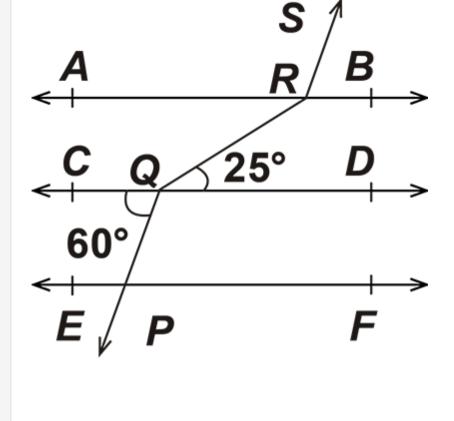


MATHS


BOOKS - NCERT MATHS (HINGLISH)

LINES AND ANGLES

Lines And Angles

1. In figure, if AB || CD || EF, PQ || RS, \angle RQD = 25° and \angle

CQP = 60° , then \angle QRS is equal to

A. 85°

B. 135°

C. 145°

D. 110°

Answer: C

2. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is

A. an isosceles triangle

B. an obtuse triangle

C. an equilateral triangle

D. a right triangle

Answer: D

3. An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is

A.
$$37\frac{1}{2}$$
 \circ

$$\mathsf{B.}\ 52\frac{1}{2}\ \circ$$

$$\mathsf{C.}\,72\frac{1}{2}\,\circ\,$$

D. 75°

Answer: B

4. If the angles are in the ratio 5:3:7, then the triangle is

A. an acute angled triangle

B. an obtuse angled triangle

C. a right angled triangle

D. an isosceles triangle

Answer: B

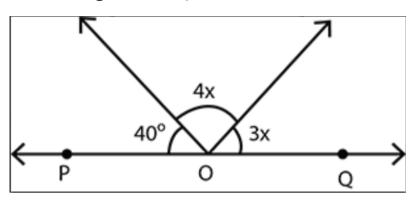
Watch Video Solution

5. If one of the angles of a triangle is 130° , then the angle between the bisectors of the other two angles can

be

A. 50°

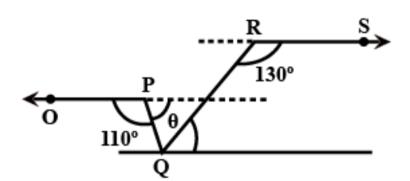
B. $65\,^\circ$


C. 145 $^{\circ}$

D. 155°

Answer: D

6. In the figure, POQ is a line. The value of \boldsymbol{x} is



- A. 20°
- B. 25°
- C. 30°
- D. 35°

Answer: A

7. In the given figure, if $OP||Rs, \angle OPQ = 110^{\circ} \text{ and } \angle QRS = 130^{\circ}, then \angle PQR$

A.
$$40^{\circ}$$

is equal to

B.
$$50^{\circ}$$

C.
$$60^{\circ}$$

D.
$$70^{\circ}$$

Answer: C

8. Angles of a triangle are in the ratio 2:4:3. The smallest angle of the triangle is

A. 60°

B. 40°

C. 80°

D. 20°

Answer: B

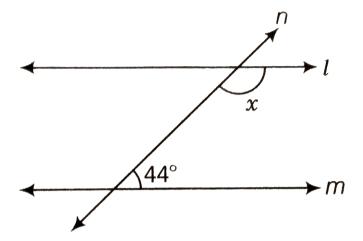
9. For what value of x + y in figure will ABC be a line? Justify your answer.

10. Can a triangle have all angles less than 60° ? Given reason for your answer.

11. Can a triangle have two obtuse angles ? Give reason for your answer.

Watch Video Solution

12. How many triangles can be drawn having its angles as 45° , 64° and 72° ? Give reason for your answer.


Watch Video Solution

13. How many triangles can be drawn having its angles as 53° , 64° and 63° ? Give reason for your answer.

Watch Video Solution

14. In the figure, find the value of x for which the lines I and m are parallel.

A. 120°

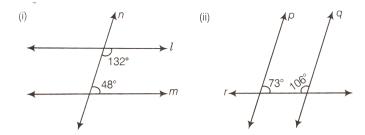
B. 126°

C. 136°

D. 140°

Answer: C

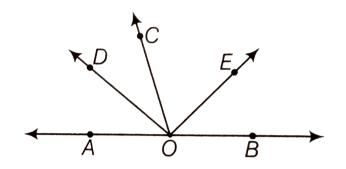
15. Two adjacent angles are equal. Is it necessary that each of these angles will be a right angles ? Justify your answer.


Watch Video Solution

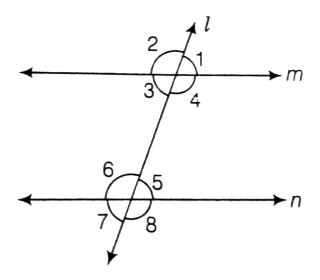
16. If one of the angles by two intersecting lines is a right angles, what can you say about the other three angles? Give reason for your answer.

Watch Video Solution

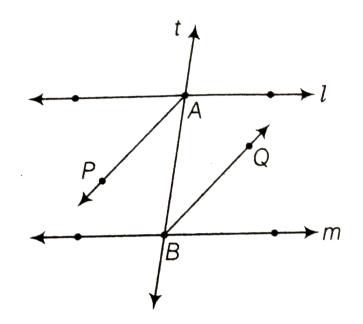
17. In the figure, which of the two lines are parallel and why?



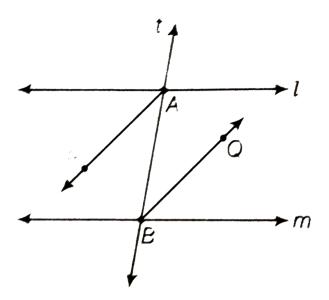
18. Two lines I and m, are perpendicular to the same line n. Are I and m perpendicular to each other? Give reason for your answer.


19. In the figure, OD is the bisector of \angle AOC, OE is the bisector of \angle BOC and OD \perp OE. Show that the points

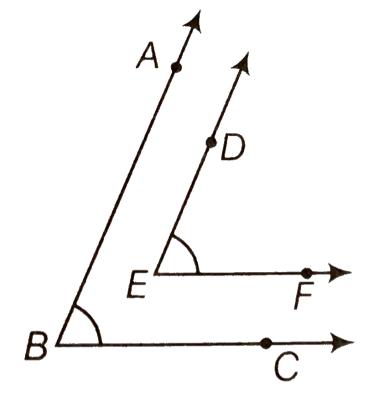
A, O and B are collinear.


20. In the figure, $\angle 1=60^\circ$ and $\angle 6=120^\circ$ Show that the lines m and n are parallel.

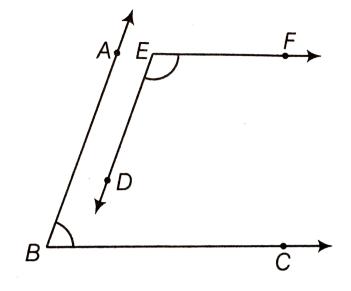
21. AP and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines I and m (in the given

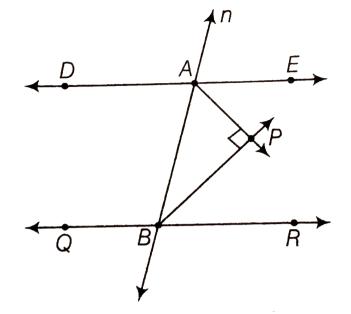

figure). Show that AP || BQ.

22. In the given figure, bisectors AP and BQ of the alternate interior angles are parallel, then show that I ||


m.

Watch Video Solution


23. In the figure, BA||ED and BC||EF. Show that $\angle ABC = \angle DEF$.


Watch Video Solution

24. In the figure, BA || ED and BC || EF. Show $\angle ABC + \angle DEF = 180^{\circ}$.

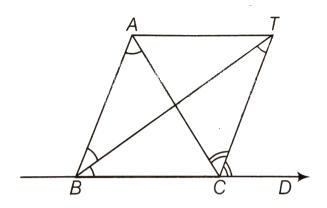
25. In the figure, DE|| QR and BP are bisectors of \angle EAB and \angle RBA, respectively. Find \angle APB.

Watch Video Solution

26. A Δ ABC is right angled at A. L is a point on BC such that AL \perp BC. Prove that $\angle BAL = \angle ACB$.

27. Two lines are respectively perpendicular to two parallel lines. Show that they are parallel to each other.

Watch Video Solution


28. If two lines intersect prove that the vertically opposite angles are equal

Watch Video Solution

29. Bisectors of interior \angle B and exterior \angle ACD of a Δ ABC intersect at the point T. prove that $\angle BTC = \frac{1}{2} \angle$

BAC.

Watch Video Solution

30. A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel.

31. Prove that through a given point, we can draw only one perpendicular to a given line.

Watch Video Solution

32. Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other.

33. prove that triangle must have atleast two acute angle

34. In Figure PS is the bisector of

$$\angle QPR \ and \ PT \ \perp QR$$
 . Show that

$$\angle TPS = \frac{1}{2}(\angle Q - \angle R)$$

