# ©゙doubtnut <br> India's Number 1 Education App 

## CHEMISTRY

# BOOKS - G.R. BATHLA \& SONS CHEMISTRY (HINGLISH) 

## MISCELLANEOUS (TOPICS OF GENERAL INTEREST)

## Example

1. The dipole moment of $L i H$ is $1.964 \times 10^{-29} C-m$ and the interatomic diatance between $L i$ and $H$ in this molceule is $1.596 \AA$. What is the per cent ionic character in LiH .

## - Watch Video Solution

2. Calculate the screening constant in $Z n$.
a. For a $4 s$-electron b. For a $3 d$-electron
3. Calculate the $\%$ of free $\mathrm{SO}_{3}$ in oleum ( a solution of $\mathrm{SO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$ ) that is labelled $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight.

## - Watch Video Solution

4. Calculate a value of effective magnetic moment $\mu_{e f f}$ of $C e^{3+}$ ion.

## - View Text Solution

## Illustration

1. The volume strength of $1.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{O}_{2}$ solution is
A. 4.8
B. 5.2
C. 8.8
D. 8.4

Answer: D

## - Watch Video Solution

2. Commerical 11.2 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ solution has a molarity of
A. 1.0
B. 0.5
C. 11.2
D. 1.12

## Answer: A

## - Watch Video Solution

3. What is the volume of $O_{2}$ liberated at NTP by complete decomposition of 100 mL of 2 M solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ ?
A. $22.4 L$
B. $2.24 L$
C. $0.224 L$
D. $224 L$

## Answer: B

## - Watch Video Solution

## Set I Objective Questions

1. Efficiency of energy conversion in nuclear fission of uranium and nuclear fusion of hydrogen are respectively:
A. $0.09 \%, 0.35 \%$
B. $0.35 \%, 0.09 \%$
C. $0.09 \%, 0.09 \%$
D. $0.35 \%, 0.35 \%$

## Answer: A

## - View Text Solution

2. Effective magnetic moment of actinides with ' $n$ ' unpaired electrons can be calculated using following relation:
A. $g \sqrt{J(J+1)} B M$
B. $\sqrt{n(n+1)} B M$
C. $\sqrt{n(n+2)} B M$
D. $1.9 \sqrt{n+1} B M$

## Answer: A

3. Which of the following will weigh less in presence of external magnetic field?
A. $C r_{24}$
B. $M n_{29}$
C. $C_{0}{ }_{27}$
D. $Z n_{30}$

## Answer: D

## - View Text Solution

4. Magnetic susceptibility of a paramagnetic substance:
A. is independent of temperature
B. increases with decrease of temperature
C. attain the maxima at null point
D. increases rapidly above Curie temperature

## Answer: C

## - View Text Solution

5. In $P C l_{3} F_{2}$ molecules, select the correct statement about two (P-F) bonds:
A. Both (P-F) bonds are equatorial
B. Both (P-F) bonds are axial
C. One (P-F) bond is axial and one (P-F) bond is equatorial
D. can not be predicted

## Answer: B

## - Watch Video Solution

6. $\mathrm{BrCl}_{3}$ molecule involves $\left(s p^{3} d\right)$ hybridization, the d -orbital contributing this hybridization will be :
A. $d_{x y}$
B. $d_{y z}$
C. $d_{x^{2}-y^{2}}$
D. $d_{z^{2}}$

## Answer: C

## - Watch Video Solution

7. $P C l_{5}$ molecule involves $\left(s p^{3} d\right)$ hybridization, the d-orbital contributing this hybridization will be :
A. $d_{x y}$
B. $d_{y z}$
C. $d_{z x}$
D. $d_{z^{2}}$

## Answer: D

## - Watch Video Solution

8. The percentage ionic character of a covalent bond $(A-B)$ is about $50 \%$, the electronegativity difference of the two elements will be :
A. 1.5
B. 2.1
C. 0.9
D. 1.2

## Answer: B

## D View Text Solution

9. All these molecules have $s p^{3}$ hybridization, select the molecule in which all the bond do not have same percentage (s) character:
A. $\mathrm{CH}_{4}$
B. $\mathrm{CCl}_{4}$
C. $\mathrm{NH}_{3}$
D. $\mathrm{CCl}_{2} \mathrm{~F}_{2}$

## Answer: D

## - Watch Video Solution

10. What will be the volume strength of molar solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ ?
A. 5.6
B. 22.4
C. 11.2
D. 10.4
11. The volume strength of $10 \mathrm{NH}_{2} \mathrm{O}_{2}$ is :
A. 112
B. 11.2
C. 0.112
D. 56

Answer: D
12. Match the following:
Set I
Set II
A. $10 \mathrm{Vol} \mathrm{H}_{2} \mathrm{O}_{2}$

1. per hydrol
B. $20 \mathrm{Vol} \mathrm{H}_{2} \mathrm{O}_{2}$
2. 5.358 N
C. $30 \mathrm{Vol} \mathrm{H}_{2} \mathrm{O}_{2}$
3. 1.785 M
D $100 \mathrm{Vol} \mathrm{H}_{2} \mathrm{O}_{2}$
4. $3.03 \%$

The correct match is :
A. A-4, B-3, C-2, D-1
B. A-1, B-2, C-3, D-4
C. A-1, B-3, C-2, D-4
D. A-4, B-2, C-3, D-1

## Answer: A

## - View Text Solution

13. Which of the following sulphates will be insoluble in water due to high lattice energy?
A. $\mathrm{BaSO}_{4}$
B. $\mathrm{BeSO}_{4}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D. $\mathrm{K}_{2} \mathrm{SO}_{4}$

## Answer: A

## - Watch Video Solution

14. Which of the following is most soluble in water ?
A. Li+
B. $\mathrm{Na}+$
C. $\mathrm{K}^{+}$
D. $\mathrm{Rb}+$

## Answer: A

15. Which of the following relation is correct ?
(where $T_{i}$ = Inversion temperature, $T_{c}=$ Critical temperature)
A. $T_{c}=6.75 T_{i}$
B. $T_{i}=6.75 T_{c}$
C. $T_{i}>6.75 T_{c}$
D. $T_{c}>6.75 T_{i}$

## Answer: B

## - Watch Video Solution

16. Joule's law is represented by which of the following conditions?
A. $\left(\frac{\partial U}{\partial V}\right)_{T}=0$
B. $\left(\frac{\partial U}{\partial P}\right)_{T}=0$
C. $\left(\frac{\partial U}{\partial T}\right)_{P}=0$
D. $\left(\frac{\partial U}{\partial T}\right)_{V}=0$

## Answer: A

## - Watch Video Solution

17. Select the correct condition (s) for spontaneity:
A. $(\partial G)_{T, P}<0$
B. $(\partial H)_{S, P}<0$
C. $(\partial U)_{S, V}<0$
D. All of these

## Answer: D

## - Watch Video Solution

18. Select the wrong statement among the following:
A. Orbital angular momentum $=\sqrt{l(l+1)} \frac{h}{2 \pi}$
B. Resultant angular momentum and resultant magnetic moment are in same direction
C. Resultant angular momentum and resultant magnetic moment are in opposite direction
D. Orbital angular momentum has (2l+1) orientations

## Answer: B

## - Watch Video Solution

19. Which of the following is not correctly matched ?

Molecule (d-orbital present in the hybrid orbitals)
A.
$S F_{4} \quad s p^{3} d \quad\left(d_{z^{2}}\right)$
Molecule (d-orbital present in the hybrid orbitals)
B.
$I F_{5} \quad s p^{3} d^{2} \quad\left(d_{x^{2}-y^{2}}, d_{z^{2}}\right)$
Molecule (d-orbital present in the hybrid orbitals)
C.
$X_{e} F_{6} \quad s p^{3} d^{3} \quad\left(d_{x y}, d_{y z}, d_{z x}\right)$
Molecule (d-orbital present in the hybrid orbitals)
D.
$X e F_{2} \quad s p^{3} d \quad\left(d_{x^{2}}-d_{y^{2}}\right)$

## Answer: D

## D Watch Video Solution

## Brain Stroming Problems

1. If $x_{1}, x_{2}$ and $x_{3}$ are enthalpies of $\mathrm{H}-\mathrm{H}, \mathrm{O}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds respectively , and $x_{4}$ is the enthalpy of vaporisation of water, estimate the standard enthalpy of combustion of hydrogen:
A. $x_{1}+\frac{x_{2}}{2}-2 x_{3}+x_{4}$
B. $x_{1}+\frac{x_{2}}{2}-2 x_{3}-x_{4}$
C. $x_{1}+\frac{x_{2}}{2}-x_{3}+x_{4}$
D. $2 x_{3}-x_{1}-\frac{x_{2}}{2}-x_{4}$

## Answer: B

2. Which of the following is the correct relation between solubility product of $M X_{4}$ ?
A. $S=\left[\frac{K_{s p}}{256}\right]^{1 / 5}$
B. $S=\left[128 K_{s p}\right]^{1 / 4}$
C. $S=\left[256 K_{s p}\right]^{1 / 5}$
D. $S=\left[\frac{K_{s p}}{128}\right]^{1 / 4}$

## Answer: A

## - Watch Video Solution

3. An atom has $x$ energy level, then total number of lines in its spectrum are:
A. $1+2+3+\ldots .+(x+1)$
B. $1+2+3+\ldots .+x^{2}$
C. $1+2+3+\ldots+x$
D. $1+2+3+\ldots+(x-1)$

## Answer: D

## - Watch Video Solution

4. Consider the reaction :
$2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2}(g)$
The rate law for this reaction is :
Rate $=k\left[H_{2}\right][N O]^{2}$
Under what conditions could these steps represent mechanism?
Step 1: $\quad 2 N O(g) \Leftrightarrow N_{2} O_{2}(g)$
Step 2: $\quad \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
Step 3: $\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
A. These steps cannot be the mechanism under any circumstances.
B. Theses steps could be the mechanism if step 2 is the slowest step
C. These steps could be the mechanism if step 3 is the slowest step
D. These step could be the mechanism if step 3 is the slowest step

## Answer: C

## D Watch Video Solution

5. An electron moves arounf protons (nucleus) in a circle of radius ' $r$ '. Assuming that the uncertainty of momentum of electron is of the same order as the momentum itself, the momentum of electron will be :
A. $\frac{h}{4 \pi r}$
B. $\frac{h}{2 \pi r}$
C. $4 \pi h r$
D. $2 \pi h r$

## Answer: A

6. Kinetic energy of 0.3 mole of 'He' gas in a container of maximum capacity of 4 litre at 5 atm, must be :
$\left(R=0.821 \mathrm{~atm}\right.$ litre $\left.\mathrm{mol}^{-1} K^{-1}\right)$
A. 30 atm litre
B. 100 atm litre
C. 9 atm litre
D. 11.11 atm litre

## Answer: A

## - Watch Video Solution

7. What will be the maximum spin multiplicity for 4 d -orbital?
A. 4
B. 6
C. 5
D. 10

## Answer: B

## - Watch Video Solution

8. For a given one mole of ideal gas kept at 6.5 atm in a container of capacity 2.463 litre. The Avogadro proportionality constant for the hypothesis is: (see figure)
A. 0.406
B. 2.46
C. 22.4
D. none of these

## Answer: B

9. $A(s) \Leftrightarrow B(g)+C(g)$. Total pressure at time of equilibrium is 40 atmosphere. If all the contents of this reactor have been shifted to another reactor of double capacity, then the total equilibrium pressure in the new reactor will be: (in atmosphere)
A. 20
B. 40
C. 400
D. 1600

## Answer: B

## - Watch Video Solution

10. Gadolinium-153 is used in the detection of osteoporosis disease of bones. Half-life of gadolinium-153 is 500 days. After how many days, on an average, the nuclide can be considered absent from the body of patients
A. 500 days
B. 1000 days
C. Infinite
D. 350 days

## Answer: C

## - Watch Video Solution

11. Amount of energy required to excite an electron of an atom from the lower energy state to its next higher energy state is defined as:
A. ionization potential
B. electron afinity
C. critical potential
D. reduction potential

## Answer: C

12. Consider the values of $\Delta H\left(\operatorname{inkJmol}{ }^{-}\right)$and for $\Delta S\left(\mathrm{inmol}^{-} K^{-1}\right)$ given for four different reactions. For which reaction will $\Delta G$ increases the most (becoming more positive) when the temperature is increased form $0^{\circ} \mathrm{Cto} 25^{\circ} \mathrm{C}$ ?
A. $\Delta H^{\circ}=50^{\circ}, \Delta S^{\circ}=50$
B. $\Delta H^{\circ}=90, \Delta S^{\circ}=20$
C. $\Delta H^{\circ}=-20, \Delta S^{\circ}=-50^{\circ}$
D. $\Delta H^{\circ}=-90, \Delta S^{\circ}=-20$

## Answer: C

## - Watch Video Solution

13. The energy of the orbitals decreases in the order:
A. $s>p>s p^{3}>s p>s p^{2}$
B. $p>s p^{3}>s p^{2}>s p>s$
C. $s p^{3}>s p^{2}>s p>s>p$
D. $s>s p>s p^{2}>s p^{3}>p$

## Answer: B

## - Watch Video Solution

14. Which of the following is an example of associated colloid ?
A. Protein + Water
B. Soap + Water
C. Rubber + Benzene
D. $\mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{Fe}(\mathrm{OH})_{3}$

## Answer: B

15. Which of the gas can displace remaining all the gases from the surface of adsorbent?
A. CO
B. $H_{2}$
C. $O_{2}$
D. $N_{2}$

## Answer: A

## - View Text Solution

16. Which of the following pairs is correctly matched ?

[^0]D. Experimental

The photoelectric effect The nuclear atom

## Answer: C

## - View Text Solution

17. Arrangement of the following group of orbitals in which they fill the electrons:
(5f, 6p, 4p, 6s, 4d, 4f)
A. $4 p, 4 d, 6 s, 4 f, 6 p, 5 f$
B. $6 \mathrm{~s}, 4 \mathrm{~d}, 4 \mathrm{f}, 5 \mathrm{f}, 4 \mathrm{p}, 6 \mathrm{p}$
C. $6 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}, 5 \mathrm{ff}, 6 \mathrm{p}$
D. $4 \mathrm{~d}, 4 \mathrm{p}, 4 \mathrm{f}, 5 \mathrm{f}, 6 \mathrm{~s}, 6 \mathrm{p}$

## Answer: A

## - Watch Video Solution

18. $\pi^{\circ}$ meson is exchanged between :
A. proton and neutron
B. proton and proton
C. neutron and neutron
D. may be between teo protons ot two neutrons

## Answer: D

## - View Text Solution

19. If nuclecus in an excited state fall to a lower energy level, energy is emitted as :
A. $\alpha$-rays
B. $\beta$-rays
C. $\gamma$-rays
D. X-rays

## Answer: C

## - Watch Video Solution

20. Minimum amount of energy required to remove a proton is approximately:
A. 2 MeV
B. 4 MeV
C. 6 MeV
D. 8 MeV

## Answer: A

## - View Text Solution

21. Mark the incorrect statement :
A. Semiconductors are basically insulator
B. In metal crystal condution occurs because molecular orbitals extend over the whole crystal and there is no energy gap between
filled and unfilled molecular orbitals
C. Mobile electrons account for high thermal and electrical conduction of metals
D. When a metal is heated with a non-metals, the resulting compound is never an ionic compound

## Answer: D

## - Watch Video Solution

22. A certain sample of cuprous sulphide is found to have the composition $\mathrm{Cu}_{1.92} S_{1.00}$ because of incorporation of $\mathrm{Cu}^{2+}$ and $\mathrm{Cu}^{+}$ ions in the crystal then ratio of $\mathrm{Cu}^{2+}$ and $\mathrm{Cu}^{+}$ions is :
B. $1: 23$
C. 1: 24
D. 1:1

## Answer: B

## - View Text Solution

23. Given :
(i) $\mathrm{NH}_{3}(g)+3 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{NCl}_{3}(g)+3 \mathrm{HCl}(g), \Delta H_{1}$
(ii) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g), \Delta H_{2}$
(iii) $H_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g), \Delta H_{3}$

Express the enthalpy of formation of $\mathrm{NCl}_{3}(g)\left(\Delta H_{f}\right)$ in terms of $\Delta H_{1}, \Delta H_{2}$ and $\Delta H_{3}:$
A. $\Delta H_{f}=\Delta H_{1}-\frac{\Delta H_{2}}{2}+\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=\Delta H_{1}+\frac{1}{2} \Delta H_{2}-\frac{3}{2} \Delta H_{3}$
C. $\Delta H_{f}=\Delta H_{1}-\frac{1}{2} \Delta H_{2}-\frac{3}{2} \Delta H_{3}$
D. $\Delta H_{f}=\Delta H_{1}+\frac{1}{2} \Delta H_{2}+\frac{3}{2} \Delta H_{3}$

## Answer: B

## - Watch Video Solution

24. A sponteneous process may be defined as:
A. a process which is exothermic and evolves a lot of heat
B. a process which is slow and reversible
C. a process which takes place only in presence of a catalyst
D. a process that occurs without nay input from the surroundings

## Answer: D

## - Watch Video Solution

25. In the sequence of reaction,
$L \xrightarrow{k_{1}} M \xrightarrow{k_{2}} N \xrightarrow{k_{3}} O$
$k_{3}>k_{2}>k_{1}$
The rate determining step of the reaction is:
A. $L \rightarrow M$
B. $M \rightarrow N$
C. $N \rightarrow O$
D. $L \rightarrow O$

## Answer: A

Watch Video Solution
26. The plot of $\log V$ against $\log P$ at constant temperature for a fixed mass of gas is :

(b)

(c)

C.

D.

## Answer: B

## - View Text Solution

27. When mercuric iodide is added to the aqueous solution of potassium iodide, then:
A. freezing point is raised
B. freezing point does not change
C. freezing point is lowered
D. boiling point does not change

## Answer: A

## - Watch Video Solution

28. The van der Waal's constant 'b' for water vapour is 0.03 litre $\mathrm{mol}^{-1}$. The radius of water vapour molecule is :
A. 1448 cm
B. 1.448 Ã. .
C. 1.448 pm
D. 1.448 nm
29. For reaction
, the overall
rate constant is related to individual rate constant by :
A. $k=k_{1}-k_{2}$
B. $k_{1} / k_{2}$
C. $k_{1} k_{2}$
D. $k_{1}+k_{2}$

## - Watch Video Solution

30. $\mathrm{N}_{2} \mathrm{O}_{5}$ decomposes to $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{O}_{2}$ as

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2}
$$

The pressure $p_{t}$ at any stage is related to $p_{0}$ and ' x ', the fraction of dissociation, as :
A. $p_{0}$
B. $\left(1+\frac{1}{2} x\right) p_{0}$
C. $1-\frac{3}{2} p_{0}$
D. $\frac{3}{2} x p_{0}$

## Answer: B

## - Watch Video Solution

31. $C^{14}$ a $\beta$-active nucleus is present in $\stackrel{14}{C} H_{4}$. A sample of $\left(\stackrel{14}{C} H_{4}\right)$ is kept in a closed vessel shows increase in pressure with time. It is due to the formation of:
A. $\stackrel{14}{N} H_{3}$ and $H_{2}$ ${ }^{11}$
B. $B H_{3}$ and $H_{2}$
C. ${ }^{14} \mathrm{C}_{2} H_{4}$ and $H_{2}$
D. $\stackrel{12}{\mathrm{C}} \mathrm{H}_{3}-\stackrel{14}{\mathrm{~N}} \mathrm{H}_{2}$ and $\mathrm{H}_{2}$

## Answer: A

## - View Text Solution

32. The radioactivity of a sample is $R_{1}$ at a time $T_{1}$ and $R_{2}$ at time $T_{2}$. If the half-life of the specimen is $T$, the number of atoms that have disintegrated in the time $\left(T_{2}-T_{1}\right)$ is proporational to
A. $\frac{\left(R_{1}-R_{2}\right) T}{0.693}$
B. $R_{1} T_{1}-R_{2} T_{2}$
C. $\frac{\left(R_{1}-R_{2}\right)}{T}$
D. $\left(R_{1}-R_{2}\right)$

## Answer: A

## - Watch Video Solution

33. Interstitial hole is called tetrahedral because:
A. it is formed by four spheres
B. it is formed by four spheres and the centre of which forms a regular tetrahedron
C. coordination number of hole is 3
D. none of the above

## Answer: B

34. A solid is formed by three elements $X, Y$ and $Z, X$ atoms form a fcc lattice with $Y$ atoms occupying all tetrahedral voids. $Z$ atoms occupying half the octahedral voids. The formula of the solids is :
A. $X_{2} Y_{4} Z$
B. $X Y_{2} Z_{4}$
C. $X_{4} Y_{2} Z$
D. $X_{4} Y Z_{2}$

## Answer: A

## - Watch Video Solution

35. Pick out the pair in which the energy change of one is reverse of the energy change in the other:
(1) radio (2) fluorescent lamp (3) toaster (4) photoelectric cell
A. 1 and 2
B. 2 and 3
C. 2 and 4
D. 3 and 4

## Answer: C

## - Watch Video Solution

36. Consider the following statements about first order reaction:
(1) The rate of reaction is directly proportional to the concentration of the reactant.
(2) Its half-life period is always constant.
(3) Concentration of reactant falls exponentially.
(4) It has low activation energy.

Of these statements:
A. 1, 3 and 4 are correct
B. 1, 2 and 4 are correct
C. 1, 2 and 3 are correct
D. 2,3 and 4 are correct

## Answer: C

## - Watch Video Solution

37. Which one of the following is the correct order of energies of 3p, 3d, 4 s and 4 p orbitals as per Aufbau principle?
A. $3 p<3 d<4 s<4 p$
B. $3 p<4 s<3 d<4 p$
C. $3 d<4 s<4 p<3 p$
D. $3 d<3 p<4 p<4 s$

## Answer: B

38. In the emission line spectra of hydrogen atom, how many lines can be accounted for by all possible electron transitions between five lowest energy levels within the atom ?
A. 4
B. 5
C. 10
D. 20

## Answer: C

## - Watch Video Solution

39. In a closed container at 1 atm pressure, 2 mole of $\mathrm{SO}_{2}(\mathrm{~g})$ and 1 mole of $O_{2}(g)$ were allowed to react to form $\mathrm{SO}_{3}(\mathrm{~g})$ under the influence of a catalyst. The following reaction occurred:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

At equilibrium it was found that $50 \%$ of $\mathrm{SO}_{2}(\mathrm{~g})$ was converted to $\mathrm{SO}_{3}(\mathrm{~g})$. The partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$ at equilibrium will be :
A. 0.66 atm
B. 0.493 atm
C. 0.33 atm
D. 0.2 atm

## Answer: D

## - View Text Solution

40. The electronic configuration $1 s^{2}, 2 s^{2} 2 p^{5}, 3 s^{1}$ describes which one of the following?
A. An excited state of fluorine
B. The ground state of neon
C. The excited state of $O^{2-}$
D. The ground state of fluroide ion $\left(F^{-}\right)$

## Answer: C

## - Watch Video Solution

41. When acetone and chloroform are mixed, hydrogen bonding takes placce between them, such a liquid pair will cause :
A. positive deviation from Raoult's law
B. negative deviation from Raoult's law
C. no deviation from Raoult's law
D. cannot be predicted

## Answer: B

## - Watch Video Solution

42. A maxima or minima obtained in the temperature. Composition curve of a mixture of two liquids indicates:
A. that the liquids are immiscible with one another
B. that the liquids are partially miscible at the maximum or minimum
C. an azeotropic mixture
D. a eutectic formation

## Answer: A

## - Watch Video Solution

43. The electrode reactions for charging of a lead battery are :
$\mathrm{PbSO}_{4}+2 e \rightarrow \mathrm{~Pb}+\mathrm{SO}_{4}^{2-}$
$\mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PbO}_{2}+\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 e$
The electrolyte in the battery is an aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. After this battery has been charged:
A. the sulphuric acid will be more concentrated
B. the sulphuric acid will be less concentrated
C. the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be unchanged
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$ will have been completely decomposed

## Answer: A

## - View Text Solution

44. $p H$ of a $0.1 M$ monobasic acid is found to be 2 . Hence, its osmotic pressure at a given temperature TK is
A. 0.1 RT
B. 0.11 RT
C. 1.1 RT
D. 0.01 RT
45. Rate constant $\mathrm{k}=2.303 \mathrm{~min}$ for a particular reaction. The initial concentration of the reactant is $1 \mathrm{~mol} /$ litre then rate of reaction after 1 minute is:
A. $2.303 M$ min $^{-1}$
B. $0.2303 M \mathrm{~min}^{-1}$
C. $0.1 M \mathrm{~min}^{-1}$
D. none of these

## Answer: B

## - Watch Video Solution

46. Entropy change for an adiabatic reversible process is :
A. positive
B. zero
C. negative
D. infinity

## Answer: B

## - Watch Video Solution

47. From separate solution of four sodium salts $\mathrm{NaW}, \mathrm{NaX}, \mathrm{NaY}$ and NaZ are having $\mathrm{pH} 7,9,10$ and 11 respectively. When the solution was 0.1 M , the strongest acid is :
A. HW
B. HX
C. HY
D. HZ
48. Two first order reactions have half-lives in the ratio 8:1, calculate the ratio of time intervals $t_{1}: t_{2}$. The time $t_{1}$ and $t_{2}$ are the time period foe $\left(\frac{1}{4}\right)^{\text {th }}$ and $\left(\frac{3}{4}\right)^{\text {th }}$ completion respectively:
A. 1:0.0301
B. $0.125: 0.602$
C. 1:0.602
D. none of these

## Answer: C

## - Watch Video Solution

49. For a reaction $A(s)+2 B^{\oplus} \rightarrow A^{2+}+2 B$
$K_{c}$ has been found to be $10^{12}$. The $E^{c-}$.cell is
A. 0.354 V
B. 0.708 V
C. 0.0098 V
D. 1.36 V

## Answer: A

## - Watch Video Solution

50. What is the molarity of HCl in a solution prepared by dissolving 5.5 g HCl in 200 g ethanol if the density of solution is $0.79 \mathrm{~g} / \mathrm{mL}$ ?
A. $0.58 M$
B. $0.21 M$
C. $0.93 M$
D. $1.7 M$

## Set li Obejctive Questions

1. When mercuric iodide is added to aqueous KI solution:
A. freezing point is raised
B. osmotic pressure is raised
C. boiling point is elevated
D. vapour pressure is raised

## Answer: A::D

## - Watch Video Solution

2. The correct statements are :
A. Smoke is carbon dispersed in air
B. Butter is water dispersed in fat
C. Greater is the valency of ion more will be its coagulating power
D. More is the gold number of a lyophobic sol, more is protecting power

## Answer: A::B::C

## - Watch Video Solution

3. Select the correct statements among the following:
A. Order can be zero
B. Order cannot have fractional value.
C. Order is a theoretical quantity
D. Order is equal to molecularity for decomposition of $N_{2} O_{5}$ giving
$\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{O}_{2}$
4. Rate law for a chemical reactions is :

Rate $=k[A]^{1 / 2}[B]^{1}$
Choose the correct options among the following :
A. Order of the reaction is $3 / 2$
B. Unit of its rate constant is litre ${ }^{1 / 2} \mathrm{~mol}^{-1 / 2} \mathrm{sec}^{-1}$
C. Unit of rate is mol litre ${ }^{-1} \mathrm{sec}^{-1}$
D. Its molecularity is always 3

## Answer: A::B::C

## - Watch Video Solution

5. Liquid benzene burns in oxygen according to:
$2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

If density of liquid benzene is $0.88 \mathrm{~g} / \mathrm{cc}$, what volume of $O_{2}$ at STP is needed to complete the combustion of 39 cc of liquid benzene?
A. 11.2 litre
B. 74 litre
C. $0.074 m^{3}$
D. $37 \mathrm{dm}^{3}$

## Answer: B::C

## - View Text Solution

6. For the reaction,
$\mathrm{N}_{2} \mathrm{H}_{4}(l)+2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$
heats of formation of $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$ are $12,-45$ and $-57.8 \mathrm{kcal} \mathrm{mol}^{-1}$. Internal energy change for this reaction is/are at 298 K:

$$
\text { A. }-153.2 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

B. $-641.142 \mathrm{kJmol}^{-1}$
C. $-24.8 \mathrm{kcalmol}^{-1}$
D. $-309 \mathrm{kcal} \mathrm{mol}^{-1}$

## Answer: A: B

## - Watch Video Solution

7. Which of the following electrolytes have same osmotic pressure as that of 0.1 M KCl ?
A. 0.1 M HCl
B. 0.1 M NaCl
C. 0.1 M CsCl
D. None of these

## Answer: A::B::C

8. Select the correct statements about the following reaction:

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H=-22.4 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

A. Increase in pressure will favour forward reaction
B. Addition of inert gas forms more $\mathrm{NH}_{3}$
C. At low temperature, there is forwad shift
D. Catalyst will increase the amount of $\mathrm{NH}_{3}$

## Answer: A::B::C

## - Watch Video Solution

9. Which among the following is/are correct about penetrating power ?
A. $\alpha$-rays are less penetrating than $\beta$-rays
B. $\beta$-rays are less penetrating than $\gamma$-rays
C. $\alpha, \beta, \gamma$ rays have equal penetrating power
D. $\gamma$-rays are most penetrating

Answer: A::B::D

## - Watch Video Solution

10. Select the natural series among the following:
A. $(4 n+1)$
B. $(4 n+2)$
C. $4 n$
D. $(4 n+3)$

## Answer: B::C::D

## - View Text Solution

11. Select the correct conclusion (s) about average life:
A. Average life $=1 / \lambda$
B. Average life $=1.44 \times t_{1 / 2}$
C. The time in which $63.2 \%$ element decays is called average life
D. None of the above

## Answer: A::B::C

## - View Text Solution

12. Which of the following statements are correct ?
A. 1 faraday is the charge of 1 mole electron.
B. 1 faraday is used to deposit 1 g equivalent of a substance
C. 5.6 litre $O_{2}$ will be evolved at STP by 1 faraday charge.
D. 11.2 litre $C l_{2}$ will be evolved at STP by 1 faraday charge

## Answer: A::B::C::D

13. Select the species having zero oxidation state at the underlined elements :
A. $\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{~S}} \mathrm{O}$
B. $\underline{C}_{12} H_{22} O_{11}$
C. $\mathrm{H}_{2} \underline{S}_{2} \mathrm{O}_{3}$
D. $\underline{N}_{2} H_{4}$

## Answer: A: B

## - View Text Solution

14. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
' $\alpha$ ' is the degree of dissociation of $P C l_{5}$ at equilibrium pressure ' P '.
Which among the following is the correct expression for degree of dissociation of ' $\alpha$ ' ?
A. $\alpha=\sqrt{\frac{K_{p}}{P+K_{p}}}$
B. $\alpha=\sqrt{\frac{P+K_{p}}{K_{p}}}$
C. $\alpha=\sqrt{K_{p} P}$
D. $\alpha=\sqrt{P / K_{p}}$

## Answer: A

## - View Text Solution

15. In Wilson cloud Chamber, the track is formed by :
A. $\alpha$-rays
B. $\beta$-rays
C. $\gamma$-rays
D. all of these

## Answer: A::B

16. Select the correct relation :
A. $N_{0}=N \cdot 10^{\lambda t / 2.303}$
B. $N_{0}=N e^{\lambda t}$
C. $N_{0}=N \frac{\lambda}{10^{2.303 t}}$
D. $N=N_{0} e^{-\lambda t}$

## Answer: A::B::D

## - Watch Video Solution

17. For the first order reaction, $t_{99 \%}=x \times t_{90 \%}$, the value of ' $x$ ' will be :
A. 10
B. 6
C. 3

## D. 2

## Answer: D

## - Watch Video Solution

18. Which among of the following has same kinetic energy as $O_{2}$ gas at NTP ?
A. $\mathrm{H}_{2}$
B. $N_{2}$
C. $\mathrm{CO}_{2}$
D. None of these

## Answer: A::B::C

View Text Solution
19. Which among the following is correct about $\gamma$-rays ?
A. High energy electrons
B. Low energy electrons
C. High energy electromagnetic waves
D. High energy positrons

## Answer: C

## - View Text Solution

20. The rms speed at NTP of a gas can be calculated from the expression:
A. $\sqrt{3 P / d}$
B. $\sqrt{3 P V / M}$
C. $\sqrt{3 R T / M}$
D. $\sqrt{3 d / P}$

## D Watch Video Solution

21. The graph representing Boyle's law is (are):
A.
(a) $>$

B.

C.

D.
(d) $\gtrsim$

22. For diatomic molecules, the correct relation is/are
A. $C_{P}=7 / 2 R$
B. $C_{V}=5 / 2 R$
C. $\gamma=1.4$
D. $C_{P}=3 / 2 R$

## Answer: A::B::C

## - View Text Solution

23. An ideal gas :
A. has no intermolecular attraction
B. molecules do not collide with each other
C. the product of $P$ and $V$ is constant at a fixed temperature for definite mass
D. can be liquefied easily

## Answer: A::C

## D Watch Video Solution

24. Extensive properties among the following is/are:
A. refractive index
B. volume
C. density
D. mass

## Answer: B::D

25. Which of the following statements regarding equilibrium is/are true ?
A. Equilibrium constant varies with temperature
B. Equilibrium constant varies with catalyst
C. The reaction stops when the equilibrium is reached
D. The equilibrium constant depends on the concentration of reactants

## Answer: A: B

## - Watch Video Solution

## Set lii Single Digit Answer Type Questions

1. The number of neutrons accompanying the formation of ${ }_{54} X e^{139}$ and ${ }_{\cdot 38} S r^{94}$ from the absorption of a slow neutron by ${ }_{92} U^{235}$, followed by nuclear fission is
2. The compressibility factor $Z$ for an ideal gas will be

## - Watch Video Solution

3. A gas is found to have the molecular formula $\left(\mathrm{C}_{3} \mathrm{O}_{2}\right)_{n}$. Its vapour density is 34 . The value of $n$ will be $\qquad$

## - Watch Video Solution

4. For a first order reaction, $t_{7 / 8}=n \times t_{1 / 2}$. The value of n will be $\qquad$

## - Watch Video Solution

5. The van't Hoff factor for aqueous solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ will be
6. The number of radial nodes in 3d orbitals will be..........

## - View Text Solution

7. The half life of radioactive isotope is 3 hour. If the initial mass of isotope were 256 g , the mass of it remaining undecayed after 18 hr is a)12 g b) 16 g c) 4 g d) 8 g

## - Watch Video Solution

8. A hydrate of magnesium iodide has a formula $\mathrm{Mgl}_{2} . \mathrm{xH}_{2} \mathrm{O} . \mathrm{A1.055g}$ sample is heated to a constant weight of 0.695 g . What is the value of $x$ ?

## - Watch Video Solution

9. $\mathrm{HNO}_{3}$ oxidies $\mathrm{NH}_{4}^{+}$ions to nitrogen and itself gets reduced to $\mathrm{NO}_{2}$. The moles of $\mathrm{HNO}_{3}$ required by 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is:

## Watch Video Solution

10. The $p H$ of an aqueous solution of $0.1 M$ solution of a weak monoprotic acid which is $1 \%$ ionised is

## - Watch Video Solution

11. The solubility of $A_{2} B_{3}$ is $\mathrm{S} \mathrm{mol} L^{-1}$. Its solubility product is $108 \mathrm{~s}^{n}$. The value of ' $n$ ' will be.

## - Watch Video Solution

12. Orbital angular momentum of 3 s orbitals will be
13. In the sequence of the following nuclear reaction, $X_{98}^{238} \xrightarrow{-\alpha} Y \xrightarrow{-\beta} L \xrightarrow{n \alpha} .90 M^{218}$

What is the value of $n$ ?

## - Watch Video Solution

14. If $3 / 4$ quantity of a radioactive substance disintegrates in 2 hours, its half - life period will be a) 15 min b) 30 min c) 60 min d) 90 min

## - Watch Video Solution

15. Potassium ferrocyanide is $50 \%$ ionised in aqueous solution, its van't Hoff factor will be

## - Watch Video Solution

16. Standard Gibbs free enegry change $\Delta G^{\Theta}$ for a reaction is zero. The value of the equilibrium constant will be:

## - Watch Video Solution

17. Number of faraday required to convert $1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to $\mathrm{Cr}^{3+}$ ion is....

## - View Text Solution

18. The ratio of the rate of diffusion of helium and methane under indentical conditions of pressure and temperature will be

## - Watch Video Solution

19. Total number of electrons present in 11.2 litre of $\mathrm{NH}_{3}$ at STP are:

## - Watch Video Solution

20. How many Balmer lines in the spectrum will be observed when electrons return from 7th shell to 2 nd shell ?

## D View Text Solution

## Set Iv Assertion Reason Type Questions

1. Statement-1: $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ has value of Z (compressibility factor) less than one, generally. Statement-2: $Z<1$ is due to repulsive forces among the molecules.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## D Watch Video Solution

2. (A) More is the value of van der Waal's constant 'a', greater is the tendency of liquefaction.
$(R)$ 'a' measures the magnitude of force of attraction among the molecules.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: A

3. (A) Crystalline solids are anisotropic.
(R) Crystalline solids are not as closely packed as amorphous solids.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both ( $R$ ) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: C

## - Watch Video Solution

4. (A) Antiferromagnetic substances possess zero magnetic moment.
(R) $M n O$ is an antiferromagnetic substance.
A. Both $(R)$ and $(A)$ are true and reason is the correct explanation of assertion.
B. Both ( $R$ ) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: B

## - Watch Video Solution

5. (A) Isotonic solutions do not show osmosis.
(R) Isotonic solutions have equal osmotic pressure
A. Both $(R)$ and $(A)$ are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: A

## - Watch Video Solution

6. (A) In a gaseous reaction, $K_{c}$ is unitless when $\Delta n=0$.
(R) Unit of $K_{c}=\left(m o l L^{-1}\right)^{\Delta n}$.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: A

## - View Text Solution

7. (A) Strength of acidic character of oxyacids lies in the following sequence:
$\mathrm{HClO}_{4}>\mathrm{HBrO}_{4}>\mathrm{HIO}_{4}$
(R) Greater is the oxidation state of a halogen, more is the acidic character of its oxyacid.
A. Both $(R)$ and $(A)$ are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: B

## D View Text Solution

8. Assertion (A) : The molecularity of the reaction
$\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$ is 2.

Reason (R): The order of the reaction is $3 / 2$.
A. Both ( $R$ ) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: B

## - Watch Video Solution

9. Assertion: Half-life period of a reaction of first order is independent of initial concentration.

Reason: Half-life period for a first order reaction $t_{1 / 2}=\frac{2.303}{K} \log 2$.
A. Both ( $R$ ) and (A) are true and reason is the correct explanation of assertion.
B. Both ( $R$ ) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: A

## D Watch Video Solution

10. (A) For reaction $2 \mathrm{NH}_{3}(g) \rightarrow N_{2}(g)+3 H_{2}(g), \quad \Delta H>\Delta E$
(R) Enthalpy change is always greater than internal energy change.
A. Both $(R)$ and $(A)$ are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: C

## - Watch Video Solution

11. (A) . ${ }^{20} \mathrm{Ne}$ and.${ }^{22} \mathrm{Ne}$ are isotones.
(R) Noble gases do not exist as isotopes as they are not reactive.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: D

## - View Text Solution

12. (A) $3 d_{z^{2}}$ orbital is spherically symmetrical.
(R) $3 d_{z^{2}}$ orbital is the only d -orbital which is spherical in shape.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: D

## - Watch Video Solution

13. Assertion(A): The kinetic of the photo electron ejected increases with increases in intensity of incident light.

Reason(R): Increase in intensity of incident light increases the rate of emission.
A. Both ( $R$ ) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) is false but reason (R) is true

## Answer: D

## - Watch Video Solution

14. (A) . ${ }_{56}^{133} B e+e^{-} \rightarrow{ }_{.55}^{133} C s+\mathrm{X}$-ray

It is a process of K -electron capture.
$(R)$ The atomic number decreases by one unit as a result of K-capture.
A. Both ( $R$ ) and (A) are true and reason is the correct explanation of assertion.
B. Both ( $R$ ) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: B

15. (A) Vapour pressure is a coliigative property.
$(\mathrm{R})$ Colligative property depends on the number of solute particles dissolved in the solution.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both ( $R$ ) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) is false but reason (R) is true

## Answer: D

## D View Text Solution

16. (A) Entropy decreases when a egg is boiled.
$(\mathrm{R})$ It is solidified due to denaturation of albumin.
A. Both $(R)$ and $(A)$ are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: A

## - View Text Solution

17. (A) 1 faraday $=96,500$ coulomb.

It is a charge of 1 mole electrons.
(R) 1 faraday charge liberates one gram equivalent of substance at an electrode.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: B

## - Watch Video Solution

18. The elctrical resistance of a column of 0.05 MNaOH solution of diameter 1 cm and length 50 cm is $5.55 \times 10^{3} \mathrm{ohm}$. Calculate its resisteivity , conductivity, and molar conductivity.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) and reason (R) both are false

## Answer: C

## - Watch Video Solution

19. (A) If water is heated to 350 K , then pOH will increase to 8 .
(R) $K_{w}$ increase with increase in temperature.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) is false but reason (R) is true

## Answer: D

20. (A) Magnetic quantum number can have the value 0 ,...., $(n-1)$.
(R) Magnetic quantum number specifies the number of orbitals.
A. Both $(R)$ and $(A)$ are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) is false but reason (R) is true

## Answer: D

## - Watch Video Solution

21. (A) Emitted radiations lie in visible region when electrons jump from higher level to $n=2$ in hydrogen.
(R) Balmer series radiations belong to visible range in H -atoms.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both ( $R$ ) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) is false but reason (R) is true

## Answer: A

## - Watch Video Solution

22. Statement -1 : Energy emitted when an electron jump from $5 \rightarrow 2$ (energy level) is less than when an
electron jump from $2 \rightarrow 1$ in all 'H' like atom.
Statement -II : The|total energy dofference| between $1^{s t} \& 2^{n d}$ energy level is greater than that of any
two energy level provided level 1 is not part of those two energy levels.
A. Both $(R)$ and $(A)$ are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) is false but reason (R) is true

## Answer: A

## - Watch Video Solution

23. (A) In general phenolphthalein is used as an indicator for the titration of weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and strong base $(\mathrm{NaOH})$.
(R) At equivalence point solution is basic.
A. Both (R) and (A) are true and reason is the correct explanation of
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) is false but reason (R) is true

## Answer: B

## - Watch Video Solution

24. (A) pH of $10^{-7} \mathrm{M} \mathrm{NaOH}$ solution exists between 7 to 7.3 at $25^{\circ} \mathrm{C}$.
$(R)$ Due to common ion effect ionization of water is supressed.
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both ( $R$ ) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) is false but reason (R) is true

## Answer: A

## - Watch Video Solution

25. (A) $3 \mathrm{~s}, 3 \mathrm{p}$ and 3 d subshells in hydrogen have same energy.
(R) Energy of subshells in hydrogen atom, depends on the principle quantum number ( n ) and azimuthal quantum number ( I ).
A. Both (R) and (A) are true and reason is the correct explanation of assertion.
B. Both (R) and (A) are true but reason is not correct explanation of assertion
C. Assertion (A) is true but reason (R) is false
D. Assertion (A) is false but reason (R) is true

## Answer: C

## Set V Matching Type Questions

1. Match the List-I with List-II and pick up the correct matching from the codes given below:

## List-I

A. $\left(\frac{\partial E}{\partial V}\right)_{T}=0 \quad$ 1. Isothermal process
B. $W=-\Delta E$
C. $\Delta E=0$
D. $\Delta G^{\circ}$
E. $\left(\frac{\partial T}{\partial P}\right)_{H} \neq 0$
A. A-2 B-1 C-4 D-5 E-3
B. A-2 B-5 C-1 D-4 E-3
C. A-3 B-1 C-2 D-5 E-4
D. A-5 B-3 C-1 D-2 E-4

Answer: D
2. Match the Colunm-I with Column-II :

Column-I
(I) ${ }_{20}^{40} \mathrm{Ca}$
(II) ${ }_{53}^{133} \mathrm{I}$
(III) ${ }_{53}^{121} \mathrm{I}$
(IV) ${ }_{90}^{232} \mathrm{Th}$

Column-II

1. Unstable, $\alpha$-emitter
2. Unstable, $\beta$-emitter
3. Unstable, positron emitter
4. Stable
A. I-1 II-2 III-3 IV-4
B. I-4 II-3 III-2 IV-1
C. I-4 II-2 III-3 IV-1
D. I-4 II-3 III-1 IV-2

## Answer: C

List-I
(Electrochemical parameter)
(I) Ionic mobility

1. $\mathrm{cm}^{-1}$
(II) Cell constant
(III) Specific conductance
(IV) Molar conductance
2. $o h m^{-1} \mathrm{~cm}^{-1}$
3. $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4. $\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$
A. I-4 II-1 III-2 IV-3
B. I-2 II-3 III-4 IV-1
C. I-3 II-1 III-2 IV-4
D. I-1 II-2 III-3 IV-4

## Answer: A

## D Watch Video Solution

4. Match the Colunm-I with Column-II and select the correct answer using the sequences given below:

Column-I
(Compounds)
A. $\mathrm{NaN}_{3}$
B. $\mathrm{N}_{2} \mathrm{H}_{4}$
C. $\mathrm{NH}_{2} \mathrm{OH}$
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Column-II
(Oxidation state of nitrogen)

1. +5
2. +1
3. $-1 / 3$
4. -2
A. $A \quad B \quad C \quad D$
$\begin{array}{llll}3 & 4 & 2 & 1\end{array}$
B. $\begin{array}{llll}A & B & C & D \\ 4 & 3 & 1 & 2\end{array}$
c. $\begin{array}{llll}A & B & C & D\end{array}$
C. $\begin{array}{llll}3 & 4 & 1 & 2\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 4 & 3 & 2 & 1\end{array}$

Answer: A
5. Match the Colunm-I with Colunm-II and pick up the correct alternate:

Column-I
(I) For spontaneous reaction
(II) For endothermic reaction
(III) Bond dissociation energy
(IV) For solids and liquids in a thermochemical reaction
A. I-C II-A III-D IV-B
B. I-B II-D III-A IV-C
C. I-C II-D III-B IV-A
D. I-C II-D III-A IV-B

## Answer: D

## - Watch Video Solution

6. Match the Column-I with Column-II and pick up the correct answer:

Column-I
(I) Nickel
(II) ZSM-5
(III) $\mathrm{SiO}_{2}$

## Column-II

A. Conversion of alcohol to gasoline
B. Alkylation of benzene
C. Hydrogenation of oil
A. I-C II-A III-B
B. I-A II-B III-C
C. I-C II-B III-A
D. I-B II-C III-B

## Answer: A

## - Watch Video Solution

7. Match the List-I (enzymes) with List-II (metals) and select the correct answer using the codes given below the lists:

## List-I

List-II
A. Nitrogenase

1. Cu
B. Cytochrome oxidase
2. Mo
C. Cytochrome-C
D. Carboxypeptidase
3. Zn
4. Fe
$\begin{array}{llll}A & B & C & D\end{array}$
A. $\begin{array}{llll}1 & 2 & 4 & 3\end{array}$
B. $A \quad B \quad C \quad D$
$\begin{array}{llll}2 & 1 & 3 & 4\end{array}$
C. $\begin{array}{llll}A & B & C & D \\ 2 & 1 & 4 & 3\end{array}$
D. $\begin{array}{llll}A & B & C\end{array}$
D. $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$

## Answer: B

## - View Text Solution

8. Match the Colunm-I with Colunm-II and select the correct answer:

Column-I
(I) Curie
(II) Rutherford
(III) Becquerel

Column-II
A. $10^{6} \mathrm{dis} \mathrm{sec}^{-1}$
B. $3.7 \times 10^{10} \mathrm{dis} \mathrm{sec}^{-1}$
C. 1 dis sec ${ }^{-1}$

# A. I-B II-A III-C 

B. I-B II-C III-A
C. I-A II-B III-C
D. I-C II-B III-A

## Answer: A

## - View Text Solution

9. Match the List-I with List-II:

## List-I

(I). $\Delta H=q_{P}$
(II). Kirchhoff's equation
(III). $\mathrm{H}^{+}(a q$.)
(IV). Spontaneous process

List-II

1. $\Delta S^{\circ}=0$
2. State function
3. Path function
4. $\Delta G>0$
5. $\Delta S_{\text {Total }}^{\circ}>0$
6. $\Delta H_{2}-\Delta H_{1}=\Delta C_{p}\left(T_{2}-T_{1}\right)$

| $(I)$ | $(I I)$ | $(I I I)$ | $(I V)$ |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 4 | 5 |
| $(I)$ | $(I I)$ | $(I I I)$ | $(I V)$ |
| 5 | 4 | 3 | 6 |
| $(I)$ | $(I I)$ | $(I I I)$ | $(I V)$ |
| 2 | 6 | 1 | 1 |

D. $\begin{array}{llll}(I) & (I I) & (I I I) & (I V) \\ 6 & 2 & 5 & 1\end{array}$

Answer: C

## - View Text Solution

10. Match the List-I with List-II:

## List-I

(I) Mixing of two ideal gases
(II) Criterion for irreversibility
(III) Isobaric thermal coefficient of an ideal gas
(IV) Joule-Thomson effect
4. $\Delta S_{\text {Total }}>0$
5. $\Delta G_{\text {mix }}<0$
6. $\Delta H=0$
A.
(I) (II) (III) (IV)
$1 \quad 2 \quad 4 \quad 5$
B. $(I)(I I)(I I I)(I V)$

543
C. $\begin{array}{llll}(I) & (I I) & (I I I) & (I V) \\ 2 & 6 & 1 & 5\end{array}$
D. $\begin{array}{llll}(I) & (I I) & (I I I) & (I V) \\ 6 & 2 & 5 & 1\end{array}$

Answer: B

## - View Text Solution

11. Match the List-I with List-II:

List-I List-II
(1) Translational kinetic energy 1. $\frac{3}{2} P$
(II) Rotational kinetic energy 2. 15/13 of $\mathrm{CO}_{2}$
(III) Translational kinetic 3. 7/5 energy per unit volume
(IV) $\gamma$ for $\mathrm{CO}_{2}$ at very high temperature
4. Function of $T$ only
5. $R T$
6. $\frac{3}{2} R T$
(I) (II) (III) (IV)
A. $3 \quad 4 \quad 5 \quad 1$
(I) (II) (III) (IV)
$\begin{array}{llll} & 4 & 5 & 2\end{array}$
(I) (II) (III) (IV)
C. $\begin{array}{llll}5 & 6 & 2 & 3\end{array}$
D. $\begin{array}{llll}(I) & (I I) & (I I I) & (I V) \\ 6 & 1 & 3 & 4\end{array}$

## Answer: D

12. Match the Colunm- $X$ with Column-Y:

| $\begin{aligned} & \text { ( olumn-X } \\ & \text { (Colloids) } \end{aligned}$ |  |  |  |  | Column-Y <br> (Classification) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rain | oud |  | A. |  |
| (II) | Milk | magne |  | B. | Aerosol |
| (III) | Soap |  |  | C. | Gel |
| (IV) | Butter |  |  | D. | Foam |
| Code |  |  |  |  |  |
|  | (I) | (II) |  | (III) | (IV) |
| (a) A |  | B |  | C | D |
| (b) A |  | C |  | B | D |
| (c) B |  | A |  | D | C |
| (d) B |  | A |  | C | D |
| (I) | (II) | (III) | (IV) |  |  |
| A. $A$ | $B$ | $C$ | $D$ |  |  |
| (I) | (II) | (III) | (IV) |  |  |
| $A$ | $C$ | $B$ | $D$ |  |  |
| c. $(I)$ | (II) | (III) | (IV) |  |  |
| $B$ | A | D | $C$ |  |  |
| D. ${ }^{\text {(I) }}$ | (II) | (III) | (IV) |  |  |
| D. $B$ | A | C | D |  |  |

13. Match the List-I with List-II and select the correct answer from given codes:

## List-I (Spectrum)

A. Lyman
B. Paschen
C. Balmer
D. Pfund

Codes:
A
B
(a) 1
(b) 1
(c) 4
(d) 1
3
2
3
2

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| (a) | 1 | 3 | 2 | 4 |
| (b) | 1 | 2 | 3 | 4 |
| (c) | 4 | 3 | 2 | 1 |
| (d) | 1 | 2 | 4 | 3 |

List-II (Region)

1. Ultraviolet
2. Visible
3. Near infrared
4. Far infrared
$\begin{array}{llll}A & B & C & D\end{array}$
A.
$\begin{array}{llll}1 & 3 & 2 & 4\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C. $\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 1 & 2 & 4 & 3\end{array}$

Answer: A
14. Match the List-I with List-II and select the correct answer:

## List-I

A. Critical temperature
B. Boyle temperature
C. Inversion temperature
D. Reduced temperature

## List-II

1. $a / R b$
2. $2 a / R b$
3. $T / T_{c}$
4. $8 a / 27 R b$
$\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}4 & 1 & 2 & 3\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$2 \quad 1 \quad 4 \quad 3$
$\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 2 & 3 & 1 & 4\end{array}$

## Answer: A

## - Watch Video Solution

15. Match the List-I, List-II and List-III and select the answer from the given codes:

List-I
(Order)

List-II
(Unit of rate constant)

List-III
(Relation between half-life and initial concentration)
A. Zero
(i) $\mathrm{L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$

1. $t_{1 / 2}=$ Constant
B. First
(ii) $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
2. $t_{1 / 2} \propto \frac{1}{a}$
C. Second
(iii) $\mathrm{s}^{-1}$
3. $t_{1 / 2} \propto a$
D. Third
(iv) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
4. $t_{1 / 2} \propto \frac{1}{a^{2}}$
A. $\begin{array}{llll}A & C & D\end{array}$
A. $i-2 \quad i i-4 \quad i i i-3 \quad i v-1$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$i-4 \quad i v-3 \quad i i-2 \quad i i i-1$
C. $\begin{array}{llll}A & B & C & D \\ i v-3 & i i i-1 & i i-2 & i-4\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ & \\ i i-2 & i-1 & i i i-3 & i v-4\end{array}$

## Answer: C

## - View Text Solution

16. Match the List-1 (solutions of salts) with List-II ( pH of the solutions) and select the correct answer using the codes given below the lists:
A. Weak acid and strong base 1. $1 / 2 \mathrm{p} K_{w}$
B. Strong acid and weak base
17. $1 / 2\left[\mathrm{p} K_{w}-\mathrm{p} K_{b}+\mathrm{p} K_{a}\right]$
C. Weak acid and weak base
18. $1 / 2\left[\mathrm{p} K_{w}-\mathrm{p} K_{b}-\log c\right]$
D. Strong acid and strong base
19. $1 / 2\left[\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log c\right]$

## Codes:

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| (a) | 4 | 3 | 2 | 1 |
| (b) | 1 | 2 | 3 | 4 |
| (c) | 2 | 3 | 4 | 1 |
| (d) | 3 | 2 | 1 | 4 |

A $\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
B. $\begin{array}{llll}A & B & C & D\end{array}$
B. $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
c $\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}2 & 3 & 4 & 1\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 3 & 2 & 1 & 4\end{array}$

## Answer: A

## - Watch Video Solution

17. Match the List-I with List-II and choose the correct answer from the codes:

List-I
(Electrolyte)
A. $\mathrm{Bi}_{2} \mathrm{~S}_{3}$
B. $\mathrm{Al}(\mathrm{OH})_{3}$
C. CdS
D. $\mathrm{CaF}_{2}$
$\begin{array}{llll}A & B & C & D\end{array}$
A.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
B. $A \quad B \quad C \quad D$
$\begin{array}{llll}2 & 3 & 1 & 4\end{array}$
C. $\begin{array}{llll}A & B & C & D \\ 4 & 3 & 2 & 1\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 3 & 2 & 4 & 1\end{array}$

## Answer: D

## - View Text Solution

18. Match the following combinations of electrical units with their terms as single unit:

## Electrical unit

## Single unit

(I). ampere-second
(II). volt-ampere
(III). volt-ampere ${ }^{-1}$
(IV). watt/ampere ohm
(V). joule /ampere second
A. coulomb
B. ohm
C. ampere
D. watt
E. volt
$\begin{array}{lllll}A & B & C & D & E\end{array}$
A. $I \quad I I I \quad I V \quad I I \quad V$
B. $\begin{array}{lllll}A & B & C & D & E\end{array}$
B. $\begin{array}{lllll}I & I I & I I I & I V & V\end{array}$
c. $\begin{array}{lllll}A & B & C & D & E \\ V & I V & I I I & I I & I\end{array}$
D. $\begin{array}{lllll}A & B & C & D & E \\ I & V & I V & I I & I I I\end{array}$

## Answer: A

## - View Text Solution

19. Match the List-I with List-II and select the correct answer from the given codes:

## List-I <br> (Thermodynamic properties)

## List-II

(Relation)
A. Free energy change of a reaction ( $\Delta G$ )
B. Standard enthalpy change $\left(\Delta H^{\circ}\right)$ of a reaction
C. Standard entropy change $\left(\Delta S^{\circ}\right)$
D. Standard free energy change $\left(\Delta G^{\circ}\right)$

$\begin{array}{llll}A & B & C & D\end{array}$
A.
$\begin{array}{llll}3 & 2 & 4 & 1\end{array}$
B $\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
C. $\begin{array}{llll}A & B & C & D \\ 4 & 3 & 2 & 1\end{array}$
D. $\begin{array}{llll}A & B & C\end{array}$
$\begin{array}{llll}2 & 3 & 1 & 4\end{array}$

## Answer: A

## - Watch Video Solution

20. Match the List-I, List-II and List-III:
List-I
List-II

## List-III

A. $\Delta G>0$
X. $\Delta S>0$

1. Non-spontaneous
B. $\Delta G<0$
Y. $\Delta S<0$
2. Spontaneous
C. $\Delta G=0$
Z. $\Delta S=0$
3. Equilibrium

Select the correct answer from the following codes:
A. $\begin{array}{lll}A & B & C \\ (Y, 1) & (X, 2) & (Z, 3)\end{array}$
B. $\begin{array}{lll}A & B & C \\ (X, 2) & (Y, 3) & (Z, 1)\end{array}$
C. $\begin{array}{lll}A & B & C \\ (X, 3) & (Y, 1) & (Z, 2)\end{array}$
D. $\begin{array}{lll}A & B & C \\ (Y, 1) & (X, 3) & (Z, 2)\end{array}$

## Answer: A

## - View Text Solution

21. Match the Colunm-I with Column-II:

## Column-I

Column-II
(a) Spontaneous process
(p) $\Delta H=$
(b) Heat flow from high temperature of system towards low
(q) $\Delta G=$
(c) Exergonic process
(r) $\Delta S_{\text {tota }}$
(d) Increase in the randomness of system of heating
(s) $\Delta G=$

## - View Text Solution

22. Match the items of Column-I with the items of Column-II:

Column-I
(Metal)
(a) Na
(b) Cu
(c) Au
(d) K

Column-II
(Packing/coordination numbes
(p) ccp
(q) bcc
(r) 12
(s) 8

## - View Text Solution

23. Match the Colunm-I with Column-II and Column-III: I = Edge length of unit cell,
$r=$ Radius of spherical constituent unit
Column-I Column-II Column-III
(a) Simple cubic
(p) $l \sqrt{3}=4 r$
(u) $74 \%$ occupied unit cell
(q) $l=2 r$ space
(b) Face-centred cubic unit cell
(r) $l \sqrt{2}=4 r$
(c) Body-centred cubic unit cell
(v) $67.98 \%$ occupied space
(w) $52.33 \%$ occupied space

## D View Text Solution

24. Match the List-I with List-II:

## List-I

(a) Silicon doped with phosphorus
(b) Metal excess non-stoichiometry in NaCl
(c) Ge doped with Ga
(d) Anion vacancy with trapped(s) F-centre electron

## D View Text Solution

25. Match the solids in List-I with their properties in List-II:

## List-I

(a) MnO
(b) ZnO
(c) $\mathrm{CrO}_{2}$
(d) TiO

## List-II

(p) Ferromagnetic solid
(q) Antiferromagnetic solid
(r) Zero magnetic moment
(s) Attracted in magnetic field

## - View Text Solution

26. Match the List-I with List-II:
List-I

## List-II

(a) The highest temperature at which liquid $\mathrm{CO}_{2}$ exists
(b) $8 a / 27 R b$
(c) Compressibility factor $Z=3 / 8$ at
(d) Compressibility factor $Z=1$ for

## - Watch Video Solution

27. Match the physical properties of Column-I with their values in Column-

## (a) SATP

Column-II
(b) Temperature in STP
(c) Pressure in NTP
(d) Standard boiling point of
(p) $1 \mathrm{bar} / 1 \mathrm{~atm}$
(q) $99.6^{\circ} \mathrm{C}$
(r) 273.15 K
(s) 298.15 K

SATP $\rightarrow$ Standard ambient temperature and pressure
STP $\rightarrow$ Standard temperature and pressure
NTP $\rightarrow$ Normal temperature and pressure

## - Watch Video Solution

28. Match the quantities in Column-I with their units in Column-II:

## Column-I

(a) Coefficient of viscosity
(b) van der Waals' constant ' $b$ ',
(c) Molar volume of gas at $\mathrm{STP}=22.4 \ldots$
(d) van der Waals' constant ' $a$ '
(p) $\mathrm{L} \mathrm{mol}^{-1}$
(q) $\mathrm{Ns} \mathrm{m}^{-2}$
(r) Pa s
(s) $\mathrm{L}^{2} \mathrm{~atm} \mathrm{~mol}^{-2}$

Column-II

## D Watch Video Solution

29. Match the temperature in List-I with its value in List-II:

List-I
(a) Critical temperature
(b) Boyle's temperature
(c) $1 / 2$ [Inversion temperature]
(d) Reduced temperature

## List-II

(p) $a / R b$
(q) $\theta$
(r) $T / T_{c}$
(s) $8 a / 27 R b$

## - Watch Video Solution

30. Match the items of Column-I with its proportional term in the items of Column-II:

## Column-I

(a) Kinetic energy
(b) Partial pressure of a gas
(c) Rate of diffusion
(d) Vapour pressure of a liquid (s) Absolute temperature

## - Watch Video Solution

31. Match the List-I with List-II and List-III:

List-I
(Solids)

List-II (Unit cell)

## List-III

(Coordination number)
(a) Rock salt (p) Face-centred cubic, anion (w) 6 in tetrahedral void
(b) Fluorite (q) Face-centred cubic, cation in octahedral void
(x) Cation (8), anion (4)
(c) AgI, ZnS (r) Face-centred cubic, cation in alternate tetrahedral void
(y) Cation (4), anion (8)
(d) $\mathrm{Na}_{2} \mathrm{O}$
(s) Face-centred cubic, cation in tetrahedral void anion (4)

## - View Text Solution

32. Match the Column-I with Column-II. Choose the correct one from the alternatives (a), (b), (c) and (d).

## Column-I

P. Wilkinson catalyst
Q. Speier catalyst
R. Water gas shift catalyst
S. Zeolite ZSM-5 catalyst

Column-II
I. trans $-\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$
II. Hydrosilylation
III. $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$
IV. Synthetic gasoline
V. Hydroformylation
VI. Zinc-copper oxide
A.
(a)
(b)
(c)
(d)
$P-I I I \quad P-I \quad P-V \quad P-I I I$
B.
(a)
(b)
(c)
(d)
$Q-I I \quad Q-V \quad Q-I I \quad Q-V I$
$c^{(a)}$
(b)
(c)
(d)
$\begin{array}{lll}R-V I & R-I I I & R-V I \quad R-I V\end{array}$
D. ${ }^{(a)}$
(b)
(c)
(d)
$S-I V \quad S-I V \quad S-I V \quad S-I I$

## Answer: D

## - View Text Solution

33. Match the Column-I with Column-II. Choose the correct one from the alternatives (a), (b), (c) and (d).

Column-I
Column-II
P. Low temperature
I. $\frac{a}{V^{2}}$
Q. Mean speed
II. Maxwellian distribution
R. Internal pressure
III. $b$
S. Excluded volume
IV. Adiabatic demagnetisation
V. $\left(a+\frac{b}{V^{2}}\right)$
A. ${ }^{(a)}$
(b)
(c)
(d) $P-I V \quad P-V \quad P-I \quad P-I V$
B. ${ }^{(a)}$
(b)
(c)
(d)

$$
Q-I I \quad Q-I V \quad Q-I I \quad Q-V
$$

c.
(a)
(b)
(c)
(d)
$R-I \quad R-I I \quad R-I I I \quad R-I I I$
D. ${ }^{(a)}$
(b)
(c)
(d)
$S-I I I \quad S-I I I \quad S-I V \quad S-I I$

## Answer: A

## - View Text Solution

34. Match the List-I and List-II:

## List-I

(A) The limits of pH values of
(i) $5 \times 10^{-12}$ buffer solution.

(B) The $\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}$concentration in

(ii) Equal
$0.001 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution.

(C) The buffer capacity of a solu- (iii) 1st order reaction
tion is maximum when conc.
of salt to that of acid is :

(D) Hydrolysis of ethyl acetate
(iv) $\mathrm{p} K_{a} \pm 1$
in acidic solution.

List-II

List-II

List-II
(A) The limits of pH values of
(A) The limits of pH values of
(A) The limits of pH values of
(ii) Equal
(ii) Equal
(ii) Equal
0.001 M Ba(OH) 2 soluion.
0.001 M Ba(OH) 2 soluion.
0.001 M Ba(OH) 2 soluion.
(C) The buffer capacity of a solu- (iii) 1st order reaction
(C) The buffer capacity of a solu- (iii) 1st order reaction
(C) The buffer capacity of a solu- (iii) 1st order reaction tion is maximum when conc. tion is maximum when conc. tion is maximum when conc. of salt to that of acid is : of salt to that of acid is : of salt to that of acid is : in acidic solution. in acidic solution. in acidic solution.
List-I
List-I
List-I
(B) The $\left[\mathrm{H}_{3} \mathrm{O}\right]$ concentration in
(B) The $\left[\mathrm{H}_{3} \mathrm{O}\right]$ concentration in
(B) The $\left[\mathrm{H}_{3} \mathrm{O}\right]$ concentration in
(iv) $K_{a}$
(iv) $K_{a}$
(iv) $K_{a}$
(iv) $K_{a}$

## (-) View Text Solution

35. Match the List-I and List-II:

## List-I

(A) Rate constant has the same unit as the rate of reaction.
(B) Reactions having apparent molecularity more than three.
(C) Reactions having molecu- (iii) Complex reaction larity two but order of reaction is one.
(D) For a reaction, $A \rightarrow B$, the (iv) Pseudo unimolrate of reaction doubles as the concentration of $A$ is doubled.
(ii) Zero order reaction

## List-II

(i) One
$\qquad$ -
$\square$(iv) Pseudo unimol- ecular reaction
A.
$(A) \quad(B) \quad(C) \quad(D)$ ii $i v$ iii $i$
$(A) \quad(B) \quad(C) \quad(D)$
B.
ii iii iv i
$(A) \quad(B) \quad(C) \quad(D)$
C.
iii ii iv i
$(A) \quad(B) \quad(C) \quad(D)$
$i i \quad i v \quad i \quad i i i$

## Answer: B

36. Match the Column-I with Column-II:

## Column-I <br> Column-II

(a) de Broglie equation
(p) $\lambda=\frac{h}{p}$
(b) Lyman series
(q) $\lambda=\frac{h}{\sqrt{2 E m}}$
(c) Wavelength associated (r) Transition from higher shell with particle of mass $m$ to $K$-shell
(d) $6.6 \times 10^{-19} \mathrm{~J}$ energy per photon

## Watch Video Solution

37. Match the Column-I with Column-II:

## Column-I

(a) Mn
(b) Body-centred cubic
(c) ABC ABC ABC
(d) Be

Column-II
(p) Radius ratio (0.732-1)
(q) Hexagonal closepacked
(r) Packing (0.68)
(s) Number of constituent units in one unit cell (1)

## Set Vi Problems On Graphical Aptitude

1. A sample of 2 kg of helium (assumed ideal) is taken through the process $A B C$ and another sample of 2 kg of the same gas is taken through the process $A D C$. Then the temperature of the states $A$ and $B$ are (given $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ )

A. $T_{A}=120.5 K, T_{B}=120.5 K$
B. $T_{A}=241 K, T_{B}=241 K$
C. $T_{A}=120.5 K, T_{B}=241 K$
D. $T_{A}=241 K, T_{B}=482 K$

## Answer: C

## - Watch Video Solution

2. An ideal diatomic gas is caused to pass through a cycle shown on the $P-V$ diagram in figure, where $V_{2}=3.00 V_{1}$. If $P_{1}, V_{1}$, and $T_{1}$ specify the state 1 , then the temperature of the state 3 is

A. $\left(T_{1} / 3\right)^{1.4}$
B. $T_{1} / 3^{1.4}$
C. $T_{1} / 3^{0.4}$
D. cannot be determined

## Answer: C

## - Watch Video Solution

3. A heat engine carries one mole of an ideal mono-atomic gas around the cycle as shown in the figure below. Process $1 \rightarrow 2$ takes place at constant volume, process $2 \rightarrow 3$ is adiabatic and process $3 \rightarrow 1$ takes place at constant pressure. Then the amount of heat added in the process $1 \rightarrow 2$

A. 3740 J
B. $-3740 J$
C. 1810 J
D. 3220 J

Answer: A
4. One mole of an ideal mono-atomic gas is caused to go through the cycle shown in the figure below. Then the change in the internal enegry in expanding the gas from $a$ to $c$ along the path $a b c$ is:

A. $3 P_{0} V_{0}$
B. $6 R T_{0}$
C. $4.5 R T_{0}$
D. $10.5 R T_{0}$

## Answer: D

5. A thermodynamic system consists of a cylinder-piston attangement with ideal gas in it. It goes from the state $i$ to the state $f$ as shwon in the figure. The work done by gas during the process is

A. is zero
B. is negative
C. is positive
D. nothing can be predicted
6. A cyclic process $A B C A$ is shown in the $V-T$ diagram process on the $P-V$

(a)

(b)

B.
(c)

C.
(d)
)

D.

## Answer: C

## - Watch Video Solution

7. The following are the $P-V$ diagram for cyclic process for a gas. In which of these processes, heat is not obsorbed by the gas?
(a)

A.

B.
(b)

(c)

C.


## Answer: D

## - Watch Video Solution

8. The graph betwene $P$ and $V$ at constant temperature should look like
A.

B.



Answer: A

- Watch Video Solution

9. In $P-V$ diagram shown below,

A. AB represents adiabatic process
B. $A B$ represents isothermal process
C. AB represents isobaric process
D. AB represents isochoric process
10. The $P-V$ graph of an ideal gas cycle is shown here as below. The adiabatic process is described by

A. AB and BC
B. $A B$ and $C D$
C. AD and BC
D. BC and CD

Answer: D
11. An ideal gas is taken around the cycle $A B C A$ shown in $P-V$ diagram. The net work done by the gas during the cycle is equal to

A. $12 P_{1} V_{1}$
B. $6 P_{1} V_{1}$
C. $3 P_{1} V_{1}$
D. $P_{1} V_{1}$

## Answer: C

12. An ideal monoatomic gas is taken round the cycle $A B C D A$ as shown in the $P-V$ diagram. The work done during the cycle is

A. PV
B. 2 PV
C. $\frac{1}{2} P V$
D. zero

## Answer: C

13. Four curves $A, B, C$ and $D$ are drawn in figure for a given amount of gas. The curve which represents adiabatic and isothermal changes, respectively, is

A. C and D respectively
B. D and C respectively
C. A and B respectively
D. B and A respectively

## Answer: C

14. A given mass of gas expands from state $A$ to state $B$ by three paths 1,2 , and 3 as shown in the figure below. If $w_{1}, w_{2}$ and $w_{3}$, respectively, be the work done by the gas along three paths, then

A. $W_{1}>W_{2}>W_{3}$
B. $W_{1}<W_{2}<W_{3}$
c. $W_{1}=W_{2}=W_{3}$
D. $W_{1}>W_{2}, W_{1}<W_{3}$

## Answer: B

15. A thermodynamic process is shown in Fig. The pressures and volumes corresponding to some points in the figure are

$$
P_{A}=3 \times 10^{4} \mathrm{~Pa} V_{A}=2 \times 10^{-3} \mathrm{~m}^{3}
$$

$$
P_{B}=8 \times 10^{4} P a V_{D}=5 \times 10^{-3} \mathrm{~m}^{3}
$$

In the process $A B 600 J$ of heat is added to the system. The change in internal energy of the system in the process $A B$ would be

A. 560 J
B. 800 J
C. 600 J
D. 640 J

## Answer: B

## - Watch Video Solution

16. In the pressure-volume diagram given below, the isochoric, isothermal, isobaric, and isoentropic parts, respectively, are:

A. BA, AD, DC, CB
B. $D C, C B, B A, A D$
C. $A B, B C, C D, D A$
D. $C D, D A, A B, B C$

## Answer: D

## Watch Video Solution

17. Heat energy absorbed by a system in going through a cyclic process shown in figure is

A. $10^{7} \pi J$
B. $10^{4} \pi J$
C. $10^{2} \pi J$
D. $10^{-3} \pi J$

## Answer: C

## - Watch Video Solution

18. The pressure -temperature $(P-T)$ phase diagram shown below corresponds to the
a. Curve of fusion of solids that expand on solidification.
b. Curve of sublimation of solides that directly go over to the vapour
phase.

A. curve of fusion of solids that expand on solidification
B. curve of sublimation of solids that directly go over to the vapour phase
C. curve of fusion of solids that contract on solidification
D. curve of fusion of solids that do not change in volume upon
solidification

## Answer: C

19. Graph for specific heat at constant volume for a monoatomic gas
A.

(b)

C.

D.


## Answer: C

20. A cyclic process $A B C D$ is shown in the $P-V$ diagram. Which of the following curves represents the same process?

(a)

(b)

B.
(c)
C.
(d)


## Answer: C

## - Watch Video Solution

21. A system is taken from state A to B through three different paths 1,2 and 3 . The work done is maximum is :

A. process 1
B. process 2
C. process 3
D. equal in all magnitude

Answer: D
22. In the cyclic process shown in P-V diagram the magnitude of work done is :

A. $\pi\left(\frac{P_{2}-P_{1}}{2}\right)^{2}$
B. $\pi\left(\frac{V_{2}-V_{1}}{2}\right)^{2}$
C. $\frac{\pi}{4}\left(P_{2}-P_{1}\right)\left(V_{2}-V_{1}\right)$
D. $\pi\left(P_{2} V_{2}=P_{1} V_{1}\right)$

## Answer: B

## - Watch Video Solution


23.

A cyclic process is shown in the $\mathrm{p}-\mathrm{T}$ diagram. Which of the curves show the same process on a V-T diagram?

(b)

B.
(s)
C.
(C)
(d)

Answer: C

D Watch Video Solution

24.

Heat is supplied to a certain homogeneous sample of matter, at a uniform rate. Its temperature is plotted against time, as shown Which of the following conclusions can be drawn?
(i) Its specific heat capacity is greater in the solid state than the liquid state.
(ii) Its specific heat capacity is greater in the liquid state than in the solid state.
(iii) Its latent heat of vaporization is greater than its latent heat of fusion.
(iv) Its latent heat of vaporization is smaller than its latent heat of fusion
A. Its specific heat capacity is greater in the solid state than in the liquid state.
B. Its specific heat capacity is smaller in the solid state than in the liquid state.
C. Its latent heat of vaporization is greater than its latent heat of fusion.
D. Its latent heat of vaporization is smaller than its latent heat of fusion.

## Answer: C

## - Watch Video Solution

25. An ideal gas is taken from the state $A$ (pressure $P$, volume $V$ ) to the state $B$ (pressure $\mathrm{P} / 2$, volume 2 V ) along a straight line path in the $\mathrm{P}-\mathrm{V}$
diagram. Select the wrong statement from the following:

A. The work done by the gas in the process $A$ to $B$ exceeds the work that would be done by if the system were taken from $A$ to $B$ along the isotherm.
B. In the T-V diagram, the path AB becomes a part of parabola.
C. In the P-T diagram, the path AB becomes a part of hyperbola.
D. In going from $A$ to $B$, the temperature $T$ of the gas first increases to a maximum value and then decreases.

## - View Text Solution

26. The radioactive nucleus of an element $X$ decays to a stable nucleus of element Y.A graph of the rate of romation of $Y$ against time would look like:

A.
B.

C.
(c)

(d)

D.

## D Watch Video Solution

27. In photoelectric effect the slope of straight line graph between stopping potential ( $V_{0}$ ) and freqency of incident light (v) gives:

A. charge on electron
B. work function of emitter
C. Planck's constant
D. ratio of Planck's constant to charge on electron

## - View Text Solution

28. The stopping potential as a function of the frequency of the incident radiation is plotted for two different photoelectric surfaces $A$ and $B$. The graphs show that work function of $A$ is

A. greater than that of $B$
B. smaller than that of $B$
C. same as that of $B$
D. such that no comparison can be done from given graphs

## - Watch Video Solution

29. Which of the following is the graph between the frequency (v) of the incident radiations and the stopping potential ?
A.

B.

C.
D.

(d)


## D View Text Solution

30. Which of the following figure represents the variation of particle momentum and the associated de - Broglie wavelength ?
A.

B.


C.
(d)


## - Watch Video Solution

31. The follwing diagram indicates the energy levels of a certain atom when the system moves from $2 E$ level to $E$, a photon of wavelength $\lambda$ is emitted. The wavelength of photon produced during its transition from $\frac{4 E}{3}$ level to $E$ is

A. $\lambda / 3$
B. $3 \lambda / 4$
C. $4 \lambda / 3$

## Answer: D

## - Watch Video Solution

32. The maximu kinetic energy $\left(E_{k}\right)$ of the photoelectron varies with frequency (v) of the incident light as shown by the curve:

A. A
B. B
C. C
D. D

## Answer: C

## - Watch Video Solution

33. The following graphs illustrate:


A. Dalton's law
B. Charles's law
C. Boyle's law
D. Gay-Lussac's law

## - Watch Video Solution

34. In the following graph:

A. A' represents isochoric process
B. B' represents adiabatic process
C. C' represents isothermal process
D. D' represents isobaric process

## - Watch Video Solution

35. The variation of $\wedge_{m}$ of acetic acid with concentration is correctly represented by

B.

(c)

(d)

D. $\rightarrow \sqrt{C}$

## Answer: C

## - Watch Video Solution

36. Distribution of molecules with velocity is represented by the curve


Velocity corresponding to point $A$ is
A. $\sqrt{\frac{2 R T}{M}}$
B. $\sqrt{\frac{3 R T}{M}}$
C. $\sqrt{\frac{8 R T}{M}}$
D. none of these

## Answer: A

## - Watch Video Solution

37. $\mathrm{CH}_{3} \mathrm{COOH}$ is neutralized by NaOH . Conductometric titration curve will be of the type:
(a)

(b)

B.

(c)

C.

## Answer: A

## - View Text Solution

38. If for a given substance, melting point is $T_{B}$ and freezing point is $T_{A}$ then correct variation of entropy is by graph between entropy change and temperature is
A.

B.

(c) $\stackrel{\Delta S}{4} \underbrace{T_{A}}_{\rightarrow T}$
c.


## Answer: A

## D Watch Video Solution

39. Which of the following represents zero order reaction?
A.

(b)

B.


Answer: A

View Text Solution
40. This graph represents:

A. first order reaction
B. zero order reaction
C. second order reaction
D. third order reaction

## Answer: D

41. The efficiency of the reversible cycle shown in the given figure is

A. $33.33 \%$
B. $56 \%$
C. $66 \%$
D. $16.7 \%$

Answer: A
42. Which of the following curves represents the chemical adsorption ?
(a)

A.
(b)

Temp. $\longrightarrow$
B.
(c)

(d)

Temp. $\longrightarrow$
D.

## Answer: C

43. Energy of electron varies with atomic number as the following curve/line:

A.
B.
(b)

(c)

C.
(d)

D.
.

Answer: D

## D Watch Video Solution

44. A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life of one species is $\tau$ and that of the other is $5 \tau$. The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time.

Which of the following figure best represents the form of this plot?
(a), (b), (c), (d)
(a)

B.

C.
(c)
(d)


## D Watch Video Solution

45. In following isothermal graphs $\mathrm{A}, \mathrm{B}$ and C at temperatures $T_{1}, T_{2}$ and
$T_{3}$, the correct order of temperatures will be :

A. $T_{1}>T_{2}>T_{3}$
B. $T_{1}>T_{3}>T_{2}$
C. $T_{3}>T_{2}>T_{1}$
D. $T_{3}>T_{2}>T_{2}$

## Answer: D

## - View Text Solution

46. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H^{\ominus}=-22.4 k J$

The pressure inside the chamber is 100 atm and temperature at 300 K The preparation of ammonia by Haber's process is an exothermic reaction. If the preparation follows the following temperature-pressure relationship for its $\%$ yield. Then for temperature $T_{1}, T_{2}$ and $T_{3}$ the
correct option is:

A. $T_{3}>T_{2}>T_{1}$
B. $T_{1}>T_{2}>T_{3}$
C. $T_{1}=T_{2}=T_{3}$
D. none of these

Answer: B
47. From the given graph, predict the compound which would be most easily purified by recrystallisation from aqueous solution:

A. ZnS
B. $\mathrm{CaCO}_{3}$
C. $\mathrm{CaF}_{2}$
D. NaCl

## Answer: D

48. Which of the following curves represents the Henry's law ?
(a)

(b)

(c)

C.
(d)

D.

## Answer: B


49.

Number of nodes in above plot is :
A. 1
B. 2
C. 3
D. 4

## Answer: A

## - View Text Solution

50. Which of the following is not correct for the velocity of electron?
(a)

(b)

(c)

D.
(d)


## Answer: A

## - View Text Solution

51. A small amount of solution containing a radioactive nucleide $A^{x}$ was administrated into the blood of a patient. The activity of the nucliede id $2 \times 10^{3} \mathrm{dps}$. Its half life is 15 hours. After 5 hours a sample of the blood drawn out from the patient. It,s activity was 16 dpm per mL .

In the following graph, binding energy per nucleon is plotted against mass number (a). three elements $A_{1}, A_{2}$ and $A_{3}$ are located in the graph. Select the false statement about the graph.
is more stable b)element $A_{3}$ is less stable than $A_{2}$ c)element $A_{1}$ is more stable than both $A_{2}$ and $A_{3} \mathrm{~d}$ ) $A_{2}$ is metallic element
A. element $A_{2}$ is more stable than $A_{1}$
B. element $A_{3}$ is less stable than $A_{2}$
C. element $A_{1}$ is more stable than both $A_{2}$ and $A_{3}$
D. $A_{2}$ is metallic element

## Answer: C

52. Molar solubility of helium, nitrogen and oxygen are plotted against partial pressure of the gas at constant temperature.


Henry's law constant for these gases will lie in following sequences?
A. $\mathrm{O}_{2}>\mathrm{N}_{2}>\mathrm{He}$
B. $\mathrm{O}_{2}<\mathrm{N}_{2}<\mathrm{He}$
C. $O_{2}=N_{2}=H e$
D. $\mathrm{O}_{2}>\mathrm{N}_{2}<\mathrm{He}$

## Answer: B

53. Solubility of oxygen gas in water follows Henry's law. When the solubility is plotted against partial pressure at a definite temperature we get following plot.


Which of the following sequences of temperatures is correct ?
A. $T_{1}=T_{2}=T_{3}=T_{4}$
B. $T_{1}>T_{2}>T_{3}>T_{4}$
C. $T_{1}<T_{2}<T_{3}<T_{4}$
D. $T_{1}>T_{2}<T_{3}>T_{4}$


[^0]:    Experimental Phenomenon
    A.

    X-ray spectra Charge on the nucleus
    B.
    Experimental Phenomenon
    $\alpha$ - particle scattering Quantized electron orbit
    Experimental Phenomenon
    C.

    Emission spectra Qunatization of energy

