. $16\pi^2$ sq units

D. 25π sq units

Answer: A

66. The area of the region by the circle $x^2+y^2=1$ is

- A. 2π sq units
- B. π^2 sq units
- C. $3\pi^2$ sq units
- D. 4π sq units

Answer: B

67. The area of the region bounded by the curve y = x + 1 and the lines x = 2, x = 3, is

A.
$$\frac{7}{2}$$
 sq units
B. $\frac{9}{2}$ sq unit
C. $\frac{11}{2}$ sq unit
D. $\frac{13}{2}$ sq units

Answer: A

Watch Video Solution

68. The area of the region bounded by the curve x=2y+3 and the lines y=1, y=-1 is

A.4 sq units

B.
$$\frac{3}{2}$$
 sq units

- C.6 sq units
- D.8 sq unit

Answer: C