

MATHS

BOOKS - NCERT MATHS (HINGLISH)

VECTOR ALGEBRA

Vector Algebra

1. Find the unit vector in the direction of sum of vectors $\overrightarrow{a} = \hat{2}i - \hat{j} + \hat{k}$ and $\overrightarrow{b} = 2\hat{j} + \hat{k}$.

2. If $\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + \hat{j} + 2\hat{k}$, then

find the unit vector in the direction of

(i) $6\overrightarrow{b}$

(ii) $2\overrightarrow{a} - \overrightarrow{b}$

3. Find a unit vector in the direction of \overrightarrow{PQ} , where P and Q have coordinates (5, 0, 8) and (3, 3, 2) respectively.

4. If \overrightarrow{a} and \overrightarrow{b} are position vectors of AandB respectively, find the position vector of a point C on B A produced such that BC = 1.5BA.

Watch Video Solution

5. Using vectors, find the value of k, such that the points (k,-10, 3), (1,-1, 3) and (3, 5, 3) are collinear.

Watch Video Solution

6. A vector \overrightarrow{r} is inclined at equal angles to the three axes. If the magnitude of \overrightarrow{r} is $2\sqrt{3}$ units, then find

7. If a vector *vcer* has magnitude 14 and direction ratios 2, 3 and -6. Then, find the direction cosines and components of \overrightarrow{r} , given that \overrightarrow{r} makes an acute angle with X-axis.

Watch Video Solution

8. Find a vector of magnitude 6, which is perpendicular to both the vectors $2\hat{i} - \hat{j} + 2\hat{k}$ and $4\hat{i} - \hat{j} + 3\hat{k}$.

A.
$$-2\hat{i}-4\hat{j}-4\hat{k}$$

B. $-2\hat{i}-4\hat{j}+4\hat{k}$
C. $2\hat{i}+4\hat{j}+4\hat{k}$
D. $-2\hat{i}+4\hat{j}+4\hat{k}$

Answer: D

9. Find the angle between the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} - \hat{k}$.

A.
$$heta=\cos^{-1}igg(rac{1}{2\sqrt{39}}igg)$$

B.
$$heta = \cos^{-1}\left(rac{1}{\sqrt{39}}
ight)$$

C. $heta = \cos^{-1}\left(rac{1}{2\sqrt{3}}
ight)$
D. $heta = \cos^{-1}\left(rac{1}{2\sqrt{7}}
ight)$

Answer: A

10. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, then show that $\overrightarrow{a} \times \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$. Interpret the result

geometrically.

11. Find the sine of the angle between the vectors $\vec{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}$

Watch Video Solution

12. If A, B, C and D are the points with position vectors

 $\hat{i} - \hat{j} + \hat{k}, 2\hat{i} - \hat{j} + 3\hat{k}, 2\hat{i} - 3\hat{k} ext{ and } 3\hat{i} - 2\hat{j} + \hat{k}$ respectively, then find the projection of \overrightarrow{AB} and \overrightarrow{CD} .

Watch Video Solution

13. Using vectors, find the area of the ΔABC with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1)

14. Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

Watch Video Solution

15. (Cosine Formulae) if a, b, c are the lengths of the sides opposite respectively to the angles A, B, C of a triangle ABC, show that $\cos A \frac{b^2 + c^2 - a^2}{2bc}$ (ii) $\cos B \frac{c^2 + a^2 - b^2}{2ac}$ (iii) (i) $\cos C \frac{a^2 + b^2 - c^2}{2ab}$

16. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} determine the vertices of a triangle, show that $\frac{1}{2} \left[\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{d} \right]$ givens the vector area of the triangle. Hence, deduce the condition that the three points \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are collinera. Also, find the unit vector normal to the plane of the triangle.

17. Show that area of the parallelogram whose diagonals are given by \overrightarrow{a} and \overrightarrow{b} is $\frac{\left|\overrightarrow{a}\times\overrightarrow{b}\right|}{2}$ Also, find the area of the parallelogram whose diagonals are 2i - j + k and i + 3j - k.

Watch Video Solution

18. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{j} - \hat{k}$ find a vector \overrightarrow{c} such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 3$.

19. The vector in the direction of the vector $\hat{i}-2\hat{j}+2\hat{k}$ that has magnitude 9 is

A.
$$\hat{i} - 2\hat{j} + 2\hat{k}$$

B. $rac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$
C. $3\Big(\hat{i} - 2\hat{j} + 2\hat{k}\Big)$
D. $9\Big(\hat{i} - 2\hat{j} + 2\hat{k}\Big)$

Answer: C

20. The position vector of the point which divides the join of points $2\overrightarrow{a} - 3\overrightarrow{b}$ and $\overrightarrow{a} + \overrightarrow{b}$ in the ratio 3:1, is

Answer: D

21. The vector having initial and terminal points as (2,

5, 0) and (-3,7,4), respectively is

A.
$$-\hat{i}+12\hat{j}+4\hat{k}$$

B. $5\hat{i}+2\hat{j}+4\hat{k}$

 $\mathsf{C}.-5\hat{i}+2\hat{j}+4\hat{k}$

D.
$$\hat{i}+\hat{j}+\hat{k}$$

Answer:

22. The angle between two vectros \overrightarrow{a} and \overrightarrow{b} with magnitudes $\sqrt{3}$ and 4, respectively and \overrightarrow{a} . $\overrightarrow{b} = 2\sqrt{3}$

is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{5\pi}{2}$

Answer: B

23. Find the value of λ such that the vectors $\overrightarrow{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal.

A. 0

B. 1

C.
$$\frac{3}{2}$$

D.
$$\frac{-5}{2}$$

Answer: D

24. The value of λ for which the vectors $3\hat{i}-6\hat{j}+\hat{k}$ and $2\hat{i}-4\hat{j}+\lambda\hat{k}$ parallel, is

A.
$$\frac{2}{3}$$

B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{2}{5}$

Answer: A

25. The vectors from origin to the points A and B are $\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} + \hat{k}$

respectively, then area of triangle OAB is

A. 340

 $\mathsf{B.}\,\sqrt{25}$

$$\mathsf{C}.\sqrt{229}$$

D.
$$rac{1}{2}\sqrt{229}$$

Answer:

Answer: D

27. If
$$\left| \overrightarrow{a} \right| = 10$$
, $\left| \overrightarrow{b} \right| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 12$, then the value of $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$ is

A. 5

B. 10

C. 14

D. 16

Answer: D

28. The vectors $\lambda\hat{i}+\hat{j}+2\hat{k},\,\hat{i}+\lambda\hat{j}-\hat{k}\,\, ext{and}\,\,2\hat{i}-\hat{j}+\lambda\hat{k}$ are coplanar, if

A. $\lambda=-2$ B. $\lambda=0$ C. $\lambda=1$

D.
$$\lambda = -1$$

Answer: A

29. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, then the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ is

A. 1

B. 3

 $\mathsf{C.}-\frac{3}{2}$

D. None of these

Answer:

30. The projection vector of \overrightarrow{a} on \overrightarrow{b} is

Answer: D

31. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{c}| = 5$, then the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. \overrightarrow{a} is

A. 0

B. 1

C. -19

D. 38

Answer: C

32. If $\left|\overrightarrow{a}\right| = 4$ and $-3 \le \lambda \le 2$, then the range of $\left|\lambda \overrightarrow{a}\right|$ is

A. [8,0]

B. [-12,8]

C. [0,12]

D. [8,12]

Answer: C

33. The number of vectors of unit length perpendicular to the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$ is

A. one

B. two

C. three

D. infinite

Answer:

34. The vector $\overrightarrow{a} + \overrightarrow{b}$ bisects the angle between the non-collinear vectors \overrightarrow{a} and \overrightarrow{b} , if.....

Watch Video Solution

35. If
$$\overrightarrow{r} \cdot \overrightarrow{a} = 0$$
, $\overrightarrow{r} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{r} \cdot \overrightarrow{c} = 0$ for
some non-zero vector \overrightarrow{r} , then the value of
 $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ is......

36. The vectors
$$\overrightarrow{a} = 3\hat{i} - 2\hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = -\hat{i} - 2\hat{k}$ are the

adjacent sides of a paralleogram. The angle between

its diagonals is........

39. If
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left(\overrightarrow{a} \cdot \overrightarrow{b} \right)^2 = 144 \text{ and } \left| \overrightarrow{a} \right| = 4, \text{ then } \left| \overrightarrow{b} \right|^2$$
 is equal to

40. If \overrightarrow{a} is any non-zero vector, then $\left(\overrightarrow{a} \cdot \widehat{i}\right) \cdot \widehat{i} + \left(\overrightarrow{a} \cdot \widehat{j}\right) \cdot \widehat{j} + \left(\overrightarrow{a} \cdot \overrightarrow{k}\right) \widehat{k}$ is equal to

Watch Video Solution

41. If
$$|\vec{a}| = |\vec{b}|$$
, then necessarily it implies
 $\vec{a} = \pm \vec{b}$.
• Watch Video Solution
42. Position vector of a point \vec{P} is a vector whose
initial point is origin.
• Watch Video Solution
43. If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$, then the vectors
 \vec{a} and \vec{b} are orthogonal

44. The formula
$$\left(\overrightarrow{a} + \overrightarrow{b}\right)^2 = \overrightarrow{a^2} + \overrightarrow{b^2} + 2\overrightarrow{a} \times \overrightarrow{b}$$
 is valid for non-zero vectors \overrightarrow{a} and \overrightarrow{b} .

D Watch Video Solution

45. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are adjacent sides of a rhombus,
then \overrightarrow{a} . $\overrightarrow{b} = 0$.