

MATHS

BOOKS - NCERT MATHS (HINGLISH)

TRIANGLES

1. Which of the following is not a criterion for congruence of triangle ?

A. SAS

B. ASA

C. SSA

D. SSS

Answer: C

Watch Video Solution

2. If AB = QR, BC = PR and CA = PQ then

A. $\Delta ABC \cong \Delta PQR$

B. $\Delta CBA \cong \Delta PRQ$

C. $\Delta BAC \cong \Delta RPQ$

D. $\Delta PQR \cong \Delta BCA$

Answer: B						
Watch Video Solution						
3. In ΔABC , if AB=AC and $\angle B=50^\circ, ~{ m then}~ \angle C$ is						
equal to						
A. 40°						
B. 50°						
C. 80°						
D 130°						
D. 100						
Answer: B						

4. In $\triangle ABC$, if BC=AB and $\angle B = 80^{\circ}$,then $\angle A$ is equal

to

A. 80°

B. 40°

C. $50^{\,\circ}$

D. $100^{\,\circ}$

Answer: C

5. In ΔPQR , If $\angle R = \angle P$, QR=4 cm and PR = 5 cm.

Then, the length of PQ is

A. 4 cm

B. 5 cm

C. 2 cm

D. 2.5 cm

Answer: A

6. If D is a Point on the side BC of a ΔABC such that AD

bisects $\angle BAC$. Then

A. BD=CD

B.BA > BD

C.BD > BA

 $\mathsf{D.}\, CD < CA$

Answer: B

Watch Video Solution

7. It is given that $\Delta ABC \cong \Delta FDE$ and AB= 5 cm , $\angle B = 40^\circ$ and $\angle A = 80^\circ$ then which of the following is true ?

A. $DF=5cm, \angle F=60^{\circ}$

B. $DF=5cm, \angle E=60^{\circ}$

C. $DE=5cm, \angle E=60^{\circ}$

D. $DE=5cm, \angle D=60^{\circ}$

Answer: B

8. If two sides of a tringle are of length 5 cm and 1.5 cm,

then the length of third side of the triangle cannot be

A. 3.6 cm

B. 4.1 cm

C. 3.8 cm

D. 3.4 cm

Answer: D

Watch Video Solution

9. In ΔPQR , If $\angle R > \angle Q$, then

A. QR > PR

 $\mathrm{B.}\,PQ > PR$

 $\mathsf{C}. PQ < PR$

 $\mathrm{D.}\,QR > PR$

Answer: B

10. In $\triangle ABC$ and $\triangle PQR$, If AB=AC, $\angle C = \angle P$ and $\angle B = \angle Q$, then the two triangles are

A. isosceles but not congruent

B. isosceles and congruent

C. congruent but not isosceles

D. Neither congruent nor isosceles

Answer: A

11. In ΔABC and ΔDEF , AB=FD and $\angle A= \angle D$. The

two triangle will be congruent by SAS axiom, if

A. BC=EF

B. AC=DE

C. AC=EF

D. BC=DE

Answer: B

12.

In

 $\Delta ABC ext{ and } \Delta PQR, \angle A = \angle Q ext{ and } \angle B = \angle R.$

Which side of ΔPQR should be equal to side AB of ΔABC , so that the two triangle are congruent ? Give reason for your answer.

13.

In

 $\Delta ABC ext{ and } \Delta PQR, \angle A = \angle Q ext{ and } \angle B = \angle R.$

Which side of ΔPQR should be equal to side BC of ΔABC ,so that the two triangle are congruent ? Give reason for your answere.

14. If two sides and an angle of one triangle are equal to two sides and an angle of another triangle , then the two triangles must be congruent'. Is the statement true? Why?

Watch Video Solution

15. If two sides and an angle of one triangle are equal to two sides and an angle of another triangle , then the two triangles must be congruent'. Is the statement true? Why?

16. Is it possible to construct a triangle with lengths of its sides as 4 cm, 3 cm and 7 cm? Give reason for your answer.

Watch Video Solution

17. It is given that $\Delta ABC\cong \Delta RPQ$.ls it true to say

that BC =QR ? Why ?

Watch Video Solution

18. It $\Delta PQR \cong \Delta ED$,then is it true to say the PR = EF ?

Given reason for your answer.

19. In ΔPQR , $\angle P = 70^{\circ}$ and $\angle R = 30^{\circ}$.Which side of this triangle is the longest ? Give reason for your answer

Watch Video Solution

20. AD is a median of the ΔABC .Is it trure AB + BC + CA > 2AD? Give reason for your answer

21. M is point on side BC of a triagle ABC such that AM is the bisector of $\angle BAC$. Is it ture to say that perimeter of the triangle is greater than 2 AM ? Give reason for your ancwer ?

Watch Video Solution

22. Is it possible to construct a triangle with lengths of its sides as 9 cm, 7 cm and 17 cm? Give reason for your answer.

23. Is it possible to construct a triangle with length of its sides as 8 cm ,7 cm and 4 cm ? Give reason for your answer

Watch Video Solution

24. ABC is an isosceles triangle with AB =AC and BD,CE

are its two medians. Show that BD=CE .

Watch Video Solution

25. In figure ,D and E are Points on side BC of a ΔABC

such that BD=CE and AD=AE.Show that

$\Delta ABD \cong \Delta ACE.$

Watch Video Solution

26. In the given figure, ΔCDE is an equilatel triangle triangle formed on a side CD of a square ABCD. Show

that $\Delta ADE \cong \Delta BCE$.

27. In figure , $BA \perp AC, DE \perp DF$ such that BA =DE

and BF=EC.then

A. AB = EF

 $\mathsf{B.} \angle A = \angle E$

 $\mathsf{C}.\,\Delta ABC\cong \Delta DEF$

D. None

30. D is any point on side AC of a ΔABC with AB = AC then

A. CD < BD

 $\mathsf{B.}\, CD=BD$

C.CD > BD

D.NONE

Answer: A

Watch Video Solution

31. In give figur l||m and M is the mid-point of a line segment AB .Show that M is also the mid-point of any

32. The bisectors of $\angle B$ and $\angle C$ of an isosceles triangle with AB = AC intersect each other at a point O. BO is produced to meet AC at a point M. Prove that $\angle MOC = \angle ABC$.

33. Bisectors of the angles B and C of an isosceles $\triangle ABC$ with AB=AC intersect each other at 0.Show that external angle adejcent to $\angle ABC$ is equato $\angle BOC$.

34. In following figure if AD if the bisector of $\angle ABC$,

then prove that AB > BD

35. Find all the anlges of an equilateral triangle.

36. The image of the an object placed at a point A before a plane mirror LM is seen at the point B by an observer at D as shown in figure.prove that the image is as far behind the mirror as the object is in front of the mirror.

37. ABC is an isosceles triangle with AB=AC and D is a point on ABC BC such that $AD \perp BC$ (see figure). To prove that $\angle BAD = \angle CAD$ a student proceeded as follows

 $In\Delta ABD$ and ΔACD , we have

AB = AC [Given]

 $\angle B = \angle C$ [\because AB=AC]

and $\angle ADB = \angle ADC$

Therefore

 $\Delta ABD\cong\Delta ACD \qquad [ext{by AAS congruence rule}]$ So , $\angle BAD=\angle CAD \qquad [byCPCT]$

What is the defect in the above argument ?

38. P is a point on the bisector of $\angle ABC$.If the line through P,parallel to BA meet at Q ,prove that BPO is an isosceles triangle.

39. ABCD is a quadrilateral in which AB=BC and AD =CD

,Show that BD bisects boht the angle ABC and ADC

41. O is a point in the interior of a square ABCD such that ΔOAB is an equilateral triangle . Show that ΔOCD is an isoceles triangle .

42. ABC and DBC are two triangle on the same base BC such that A and D lie on the opposite sides of BC,AB=AC and DB =DC ,Show that AD is the perpedicular bisector of BC.

Watch Video Solution

43. In Figure, aAD and BE are respectively altitudes of

an isosceles triangle ABC with $AC = BC_{\cdot}$ Prove that

AE = BD

44. Prove that sum of any two sides of a triagle is greater than twice the median with respect to the third side.

Watch Video Solution							
45. , <i>AB</i>	Show $B + BC + BC$	that - CD +	in DA	a $< 2(2$	quadrilateral $BD+AC$)	ABCD	
Watch Video Solution							
C	Watch	/ideo So	olutior	ı			
C	Watch	/ideo So	olutior	ו			

47. In a ΔABC , D is the mid point of side AC such that BD $= \frac{1}{2}$ AC . $\angle ABC$ is ?.

A. $45^{\,\circ}$

B. 30°

C. 90°

D. None of these

Answer: C

48. In a right triangle,Prove that the line-segment joining the mid-point of the hypotenuse to the opposite vertex is half the hypotenuse

Watch Video Solution

49. Two lines I and m interset at the O and P is Point on a line n Passing through the point O such that P is equidistant from I and m. Prove that n is the bisectof the angle formed by I and m

50. The line segments joining the midpoints M and N of parallel sides AB and DC respectively of a trapezium ABCD is perpendicular to both the sides AB and DC. Prove that AD=BC

51. In Figure, diagonal AC of a quadrilateral ABCD bisects the angles A and C . Prove that AB = AD and

CB = c...

52. ΔABC is a right triangle right angled at A such that AB = AC and bisector of $\angle C$ intersects the side AB at D. Prove that AC + AD = BC.

Watch Video Solution

53. In Figure, AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD. Show that $\angle A > \angle C$ and $\angle B > \angle D$

54. Prove that in a triangle, other then an an eguilateral

triangle, angle opposite the longest side is greater than $\frac{2}{3}$ of a right angle

Watch Video Solution

55. If ABCD is a quadilateral such that AB= AD and CB = CD ,then prove that AC is the perpendicular bisector of BD