

MATHS

BOOKS - NCERT MATHS (HINGLISH)

CIRCLES

Circles

1. AD is a diameter of a circle and AB is a chord. If AD = 34cm, AB = 30cm, the distance of AB form the centre of

the circle is

A. 17 cm

 $\mathsf{B}.\,15~\mathsf{cm}$

 $\mathsf{C.}\,4\,\mathsf{cm}$

D. 8 cm

Answer: D

Watch Video Solution

2. In figure, if OA=5cm, AB=8 cm and OD is perpendicular to AB, then CD is equal to

 $\mathsf{A.}\ 2\ \mathsf{cm}$

 $\mathsf{B.}\,3\,\mathsf{cm}$

 $\mathsf{C.}\,4\,\mathsf{cm}$

 $\mathsf{D.}\:5\:\mathsf{cm}$

Answer: A

3. If AB =112cm, BC=16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is

A. 6 cm

B. 8 cm

C. 10 cm

D. 12 cm

Answer: C

4. If figure, if $\angle ABC = 20^{\circ}$, then $\angle AOC$ is equal to

A. 20°

B. 40°

C. 60°

D. 10°

Answer: B

 $\angle CAB$ is equal to

A. 30°

B. 45°

C. 60°

D. 90°

Answer: B

 $\angle OAB = 40^{\circ}, \mathrm{then} \angle ACB \;\; \mathrm{is \; equal \; to}$

A. 50°

6.

B. 40°

C. 60°

D. 70°

Answer: A

 $igta DAB = 60^\circ, igta ABD = 50^\circ, ext{then} \ igta ACB$ is equal

A. 60°

- B. 50°
- C. 70°

D. 80°

Answer: C

8. ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and $\angle ADC = 140^{\circ}$, than $\angle BAC$ is equal to

A. 80°

B. 50°

C. 40°

D. 30°

Answer: B

9. In figure, BC is a diameter of the circle and $\angle BAO = 60^{\circ}$. Then, $\angle ADC$ is equal to

A. 60°

B. $45^{\,\circ}$

C. 50°

D. 120°

Answer: A

 $igtriangle AOB = 90^\circ ~~{
m and}~~igtriangle ABC = 30^\circ, ~~{
m then} igtriangle CAO~~~{
m is}$

equal to

A. $30^{\,\circ}$

B. 45°

C. 90°

D. 60°

11. Two chords AB and CD of a circle are each at distances 4 cm from the centre. Then,

A. AB=CD.

B. AB is not equal to CD.

C. AB there is no relation between CD.

D. AB is greater than CD.

Answer: A

12. Two chords AB and AC of a circle with centre O are

on the opposite sides of OA. Then, $\angle OAB = \angle OAC$.

Watch Video Solution

13. The congruent circles with centres Oand O' intersect at two points A and B. Then, $\angle AOB = \angle AO'B$.

Watch Video Solution

14. Through three collinear points a circle can be draw.

Watch Video Solution

16. If AOB is a diameter of a circle and C is a point on

the circle, then $AC^2 + BC^2 = AB^2$.

17. state true of false

 $egin{array}{lll} egin{array}{lll} A = 90^\circ, egin{array}{lll} B = 70^\circ, egin{array}{lll} C = 95^\circ \end{array} ext{ and } egin{array}{lll} D = 105^\circ \end{array} \end{array}$

can be the vertex of cyclic quadrilateral

18. If A, B, C and D are four points such that $\angle BAC = 30^{\circ}$ and $\angle BDC = 60^{\circ}$, then D is the centre of the circle through A, B and C.

19. If A, B, C and D are four points such that $\angle BAC = 45^{\circ}$ and $\angle BDC = 45^{\circ}$, then A, B, C and D are concyclic.

Watch Video Solution

20. In figure, if AOB is a diameter and $\angle ADC = 120^{\circ}$, then $\angle CAB = 30^{\circ}$.

21. If two arcs of a circle (or of congruent circles) are

congruent, then corresponding chords are equal.

22. If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc $PXA \cong \operatorname{arc} PYB$.

23. A, B and C are three points on a circle. Prove that the perpendicular bisectors of AB, BC and CA are concurrent.

24. Two chords AB and AC of a circle are equal. Prove that the centre of the circle lies on the angle bisector of $\angle BAC$.

25. If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel.

26. ABCD is such a quadrilateral that A is the centre

of the circle passing through B, C and D. Prove that

 $\angle CBD + \angle CDB = rac{1}{2} \angle BAD.$

27. If O is the circumcentre of a ABC and $OD \perp BC$,

prove that $\angle BOD = \angle a \cdot$

28. On a common hypotenuse AB, two right angled

triangles, ACB and ADB are situated on opposite sides.

Prove that $\angle BAC = \angle BDC$.

Watch Video Solution

29. Two chords AB and AC of a circle subtends angles equal to 90° and 150° , respectively at the centre.

Find $\angle BAC$, if AB and AC lie on the opposite sides of

the centre.

Watch Video Solution

30. If BM and CN are the perpendiculars drawn on the sides AC and BC of the ΔABC , prove that the points

B, C, M and N are concyclic.

31. If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that the quadrilateral, so formed is cyclic.

34. A chord of a circle is equal to the radius of the circle find the angle subtended by the chord at a point on the monor arc and also at a point on the major arc.

A. 110°

Β.

C.

D.

Answer:

Β.

C.

D.

Answer:

Watch Video Solution

37. In Figure, ABCD is a cyclic quadrilateral whose side AB is a diameter of the circle through

 $A, \; B, \; C, \; D \cdot$ If $(\angle ADC) = 130^0,$ find $\angle BAC$

38. Two circles whose centres are O and O' intersect at P. Through P, a line l parallel to OO' intersecting the circles at C and D is drawn. Prove that

CD = 2 OO'

39. In figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. Find the value

40.

In

figure,

41. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

42. If the non-parallel sides of a trapezium are equal,

then

43. P, Q and R are, respectively, the mid points of

sides BC, CA and AB of a triangle ABC

44. Prove that If the bisector of any angle of a triangle

and the perpendicular bisector of its opposite side

intersect, they will intersect on the circumcircle of the

triangle.

Watch Video Solution

45. If ABC is an equilateral triangle inscribed in a circle and P be any point on the minor arc BC which does not coincide with B or C, then prove that PA is angle bisector of $\angle BPC$.

Watch Video Solution

46. In the figure, AB and CD are two chords of a circle, interacting each other at a point E. Prove that $\angle AEC$

= $\frac{1}{2}$ (angle subtended by arc CXA. at the center +

angle subtended by arc DYB at the center).

47. If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle.

48. A circle has radius $\sqrt{2}$ cm it is divided into 2 segments by a chord of length 2cm prove that angle

subtended by the chord at a point in major segment is

 $45^{\,\circ}$

49. AB and CD are equal chords of a circle whose centre is O, when produced these chords meet at E,Prove that EB = ED.

50. AB and AC are two chords of a circle of radius r such that AB=2AC. If p and q are the distances of AB and AC from the centre Prove that $4q^2 = p^2 + 3r^2$.

. Find X and Y.

52. If figure, O is the centre of the circle, BD = OD and $CD \perp AB$. Find $\angle CAB$.

1. ABCD is a parallelogram. A circle through A, B is so

drawn that it intersects AD at P and BC at Q. Prove that

P, Q, C and D are concyclic.

2. If two chords AB and CD of a circle AYDZBWCX

intersect at right angles, then prove that arc CXA+arc

DZB=arc AYD+arc BWC =semi-circle.

