びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - NCERT MATHS (HINGLISH)

THREE DIMENSIONAL GEOMETRY

Three Dimensional Geometry

1. Find the position vector of a point A in space such that $\overrightarrow{O A}$ is inclined at $60^{\circ} \rightarrow O X$ and at $45^{0} \rightarrow$ OYand $|\vec{O} A|=10$ units.
2. Find the vector equation of the line which is parallel to the vector $3 \hat{i}-2 \hat{j}+6 \hat{k}$ and which passes through the point $(1,-2,3)$.

D Watch Video Solution

3. Show that the two lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{z}=z$
intersect. Find also the point of intersection of these
lines.

D Watch Video Solution

4. Find the angle between the lines

$$
\begin{aligned}
& \vec{r}=3 \hat{i}-2 \hat{j}+6 \hat{k}+\lambda(2 \hat{i}+\hat{j}+2 \hat{k}) \\
& \vec{r}=(2 \hat{j}-5 \hat{k})+\mu(6 \hat{i}+3 \hat{j}+2 \hat{k})
\end{aligned}
$$

$$
\text { A. } \theta=\cos ^{-1}\left(\frac{21}{19}\right)
$$

$$
\text { B. } \theta=\cos ^{-1}\left(\frac{19}{21}\right)
$$

$$
\text { C. } \theta=\cos ^{-1}\left(\frac{6}{21}\right)
$$

$$
\text { D. } \theta=\cos ^{-1}\left(\frac{1}{19}\right)
$$

Answer: B

D Watch Video Solution

5. Prove that the lines through
$A(0,-1,-1) \operatorname{and} B(4,5,1)$ intersecrs the line through $C(3,9,2)$ and $D(-4,4,4)$. Also, find their point of intersection.

- Watch Video Solution

6. Prove that the lines
$x=p y+q ; z=r y+s$ and $x=p^{\prime} y+q^{\prime} ; z=r^{\prime} y+s^{\prime}$
are perpendicular If $p p^{\prime}+q q^{\prime}+1=0$
7. Find the equation of the plane which bisects the line segment joining the points $A(2,3,4)$ and $B(4,5,8)$ at right angles.
A. $x+y+2 z=19$
B. $x+y-2 z=19$
C. $x+y-2 z=38$
D. $x+y+2 z=38$

Answer: A
8. Find the equation of a plane which is at a distance of
$3 \sqrt{3}$ units from origin and the normal to which is equally inclined to the coordinate axes.
A. $x+y+z=9$
B. $x+y-z=9$
C. $x-y-z=9$
D. $x-y+z=9$

Answer: A
9. If the line drawn from the point $(-2,-1,-3)$ meets a plane at right angle at the point $(1,-3,3)$, find the equation of the plane.
A. $3 x+2 y+6 z-18=0$
B. $3 x+2 y+6 z-24=0$
C. $3 x-2 y+6 z-24=0$
D. $3 x-2 y+6 z-27=0$

Answer: D

- Watch Video Solution

10. Find the equation of the plane through points
(2,1,0),(3,-2,-2), and (3,1,7).

D Watch Video Solution

11. Find the equations of the two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$ each.

D Watch Video Solution

12. Find the acute angle between the two straight lines
whose direction cosines are given by $l+m+n=0$
and $l^{2}+m^{2}-n^{2}=0$

- Watch Video Solution

13. If the direction cosines of a variable line in two adjacent points be
l, M, n and $l+\delta l, m+\delta m+n+\delta n$ the small angle $\delta \theta$ as between the two positions is given by

- Watch Video Solution

14. If O is the origin and the coordinates of A are (a, b, c). Find the direction cosines of $O A$ and the equation of the plane through A at right angles to OA.

(- Watch Video Solution

15. Two systems of rectangular axes have the same origin. If a plane cuts them at distances $a, b, c a n d a^{\prime}, b^{\prime}, c^{\prime}$ respectively, prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}$

- Watch Video Solution

16. Find the foot of the perpendicular from the point
$(2,3,-8)$ to the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$. Find the perpendicular distance from the given point to the line.
17. Find the equation of the perpendicular drawn from
$(2,4,-1)$ to the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{3}$.

D Watch Video Solution

18. Find the length and the foot of perpendicular from
the point $\left(1, \frac{3}{2}, 2\right)$ to the plane
$2 x-2 y+4 z+5=0$.
A. $\sqrt{7}$ units
B. $\sqrt{2} u n i t s$
C. $\sqrt{6}$ units

D. $\sqrt{3}$ units

Answer: C

- Watch Video Solution

19. Find the equations of the line passing through the point $(3,0,1)$ parallel to the planes $x+2 y=0$ and $3 y-z=0$.

D Watch Video Solution
20. Find the shortest distance between the lines gives

by

$\vec{r}=(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k}$
and $\vec{r}=15 \hat{i}+29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$.

D Watch Video Solution

21. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which contains the line of intersection of the planes

$$
x+2 y+3 z-4=0 \text { and } 2 x+y-z+5=0
$$

$$
\text { A. } 51 x+18 y-50 z+173=0
$$

$$
\text { B. } 51 x+18 y-50 z=173
$$

$$
\text { C. } 51 x+18 y+50 z+173=0
$$

$$
\text { D. } 51 x-18 y+50 z-173=0
$$

Answer: A

D Watch Video Solution

22. The plane $a x+b y=0$ is rotated about its line of intersection with the plane $\mathrm{z}=0$ through an angle α.

Prove that the equation of the plane in its new position is $a x+b y \pm\left(\sqrt{a^{2}+b^{2}} \tan \alpha\right) z=0$

D Watch Video Solution

23. Find the equation of the plane through the points
$(2,1,1)$ and $(1,3,4)$ and perpendicular to the plane
$x 2 y+4 z=10$.

D Watch Video Solution

24. Find the position vector of a point A in space such that $\overrightarrow{O A}_{A}$ is inclined at $60^{\circ} \rightarrow O X$ and at $45^{0} \rightarrow$ OYand $|\vec{O} A|=10$ units.

- Watch Video Solution

25. Find the vector equation of the line which is parallel to the vector $3 \hat{i}-2 \hat{j}+6 \hat{k}$ and which passes through the point $(1,-2,3)$.

D Watch Video Solution

$$
\begin{aligned}
& \text { 26. } \begin{array}{c}
\text { Show } \\
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \text { and } \frac{x-4}{5}=\frac{y-1}{2}
\end{array} \text { the line }
\end{aligned}
$$

intersect. Find their point of intersection.

- Watch Video Solution

27. Find the angle between the lines

$$
\begin{aligned}
\vec{r} & =3 \hat{i}-2 \hat{j}+6 \hat{k}+\lambda(2 \hat{i}+\hat{j}+2 \hat{k}) \quad \text { and } \\
\vec{r} & =(2 \hat{j}-5 \hat{k})+\mu(6 \hat{i}+3 \hat{j}+2 \hat{k})
\end{aligned}
$$

28. Prove that the line through $A(0,1,1)$ and $B(4,5,1)$ intersects the line through $C(3,9,4)$ and $D(4,4,4)$.

D Watch Video Solution

$$
\begin{aligned}
& \text { 29. } \begin{array}{c}
\text { Prove that } \\
x=p y+q ; z=r y+s \\
\text { and } x=p^{\prime} y+q^{\prime} ; z=r^{\prime} y+s^{\prime}
\end{array}
\end{aligned}
$$

are perpendicular If $p p^{\prime}+q q^{\prime}+1=0$
30. Find the equation of the plane which bisects the
line segment joining the points
$A(2,3,4) \operatorname{and} B(4,5,8)$ at right angles.

- Watch Video Solution

31. Write the equation of a plane which is at a distance of $5 \sqrt{3}$ units from origin and the normal to which is equally inclined to coordinate axes.

D Watch Video Solution

32. If he line drawn from the point $(-2,-1,-3)$ meets a plane at right angle at the point $(1,-3,3)$, find the equation of the plane.

- Watch Video Solution

33. Find the equationfo the plane through points
(2,1,0),(3,-2,-2), and (3,1,7).

- Watch Video Solution

34. Find the equations of the two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$
at angle of $\frac{\pi}{3}$ each.

D Watch Video Solution

35. Find the acute angle between the two straight lines
whose direction cosines are given by $l+m+n=0$
and $l^{2}+m^{2}-n^{2}=0$

- Watch Video Solution

36. If the direction cosines of a variable line in two adjacent points be
l, M, n and $l+\delta l, m+\delta m+n+\delta n$ the small angle
$\delta \theta$ as between the two positions is given by
A. $\delta \theta^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$
B. $\delta \theta^{2}=\delta l^{2}-\delta m^{2}+\delta n^{2}$
C. $\delta \theta^{2}=\delta l^{2}+\delta m^{2}-\delta n^{2}$
D. $\delta \theta^{2}=\delta l^{2}-\delta m^{2}-\delta n^{2}$

Answer: A

- Watch Video Solution

37. If O is the origin and the coordinates of A are (a, b, c). Find the direction cosines of $O A$ and the equation of the plane through A at right angles to OA.
38. Two systems of rectangular axes have the same origin. If a plane cuts them at distances $a, b, c a n d a^{\prime}, b^{\prime}, c^{\prime}$ respectively, prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}$

D Watch Video Solution

39. Find the foot of the perpendicular from the point
$(2,3,-8)$ to the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$. Find the perpendicular distance from the given point to the line.
40. Find the distance of a point $(2,4,-1)$ from the
line
$\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$.

- Watch Video Solution

41. Find the length and the foot of perpendicular from

$$
\begin{aligned}
& \text { the point }(1,3 / 2,2) \text { to the plane } \\
& 2 x-2 y+4 z+5=0
\end{aligned}
$$

- Watch Video Solution

42. Find the equations of the line passing through the point $(3,0,1)$ parallel to the planes $x+2 y=0$ and
$3 y-z=0$.

D Watch Video Solution

43. Find the shortest distance between the lines gives
by
$\vec{r}=(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k}$
and $\vec{r}=15 \hat{i}+29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$.
A. 11 units
B. 12 units
C. 13 units
D. 14 units

Answer: D

- Watch Video Solution

44. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$
A. $51 x-18 y-50 z+173=0$
B. $51 x+18 y-50 z+173=0$
C. $51 x+17 y-50 z+173=0$
D. $51 x+18 y-50 z-173=0$

Answer: B

- Watch Video Solution

45. The plane $a x+b y=0$ is rotated about its line of intersection with the plane $\mathrm{z}=0$ through an angle α.

Prove that the equation of the plane in its new position is $a x+b y \pm\left(\sqrt{a^{2}+b^{2}} \tan \alpha\right) z=0$

D Watch Video Solution

46. Find the equation of the plane through the points
$(2,1,1)$ and $(1,3,4)$ and perpendicular to the plane
$x-2 y+4 z=10$.
A. $18 x+17 y+4 z=-49$
B. $18 x+17 y-4 z=49$
C. $18 x+17 y+4 z=49$
D. $18 x-17 y+4 z=49$

Answer: C

D Watch Video Solution

