©゙’ doubtnut

MATHS

BOOKS - NCERT MATHS (HINGLISH)

VECTOR ALGEBRA

Vector Algebra

1. Find the unit vector in the direction of sum of
vectors $\vec{a}=\hat{2} i-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{j}+\hat{k}$.

D Watch Video Solution
2. If $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+2 \hat{k}$, then
find the unit vector in the direction of
(i) $6 \vec{b}$
(ii) $2 \vec{a}-\vec{b}$

D Watch Video Solution
3. Find a unit vector in the direction of $\overrightarrow{P Q}$, where P and Q have coordinates $(5,0,8)$ and $(3,3,2)$ respectively.
4. If \vec{a} and \vec{b} are position vectors of A and B respectively, find the position vector of a point C on B A produced such that $B C=1.5 B A$.

- Watch Video Solution

5. Using vectors, find the value of k, such that the points (k,-10, 3), (1,-1, 3) and (3, 5, 3) are collinear.

- Watch Video Solution

6. A vector \vec{r} is inclined at equal angles to the three axes. If the magnitude of \vec{r} is $2 \sqrt{3}$ units, then find
the value of \vec{r}.

D Watch Video Solution

7. If a vector vcer has magnitude 14 and direction ratios 2,3 and -6 . Then, find the direction cosines and components of \vec{r}, given that \vec{r} makes an acute angle with X -axis.

D Watch Video Solution

8. Find a vector of magnitude 6 , which is perpendicular to both the vectors
$2 \hat{i}-\hat{j}+2 \hat{k}$ and $4 \hat{i}-\hat{j}+3 \hat{k}$.
A. $-2 \hat{i}-4 \hat{j}-4 \hat{k}$
B. $-2 \hat{i}-4 \hat{j}+4 \hat{k}$
C. $2 \hat{i}+4 \hat{j}+4 \hat{k}$
D. $-2 \hat{i}+4 \hat{j}+4 \hat{k}$

Answer: D

D Watch Video Solution

9. Find the angle between the vectors

$$
2 \hat{i}-\hat{j}+\hat{k} \text { and } 3 \hat{i}+4 \hat{j}-\hat{k}
$$

$$
\text { A. } \theta=\cos ^{-1}\left(\frac{1}{2 \sqrt{39}}\right)
$$

B. $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{39}}\right)$
C. $\theta=\cos ^{-1}\left(\frac{1}{2 \sqrt{3}}\right)$
D. $\theta=\cos ^{-1}\left(\frac{1}{2 \sqrt{7}}\right)$

Answer: A

D Watch Video Solution

10. If $\vec{a}+\vec{b}+\vec{c}=0$, then show that $\vec{a} \times \vec{b} \times \vec{c}=\vec{c} \times \vec{a}$. Interpret the result geometrically.
11. Find the sine of the angle between the vectors
$\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}$

- Watch Video Solution

12. If A, B, C and D are the points with position vectors
$\hat{i}-\hat{j}+\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}, 2 \hat{i}-3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$
respectively, then find the projection of $\overrightarrow{A B}$ and $\overrightarrow{C D}$.

D Watch Video Solution

13. Using vectors, find the area of the $\triangle A B C$ with vertices $A(1,2,3), B(2,-1,4)$ and $C(4,5,-1)$

- Watch Video Solution

14. Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

- Watch Video Solution

15. (Cosine Formulae) if a, b, c are the lengths of the sides opposite respectively to the angles A, B, C of a triangle $A B C$, show that $\cos A \frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\cos B \frac{c^{2}+a^{2}-b^{2}}{2 a c}$
(iii) (i) $\cos C \frac{a^{2}+b^{2}-c^{2}}{2 a b}$
16. If \vec{a}, \vec{b} and \vec{c} determine the vertices of a triangle, show that
$\frac{1}{2}[\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{d}]$ givens the vector area of the triangle. Hence, deduce the condition that the three points \vec{a}, \vec{b} and \vec{c} are collinera. Also, find the unit vector normal to the plane of the triangle.
17. Show that area of the parallelogram whose diagonals are given by \vec{a} and \vec{b} is $\frac{|\vec{a} \times \vec{b}|}{2}$ Also, find the area of the parallelogram whose diagonals are $2 i-j+k$ and $i+3 j-k$.

- Watch Video Solution

18. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$ find a vector
\vec{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$.

- Watch Video Solution

19. The vector in the direction of the vector $\hat{i}-2 \hat{j}+2 \hat{k}$ that has magnitude 9 is

$$
\begin{aligned}
& \text { A. } \hat{i}-2 \hat{j}+2 \hat{k} \\
& \text { B. } \frac{\hat{i}-2 \hat{j}+2 \hat{k}}{3} \\
& \text { C. } 3(\hat{i}-2 \hat{j}+2 \hat{k}) \\
& \text { D. } 9(\hat{i}-2 \hat{j}+2 \hat{k})
\end{aligned}
$$

Answer: C

20. The position vector of the point which divides the join of points $2 \vec{a}-3 \vec{b}$ and $\vec{a}+\vec{b}$ in the ratio $3: 1$, is

$$
\begin{aligned}
& \text { A. } \frac{3 \vec{a}-2 \vec{b}}{2} \\
& \text { B. } \frac{7 \vec{a}-8 \vec{b}}{7} \\
& \text { C. } \frac{3 \vec{a}}{4} \\
& \text { D. } \frac{5 \vec{a}}{4}
\end{aligned}
$$

Answer: D
21. The vector having initial and terminal points as (2, $5,0)$ and $(-3,7,4)$, respectively is

$$
\begin{aligned}
& \text { A. }-\hat{i}+12 \hat{j}+4 \hat{k} \\
& \text { B. } 5 \hat{i}+2 \hat{j}+4 \hat{k} \\
& \text { C. }-5 \hat{i}+2 \hat{j}+4 \hat{k} \\
& \text { D. } \hat{i}+\hat{j}+\hat{k}
\end{aligned}
$$

Answer:

22. The angle between two vectros \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 4, respectively and $\vec{a} \cdot \vec{b}=2 \sqrt{3}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{5 \pi}{2}$

Answer: B

D Watch Video Solution
23. Find the value of λ such that the vectors
$\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k} \quad$ are orthogonal.
A. 0
B. 1
C. $\frac{3}{2}$
D. $\frac{-5}{2}$

Answer: D
24. The value of λ for which the vectors $3 \hat{i}-6 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+\lambda \hat{k}$ parallel, is

> A. $\frac{2}{3}$
> B. $\frac{3}{2}$
> C. $\frac{5}{2}$
> D. $\frac{2}{5}$

Answer: A
(D) Watch Video Solution
25. The vectors from origin to the points A and B are $\vec{a}=2 \hat{i}-3 \hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}$ respectively, then area of triangle $O A B$ is
A. 340
B. $\sqrt{25}$
C. $\sqrt{229}$
D. $\frac{1}{2} \sqrt{229}$

Answer:

- Watch Video Solution

26. For any vector \vec{a} the value of $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$ is equal to
A. $\overrightarrow{a^{2}}$
B. $3 \overrightarrow{a^{2}}$
C. $4 \overrightarrow{a^{2}}$
D. $2 \overrightarrow{a^{2}}$

Answer: D

D Watch Video Solution
27. If $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$, then the value of $|\vec{a} \times \vec{b}|$ is
A. 5
B. 10
C. 14
D. 16

Answer: D

- Watch Video Solution
$\lambda \hat{i}+\hat{j}+2 \hat{k}, \hat{i}+\lambda \hat{j}-\hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k} \quad$ are coplanar, if
A. $\lambda=-2$
B. $\lambda=0$
C. $\lambda=1$
D. $\lambda=-1$

Answer: A

- Watch Video Solution

29. If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0, \quad$ then the value of
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is
A. 1
B. 3
C. $-\frac{3}{2}$
D. None of these

Answer:

D Watch Video Solution
30. The projection vector of \vec{a} on \vec{b} is
A. $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \vec{b}$
B. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
C. $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$
D. $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}\right) \hat{b}$

Answer: D
31. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=2,|\vec{b}|=3$ and $|\vec{c}|=5$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is
A. 0
B. 1
C. -19
D. 38

Answer: C
32. If $|\vec{a}|=4$ and $-3 \leq \lambda \leq 2$, then the range of
$|\lambda \vec{a}|$ is
A. $[8,0]$
B. $[-12,8]$
C. $[0,12]$
D. $[8,12]$

Answer: C
33. The number of vectors of unit length

$$
\begin{aligned}
& \text { perpendicular to } \\
& \vec{a}=2 \hat{i}+\hat{j}+2 \hat{k} \text { and } \vec{b}=\hat{j}+\hat{k} \text { is }
\end{aligned}
$$

A. one
B. two
C. three
D. infinite

Answer:

34. The vector $\vec{a}+\vec{b}$ bisects the angle between the non-collinear vectors \vec{a} and \vec{b}, if........

- Watch Video Solution

35. If $\vec{r} \cdot \vec{a}=0, \vec{r} \cdot \vec{b}=0$ and $\vec{r} \cdot \vec{c}=0$ for some non-zero vector \vec{r}, then the value of $\vec{a} \cdot(\vec{b} \times \vec{c})$ is.

- Watch Video Solution

36.

The
vectors
$\vec{a}=3 \hat{i}-2 \hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{k}$ are the
adjacent sides of a paralleogram. The angle between its diagonals is. \qquad

- Watch Video Solution

37. The values of k, for which
$\left.\left|\begin{array}{cc}k & \vec{a}\end{array}\right|<\vec{a} \right\rvert\,$ and $k \quad \vec{a}+\frac{1}{2} \vec{a}$ is parallel to \vec{a} holds true are........

D Watch Video Solution

38. The value of the expression
$|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}$ is..... .
39.

If
$|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$, then $|\vec{b}|$
is equal to

- Watch Video Solution

40. If \vec{a} is any non-zero vector, then
$(\vec{a} \cdot \hat{i}) \cdot \hat{i}+(\vec{a} \cdot \hat{j}) \cdot \hat{j}+(\vec{a} \cdot \vec{k}) \hat{k}$ is equal to

- Watch Video Solution

41. If $|\vec{a}|=|\vec{b}|$, then necessarily it implies $\vec{a}= \pm \vec{b}$.

(D) Watch Video Solution

42. Position vector of a point \vec{P} is a vector whose initial point is origin.

- Watch Video Solution

43. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then the vectors \vec{a} and \vec{b} are orthogonal
44. The formula $(\vec{a}+\vec{b})^{2}=\overrightarrow{a^{2}}+\overrightarrow{b^{2}}+2 \vec{a} \times \vec{b}$ is valid for non-zero vectors \vec{a} and \vec{b}.

D Watch Video Solution

45. If \vec{a} and \vec{b} are adjacent sides of a rhombus, then $\vec{a} \cdot \vec{b}=0$.

- Watch Video Solution

