©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NCERT MATHS (HINGLISH)

RELATIONS AND FUNCTIONS

Relations And Functions

1. Let $A=\{a, b, c)$ and the relation R be defined on A as follows:
$R=\{(a, a),(b, c),(a, b)\} . \quad$ Then, write
minimum number of ordered pairs to be added in R to make it reflexive and transitive.

D Watch Video Solution
2. Let D be the domain of the real valued
function f defined by $f(x)=\sqrt{25-x^{2}}$.
Then, write D.

- Watch Video Solution

3. If $f, g: R \rightarrow R$ be defined by
$f(x)=2 x+1$ and $g(x)=x^{2}-2, \forall x \in R$,
respectively. Then, find $g o f$.

D Watch Video Solution

4. Let $f: R \rightarrow R$ be the function defined by
$f(x)=2 x-3, \forall x \in R$. Write f^{-1}.

D Watch Video Solution
$f=\{(a, b),(b, d),(c, a),(d, c)\}$, write f^{-1}.

- Watch Video Solution

6. If $f: R \rightarrow R$ is defined by
$f(x)=x^{2}-3 x+2$, write $f\{f(x)\}$.

- Watch Video Solution

7. Is $g=\{(1,1),(2,3),(3,5),,(4,7)\} \quad$ a
function? If this is described by the formula, $g(x)=\alpha x+\beta$, then what values should be assigned to α and β ?

- Watch Video Solution

8. Are the following set of ordered pairs
functions? If so, examine whether the mapping is infective or surjective: $\{(x, y): x$ is a
person, y is the mother of $x\}$ (ii) $\{(a, b): a$ is a person, b is an ancestor of $a\}$

D Watch Video Solution

9. If the functions f and g are given by
$f=\{(1,2),(3,5),(4,1)\} \quad$ and
$g=\{(2,3),(5,1),(1,3)\}$, find range of f
and g. Also, write down fog and $g o f$ as sets of ordered pairs.
10. Let C be the set of complex numbers. Prove
that the mapping $F: C \rightarrow R$ given by
$f(z)=|z|, \forall z \in C$, is neither one-one nor onto.

- Watch Video Solution

11. Let the function $f: R \rightarrow R$ be defined by
$f(x)=\cos x, \forall x \in R$. Show that f is neither one-one nor onto.
12. Let $X=\{1,2,3\}$ and $Y=\{4,5\}$. Find whether
the following subsets of $X \times Y$ are functions
from X to Y or not.
(i) $f=\{(1,4),(1,5),(2,4),(3,5)\}$ (ii) $g=\{(1,4),(2$,
4), $(3,4)\}$
(iii) $\mathrm{h}=\{(1,4),(2,5),(3,5)\}$ (iv) $\mathrm{k}=\{(1,4),(2,5)\}$

D Watch Video Solution

13. If functions $f: A \rightarrow B$ and $g: B \rightarrow A$ satisfy gof $=I_{A}$, then show that f is one-one
and g is onto.

D Watch Video Solution

14. Let $f: R \rightarrow R$ be the function defined by
$f(x)=\frac{1}{2-\cos x}, \forall x \in R$. Then, find the
range fo f.

D Watch Video Solution

15. Let n be a fixed positive integer. Define a

Z
as
follows:
$(a, b) \in R \Leftrightarrow a-b$ is divisible by n. Show that R is an equivalence relation on Z.

D Watch Video Solution

16. If $A=\{1,2,3,4\}$, define relations on A which
have properties of being
(i) reflexive, transitive but not symmetric.
(ii) symmetric but neither reflexive nor transitive.
(iii) reflexive, symmetric and transitive.
17. Let R be a relation defined on the set of natural numbers

N as
$R=\{(x, y): x, y \in N, 2 x+y=41\}$
Find
the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric transitive.

- Watch Video Solution

18. Given, $A=\{2,3,4\}, B=\{2,5,6,7\}$.

Construct an example of each of the following
(i) an injective mapping from A to B.
(ii) a mapping from A to B which is not injective.
(iii) a mapping from B to A.

D Watch Video Solution

19. Give an example of a function which is oneone but not onto. which is not one-one but onto. (iii) which is neither one-one nor onto.
20. Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f: A \rightarrow B$ is a mapping defined by $f(x)=\frac{x-1}{x-2}$, show that f is bijective.

- Watch Video Solution

21. Let $A=[-1,1]$. Then, discuss whether the following functions from A to itself are one-one onto or bijective: $f(x)=\frac{x}{2}$
$g(x)=|x|$ (iii) $h(x)=x^{2}$

D Watch Video Solution

22. Each of the following defines a relation on
N :
(i) $x>y, x, y \in N$
(ii) $x+y=10, x, y \in N$
(iii) $x y$ is square of an integer, $x, y \in N$
(iv) $x+4 y=10, x, y \in N$

Determine which of the above relations are reflexive, symmetric and transitive.

- Watch Video Solution

23. Let $A=\{1,2,3,, 9\}$ and R be the relation on $A \times A$ defined by $(a, b) R(c, d)$
if $a+d=b+c$
for
all
$(a, b),(c, d) \in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class [(2,5)].

D Watch Video Solution

24. Using the definition, Prove that the
function $f: A \rightarrow B$ is invertible if and only if f
is both one-one and onto.

D Watch Video Solution

25. If $f, g: R \vec{R}$ are defined respectively by
$f(x)=x^{2}+3 x+1, g(x)=2 x-3, \quad$ find
fog (ii) gof (iii) fof (iv) gog.

- Watch Video Solution

26. Let * be the binary operation defined on
Q. Find which of the following binary
operations are commutative
(i) $a * b=a-b, \forall a, b \in Q$
(ii) $a * b=a^{2}+b^{2}, \forall a, b \in Q$
(iii) $a * b=a+a b, \forall a, b \in Q$
(iv) $a * b=(a-b)^{2}, \forall a, b \in Q$

D Watch Video Solution

27. Let * be a binary operation on R defined by
$a \cdot b=a b+1$. Then, * is commutative but not associative associative but not commutative neither commutative nor
associative (d) both commutative and associative

D Watch Video Solution

28. Let T be the set of all triangles in a plane
with R a relation in T given by
$R=\left\{\left(T_{1}, T_{2}\right): T_{1}(\text { iscongruentto } T)_{2}\right\}$. Show
that R is an equivalence relation.
A. reflexive but not transitive
B. transitive but not symmetric

C. equivalence

D. None of these

Answer: C

D Watch Video Solution

29. Consider the non-empty set consisting of children in a family and a relation R defined as $a R b$, if a is brother of b. Then, R is
A. symmetric but not transitive
B. transitive but not symmetric
C. neither symmetric nor transitive
D. both symmetric and transitive

Answer: B

D Watch Video Solution
30. The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are
A. 1
B. 2
C. 3
D. 5

Answer: D

- Watch Video Solution

31. If a relation R on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$, then R is:
A. reflexive

B. transitive

C. symmetric

D. None of these

Answer: B

D Watch Video Solution

32. Let us define a relation R in R as $a R b$ if $a \geq b$. Then, R is
A. an equivalence relation
B. reflexive, transitive but not symmetric
C. symmetric, transitive but not reflexive
D. neither transitive nor reflexive but symmetric

Answer: B

D Watch Video Solution

33. If $A=\{1,2,3\}$ and consider the relation
$R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$

Then, R is
A. reflexive but not symmetric
B. reflexive but not transitive
C. symmetric and transitive
D. neither symmetric nor transitive

Answer: A

D Watch Video Solution

34. The identity element for the binary operation $*$ defined on $Q-\{0\}$ as
$a * b=\frac{a b}{2}, \forall a, b \in Q-\{0\}$ is
A. 1
B. 0
C. 2
D. None of these

Answer: C

D Watch Video Solution
35. If the set A contains 5 elements and the set B contains 6 elements, then the number of
one-one and onto mappings from A to B is 720
(b) 120 (c) 0 (d) none of these
A. 720
B. 120
C. 0
D. None of these

Answer: C
(Watch Video Solution
36. Let $A=\{1,2, \ldots, n\}$ and $B=\{a, b\}$.

Then number of subjections from A into B is

$$
\text { nP2 (b) } 2^{n}-2 \text { (c) } 2^{n}-1 \text { (d) nC2 }
$$

A. ${ }^{n} P_{2}$
B. $2^{n}-2$
C. $2^{n}-1$
D. None of these

Answer: D

- Watch Video Solution

37. If $f: R \rightarrow R$ be defined by
 $f(x)=\frac{1}{x}, \forall x \in R$. Then, f is

A. one-one
B. onto
C. bijective
D. f is not defined

Answer: D
(Watch Video Solution
38. If $f: R \rightarrow R$ be defined by $f(x)=3 x^{2}-5$
and $g: R \rightarrow R$ by $g(x)=\frac{x}{x^{2}+1}$. Then, gof is
A. $\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}$
B. $\frac{3 x^{2}-5}{9 x^{4}-6 x^{2}+26}$
C. $\frac{3 x^{2}}{x^{4}+2 x^{2}-4}$
D. $\frac{3 x^{2}}{9 x^{4}+30 x^{2}-2}$

Answer: A
39. Which of the following functions from Z to
itself are bijections? a
A. $f(x)=x^{3}$
B. $f(x)=x+2$
C. $f(x)=2 x+1$
D. $f(x)=x^{2}+1$

Answer: B
(Watch Video Solution
40. $f: R \rightarrow R$ defined by $f(x)=x^{2}+5$
A. $(x+5)^{\frac{1}{3}}$
B. $(x-5)^{\frac{1}{3}}$
C. $(5-x)^{\frac{1}{3}}$
D. $5-x$

Answer: B
41. If $f: A \rightarrow B$ and $g: B \rightarrow C$ be the bijective functions, then $(g o f)^{-1}$ is

> A. $f^{-1} o g^{-1}$
> B. $f o g$
> C. $g^{-1} o f^{-1}$
> D. $g o f$

Answer: A
(Watch Video Solution
42. Let $f: R-\left\{\frac{3}{5}\right\} \rightarrow R$ be defined by $f(x)=\frac{3 x+2}{5 x-3}$.Then

$$
\begin{aligned}
& \text { A. } f^{-1}(x)=f(x) \\
& \text { B. } f^{-1}(x)=-f(x) \\
& \text { C. }(f o f) x=-x \\
& \text { D. } f^{-1}(x)=\frac{1}{9} f(x)
\end{aligned}
$$

Answer: A

D Watch Video Solution
43. If $f(x)$ is defined on $[0,1]$ by the rule $f(x)=\{x$, if x is rational, $1-x$, if x is rational ' then for all $x \in[0,1], f(f(x))$ is
A. constant
B. $1+x$
C. x
D. None of these

Answer: C

D Watch Video Solution
44. If $f:[2, \infty) \rightarrow R$ be the function defined by $f(x)=x^{2}-4 x+5$, then the range of f is
A. R
B. $[1, \infty)$
C. $[4, \infty)$
D. $[5, \infty)$

Answer: B

D Watch Video Solution
45. Let $f: N \rightarrow R$ be the function defined by
$f(x)=\frac{2 x-1}{2}$ and $g: Q \rightarrow Q$ be another function defined by $g(x)=x+2$ then $(g \circ f)\left(\frac{3}{2}\right)$ is
A. 1
B. 1
C. $\frac{7}{2}$
D. None of these

Answer: D
46. If $f: R \rightarrow R$ be defined by
$f(x)=\left\{\begin{array}{l}2 x: x>3 \\ x^{2}: 1<x \leq 3 \\ 3 x: x \leq 1\end{array}\right.$
Then, $f(-1)+f(2)+f(4)$ is
A. 9
B. 14
C. 5
D. None of these
47. If $f: R \rightarrow R$ be given by $f(x)=\tan x$,
then $f^{-1}(1)$ is
A. $\frac{\pi}{4}$
B. $\left\{n \pi+\frac{\pi}{4}: n \in Z\right\}$
C. Does not exist
D. None of these

Answer: A
48. Let the relation R be defined in N by $a R b$, if $2 a+3 b=30$. Then $R=\ldots . .$. .

- Watch Video Solution

49. If the relation R be defined on the set
$A=\{1,2,3,4,5\}$
$R=\left\{(a, b):\left|a^{2}-b^{2}\right|<8\right\}$. Then, R is given by
50. If the functions f and g are given by
$f=\{(1,2),(3,5),(4,1)\}$
and
$g=\{(2,3),(5,1),(1,3)\}$, find range of f
and g. Also, write down $f o g$ and $g o f$ as sets of ordered pairs.

D Watch Video Solution

51. If $f: R \rightarrow R$ be defined by
$f(x)=\frac{x}{\sqrt{1+x^{2}}}$,
then
$(f o f o f)(x)=\ldots \ldots \ldots \ldots$.

- Watch Video Solution

52. If $f(x)=\left[4-(x-7)^{3}\right]$, then $f^{-1}(x)=\ldots \ldots \ldots \ldots$.

- Watch Video Solution

53. State true or false for the given statement :

Let $R=\{(3,1),(1,3),(3,3)\}$ be a relation defined
on the set $A=\{1,2,3\}$. Then, R is symmetric, transitive but not reflexive.

Watch Video Solution

54. If $f: R \rightarrow R$ be the function defined by
$f(x)=\sin (3 x+2) \forall x \in R$. Then, $\quad \mathrm{f} \quad$ is invertible.

D Watch Video Solution

55. Every relation which is symmetric and transitive is also reflexive.

D Watch Video Solution
56. An integer m is said to be related to another integer n if m is a multiple of n.

Check if the relation is symmetric, reflexive and transitive.

- Watch Video Solution

57. Let $A=\{0,1\}$ and the set of all natural numbers.Then the mapping $\quad f: N \rightarrow A$ defined by
$f(2 n-1)=0, f(2 n)=1, \forall n \in N$, is
58. The relation R on the set $A=\{1,2,3\}$ defined as $R=\{(1,1),(1,2),(2,1),(3,3)\}$ is reflexive, symmetric and transitive.

D Watch Video Solution

59. The composition of function is commutative.
60. The composition of functtions is associative

D Watch Video Solution
61. Every function is invertible.

- Watch Video Solution

62. A binary operation on a set has always the
identity element.

- Watch Video Solution

