d'doubtnut

CHEMISTRY

BOOKS - G.R. BATHLA \& SONS CHEMISTRY (HINGLISH)

VOLUMETRIC ANALYSIS

Example 1

1. When hydrogen gas was passed over 8.08 g of heated metal oxide, it was completely reduced and 1.8 g of water was formed :
(a) What is weight of oxygen in the metal oxide ?
(b) What is the equivalent mass of the metal ?

- Watch Video Solution

Example 2

1. SO_{2} is oxidised to SO_{4}^{2-} in acid medium. Calculate equivalent mass of SO_{2}.

- Watch Video Solution

Example 3

1. What is the equivalent mass of :
(a) $\mathrm{H}_{3} \mathrm{PO}_{4}$ when neutralised to HPO_{4}^{2-}
(b) HClO_{4}
(c) NaIO_{3} when reduced to I^{-}
(d) NaIO_{3} when reduced to I_{2}
(e) $\mathrm{Al}(\mathrm{OH})_{3}$.

- Watch Video Solution

2.25 ml of $\frac{N}{10}$ caustic soda solution exactly neuralised 20 ml of an acid solution contaning 7.875 gm of acid per litre. What will be the equivalent mass of acid?

- Watch Video Solution

3.5.5 g of a mixutre of $\mathrm{FeSO}_{4.7} \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3.9} \mathrm{H}_{2} \mathrm{O}$ requires 5.4 " mL of " $0.1 \mathrm{NKMnO}_{4}$ solution for complete oxidation. Calculate the number of gram moles of hydrated ferric sulphate in the mixture.

- Watch Video Solution

Example 4

1. Calculate the number of millimoles and milliequivalents of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ions in acid medium when 100 mL of $0.01 \mathrm{MCr}_{2} \mathrm{O}_{7}^{2-}$ is reduced to Cr^{3+} by Fe^{2+}.
2. 150 mL of $N / 10 \mathrm{HCl}$ is required to react completely with 1.0 g of a sample of limestone. Calculate the percentage purity of calcium carbonate.

- Watch Video Solution

3. 0.5 g mixture of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and KMnO_{4} was treated with excess of $K I$ in acidic medium. Iodine liberated required $100 \mathrm{~cm}^{3}$ of 0.15 N sodium thiosulphate solution for titration. Find the per cent amount of each in the mixture.

- Watch Video Solution

Example 5

1. What volumes of 12 N HCl and 3 N HCl must be mixed to form one

litre 6 N HCl ?

- Watch Video Solution

2. $0.63 g$ of diabasic acid was dissolved in water. The volume of the solution was made 100 mL .20 mL of this acid solution required 10 mL of $\mathrm{N} / 5 \mathrm{NaOH}$ solution. The molecular mass of acid is:

- Watch Video Solution

3. Calculate the percentage of available chlorine in a given sample of bleaching powder from the following data :
3.55 g of bleaching powder when treated with acetic acid and excess of KI liberated iodine which required 60 mL of 0.5 N sodium thiosulphate solution.

Example 6

1. (a) What is the normality of a 96 per cent solution of $H_{2} S O_{4}$ of specific gravity 1.84 ?
(b) How many mL of 96 per cent sulphuric acid solution is necessary to prepare one litre $0.1 \mathrm{~N}_{2} \mathrm{SO}_{4}$?
(c) To what volume should 10 mL of 96 per cent $\mathrm{H}_{2} \mathrm{SO}_{4}$ be diluted to prepure 2 N solution?

- View Text Solution

2. 10.875 g of a mixture of NaCl and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was dissolved in water and the volume made up to $250 \mathrm{~mL}, 20 \mathrm{~mL}$ of this solution required 75.5 mL of $\frac{\mathrm{N}}{10} \mathrm{H}_{2} \mathrm{SO}_{4}$. Find out the percentage composition of the mixture.

- Watch Video Solution

3. 0.261 g of a sample of pyrolusite was heated with excess of HCl and the chlorine evolved was passed in a solution of KI. The liberated iodine required $90 \mathrm{~mL} \frac{\mathrm{~N}}{30} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Calculate the percentage of MnO_{2} in the sample.

- Watch Video Solution

Example 7

1. 250 mL of x M solution and 500 mL of y M solution of a solute A are mixed and diluted to 2 litre to produce a final concentration of 1.6 M .

- Watch Video Solution

2. A quantity of ammonium chloride was heated with 100 mL of 0.8 N NaOH solution till the reaction was complete. The excess of NaOH was
neutralised with 12.5 mL of $0.75 \mathrm{NH}_{2} \mathrm{SO}_{4}$. Calculate the quantity of ammonium chloride.

- Watch Video Solution

3. (i) What is the mass of sodium bromate and molarity of the solution necessary to prepare 85.4 mL of 0.672 N solution when the half reaction is ,
$\mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
(ii) What would be the mass as well as molartiy if the half cell reaction is,
$2 \mathrm{BrO}_{3}^{-}+12 \mathrm{H}^{+}+10 e^{-} \rightarrow \mathrm{Br}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

- View Text Solution

Example 8

1. 2.68×10^{-3} moles of solution containing anion A^{n+} require 1.61×10^{-3} moles of MnO_{4}^{-}for oxidation of A^{n+} to AO_{3}^{-}in acidic medium. What is the value of n ?

- Watch Video Solution

2. A solution containing 4.2 g of KOH and $\mathrm{Ca}(\mathrm{OH})_{2}$ is neutralised by an acid. If it consumes 0.1 g equivalents of the acid, calculate the composition of the sample.

- Watch Video Solution

3.50 mL of an aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ was treated with an excess of KI solution and dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. The liberated iodine required 20 mL 0.1 N $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution for complete interaction. Calculate the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in g / L.

Example 1

1. What is the strength in g per litre of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}, 12 \mathrm{~mL}$ of which neutralized 15 mL of $\mathrm{N} / 10 \mathrm{NaOH}$ solution?

- Watch Video Solution

2. 0.5 g of an oxalate was dissolved in water and the solution made to 100 mL . On titration 10 mL of this solution required 15 mL of $\frac{\mathrm{N}}{20} \mathrm{KMnO}_{4}$. Calculate the percentage of oxalate in the sample .

- Watch Video Solution

Example 2

1. 4.9 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is present in 100 mL of the solution. What is the molarity of the solution ? Calculate its normality also.

- Watch Video Solution

2. How many mL of a $0.05 \mathrm{M} \mathrm{KMnO}_{4}$ solution are required to oxidise 2.0 g of FeSO_{4} in a dilute solution (acidic) ?

- Watch Video Solution

Example 9

1. 1.03 g mixture of sodium carbonate and calcium carbone require 20 mL N HCl for complete neutralisation. Calculate the percentage of sodium carbonate and calcium carbonate in the given mixture.
2. 0.124 g of iron wire was dissolved in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ in oxygen free atmosphere and the resultant solution was titrated against 0.09672 N solution of KMnO_{4}. The titre value was 22.90 mL . Calculate the percentage purity of iron wire.

- Watch Video Solution

Example 10

1. 1.325 g of anhydrous sodium carbonate are dissolved in water and the solution made up to 250 mL . On titration 25 mL of this solution neutralise 20 mL of a solution of suphuric acid. How much water should be added to 450 mL of this acid solution to make it exactly $N / 12$?

- View Text Solution

2. A sample of hydrazine sulphate $\left(\mathrm{N}_{2} \mathrm{H}_{6} \mathrm{SO}_{4}\right)$ was dissolved in 100 mL water. 10 mL of this solution was reacted with excess of FeCl_{3} solution and warmed to complete the reaction. Ferrous ions formed were estimated and it required 20 mL of $\mathrm{M} / 50 \mathrm{KMnO}_{4}$ solutions. Estimate the amount of hudrazine sulphate in one litre of solution.

Given $4 \mathrm{Fe}^{3+}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{~N}_{2}+4 \mathrm{Fe}^{2+}+4 \mathrm{H}^{+}$
$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

Example 11

1. A sample of sodium carbonate contains sodium also. 1.5 g of the sample is dissolved in water and volume raised to 250 mL .25 mL of this solution requires 20 mL of $\frac{\mathrm{N}}{10} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution for neutralisation.

Calculate the percentage of sodium carbonate in the sample.
2. $0.1 \mathrm{MKMnO}_{4}$ is used for the following titration. What volume of the solution in mL will be required to react with 0.158 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$?

$$
\underset{\text { (not balanced) }}{\mathrm{S}_{2} \mathrm{O}_{3}^{2-}}+\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{SO}_{4}^{2-}+\mathrm{OH}^{-}
$$

- Watch Video Solution

Example 12

1. In a sample of sodium carbonate some sodium sulphate is also mixed.
1.25 g of this sample is dissolved and the volume made up to 250 mL .25 mL of this solution neutralises 20 mL of $\frac{N}{10}$ sulphuric acid. Calculate the percentage of sodium carbonate in the sample.

- Watch Video Solution

2. 0.804 g sample of iron ore was dissolved in acid. Iron was oxidised to +2 state and it requires $47.2 m L$ of $0.112 \mathrm{NKMnO}_{4}$ solution for titration, Calculate \% of Fe and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in ore.

- Watch Video Solution

Example 13

1. 1.725 g of a metal carbonate is mixed with 300 mL of $\frac{N}{10} H C l .10 \mathrm{~mL}$ of $\frac{N}{2}$ sodium hydroxide were required to neutralise excess of the acid. Calculate the equivalent mass of the metal carbonate.

- View Text Solution

2. An equal volume of reducing agent is titrated separately with $1 \mathrm{MKMnO}_{4}$ in acid, neutral and alkaline medium. The volumes of
KMnO_{4} required are $20 \mathrm{~mL}, 33.3 \mathrm{~mL}$ and 100 mL in acid, neutral and alkaline medium respectively. Find out oxidation state of $M n$ in each reaction product. Give balance equation. Find the volume of $1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ consumed if same volume of reductant is titrated in acid medium.

- Watch Video Solution

Example 14

1. 1.575 g of oxalic acid $(\mathrm{COOH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$ are dissolved in water and the volume made up to 250 mL . On titration 16.68 mL of this soltuion requires 25 mL of $\frac{N}{15} \mathrm{NaOH}$ solution for complete neutralisation. Calculate x .
2. 1.6 g of pyrolusite ore was treted with 50 mL of " 1.0 N oxalic acid and some sulphuric acid. The oxalic acid left undecomposed was raised to 250 mL in a flask. 25 mL of " this solution, when titrated with 0.1 N KMnO_{4} required 32 mmL of " this solution. Find out the percentage of pure MnO_{2} and also the percentage of available oxygen from MnO_{2}.

- Watch Video Solution

Example 15

1. 25 mL of a mixture of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ when itrated with $\mathrm{N} / 10$ HCl using phenolphthalein indicator required 25 mL HCl . The same volume of mixture when titrated with $\mathrm{N} / 10 \mathrm{HCl}$ using methyl orange indicator required 30 mL of HCl . Calculate the amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH in one litre of this mixture.
2. A mixture of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ weighing $2.02 g$ was dissolved in water and the solution made uptp one litre. $10 m L$ of this solution required 3.0 mL of 0.1 NNaOH solution for complete neutralization. In another experiment 10 mL of same solution in hot dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ medium required $4 m L$ of $0.1 \mathrm{NKMnO}_{4} \mathrm{KMnO}_{4}$ for compltete neutralization. Calculate the amount of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ in mixture.

(D) Watch Video Solution

Example 16

1. 25 mL of a mixture of $\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}$, when titrated with $\frac{N}{10} \mathrm{HCl}$ using phenolphthalein indicator required 25 mL HCl to deccolourise phenolphthalein. At this stage methyl orange was added and addition of acid was continued. The second end point was reached after further addition of 5 mL of the acid. Calculate the amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH in one litre of the solution.

- View Text Solution

2. A 3.0 g sample containing $\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and an inert impure substance is treated with excess of $K I$ solution in presence of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. The entire iron is converted to Fe^{2+} along with the liberation of iodine. The resulting solution is diluted to 100 mL . A 20 mL of dilute solution requires 11.0 mL of $0.5 M N a_{2} S_{2} O_{3}$ solution to reduce the iodine present. $A 50 \mathrm{~mL}$ of the diluted solution, after complete extraction of iodine requires 12.80 mL of $0.25 \mathrm{MKMnO}_{4}$ solution in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ medium for the oxidation of Fe^{2+}. Calculate the percentage of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in the original sample.

- Watch Video Solution

Example 17

1. A solution contains $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaHCO}_{3} .10 \mathrm{~mL}$ of the solution required 2.5 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ for neutralisation using phenolphthalein as indicator. Methyl orange is then added when a further 2.5 mL of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ was required. Calculate the amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO 3 in one litre of the solution.

- View Text Solution

2. Hydroxylamine reduces Fe^{3+} accoeding to the following reaction:
$2 \mathrm{NH}_{2} \mathrm{OH}+4 \mathrm{Fe}^{3+} \rightarrow \mathrm{H}_{2} \mathrm{O}+4 \mathrm{Fe}^{2+}+4 \mathrm{H}^{\oplus}+\mathrm{N}_{2} \mathrm{O}$
Fe^{2+} produced is is estimated by titration with KMnO_{4} solution A 10 mL sample of $\mathrm{NH}_{2} \mathrm{OH}$ is diluted to 1000 mL .50 mL of " this diluted sample is boiled with excess of Fe (III) solution. The resulting solution required 12 " mL of " $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ for complete oxidation. Determine the strength of $\mathrm{NH}_{2} \mathrm{OH}$.

- Watch Video Solution

Example 18

1. 0.5 g of fuming sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3}\right)$, called oleum, is diluted with water. Thus solution completely neutralised 26.7 " mL of " 0.4 M NaOH . Find the percentage of free SO_{3} in the sample solution.

- Watch Video Solution

2. 0.56 g of lime stone was treated with oxalic acid to give $\mathrm{CaC}_{2} \mathrm{O}_{4}$. The precipitate decolorized 45 ml of $0.2 \mathrm{NKMnO}_{4}$ in acid medium. Calculate \% of CaO in lime stone.

- Watch Video Solution

Example 19

1. 0.7875 g of crystalline barium hydroxide is dissolved in water .For the neutralization of this solution 20 mL of $\mathrm{N} / 4 \mathrm{HNO}_{3}$ is required. How many moles of water of crystallization are present in one mole of this base ? (Given : Atomic mass $\mathrm{Ba}=137, \mathrm{O}=16, \mathrm{~N}=14, \mathrm{H}=1$)

- Watch Video Solution

2. A solution of $0.2 g$ of a compound containing Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ ions on titration with $0.02 \mathrm{MKMnO}_{4}$ in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ consumes 22.6 mL oxidant. The resulting solution is neutralized by $\mathrm{Na}_{2} \mathrm{CO}_{3}$, acidified with dilute $\mathrm{CH}_{3} \mathrm{COOH}$ and titrated with excess of KI . The liberated $\quad I_{2}$ required $11.3 m L o f 0.05 M N a_{2} S_{2} O_{3}$ for complete reduction. Find out mole ratio of Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2+}$ in compound.

- Watch Video Solution

1. A piece of Al wieghing 2.7 g is titrated with 75.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (specific gravity $1.8 \mathrm{~mL} L^{-1}$ and $24.7 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight). After the metal is completely dissolved, the solution is diluted to 400 mL . Calculate the molarity of free $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

- Watch Video Solution

2.12. g of an impure sample of arsenious oxide was dissolved in water containing 7.5 g of sodium bicarbonate and the resulting solution was diluted to 250 mL .25 mL of this solution was completely oxidised by $22.4 m L$ of a solution of iodine. $25 m L$ of this iodine solution reacted with same volume of a solution containing $24.8 g$ of sodium thiosulphate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}\right)$ in one litre. Calculate teh percentage of arsenious oxide in the sample (Atomic mass of $A s=74$)

(D) Watch Video Solution

1. 0.50 g of a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ required 30 mL of 0.25 NHCl solution for neutralization. What is \% composition of mixure?

- Watch Video Solution

2. Hydrogen peroxide solution (20 mL) reacts quantitatively with a solution of $\mathrm{KMnO}_{4}(20 \mathrm{~mL})$ acidified with dilute of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The same volume of the KMnO_{4} solution is just decolourised by 10 mL of MnSO_{4} in neutral medium simultaneously forming a dark brown precipitate of hydrated MnO_{2}. The brown precipitate is dissolved in $10 m L$ of $0.2 M$ sodium oxalate under boiling condition in the presence of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. Write the balanced equations involved in the reactions and calculate the molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$.

- Watch Video Solution

1. 5 mL of $8 \mathrm{NHNO}_{3}, 4.8 \mathrm{~mL}$ of 5 NHCl and a certain volume of $17 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are mixed together and made upto 2 litre. 30 mL of this acid mixture exactly neutralizes 42.9 mL of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution containing $1 \mathrm{gNa} \mathrm{C}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{Oin} 100 \mathrm{~mL}$ of water. Calculate the amount of sulphate ions in g present in solution.

- Watch Video Solution

2. A sample of $\mathrm{MnSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ is strongly heated in air. The residue $\left(\mathrm{Mn}_{3} \mathrm{O}_{4}\right)$ left was dissolved in 100 mL of $\left.0.1 \mathrm{NFeSO} \mathrm{S}_{94}\right)$ containing dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$. This solution was completely reacted with 50 mL of KMnO_{4} solution. $25 m \mathrm{~L}$ of this KMnO_{4} solution was completely reduced by 30 mL of $0.1 \mathrm{NFeSO}_{4}$ solution. Calculate the amount of $\mathrm{MnSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in sample.

- Watch Video Solution

1. 22.6 g of an ammonium salt were treated with 100 mL of normal NaOH solution and boiled till no more of ammonia gas was given off. The excess of NaOH solution left over required 60 mL normal sulphuric acid. Calculate the percentage of ammonia in the salt.

- Watch Video Solution

2. 50 mL sample of ozonised oxygen at NTP was passed through a solution of potassium iodide. The liberated iodine required 15 mL of $0.08 N N a_{2} S_{2} O_{3}$ solution for complete titration. Calculate the volume of ozone at NTP in the given sample.

- View Text Solution

1. A small amount of CaCO_{3} completely neutralises 525 mL of 0.1 N HCl and no acid is left in the end. After converting all calcium chlorine to CaSO_{4}, how much plaster of Paris can be obtained?

- Watch Video Solution

2. 10 mL of a potassium dichromate solution liberates iodine from potassium iodide solution. When the iodine was titrated with hypo solution $(N / 20)$, the titre value was 15 mL . Find the concentration of dichromate solution in g per litre.

- Watch Video Solution

Example 25

1. 25 mL of $0.107 \mathrm{MH}_{3} P O_{4}$ was titrated with 0.115 M solution of

NaOH to the end point identified by indicator bromocresol green.This required $23.1 m L$. The titration was repeated using phenolphthalein as
indicator. This time 25 mL of $0.107 \mathrm{MH}_{3} P O_{4}$ reuired 46.2 mL of the 0.115 MNaOH . What is the coefficient of n in this equation for each reaction?
$\mathrm{H}_{3} \mathrm{PO}_{4}+n \mathrm{OH}^{-} \rightarrow n \mathrm{H}_{2} \mathrm{O}+\left[\mathrm{H}_{3-n} \mathrm{PO}_{4}\right]^{n-}$

- Watch Video Solution

2. 1.5 g of sample of impure potassium dichromate was dissolved in water and made up to 500 mL solution. 25 mL of this solution required iodometrically 24 mL of a sodium thiosulphate solution. 26 mL of this sodium thisulphate solution required 25 mL of $N / 20$ solution of pure potassium dichromate. Find the percentage purity of impure sample of potassium dichromate.

- View Text Solution

Example 26

1. 11.2 g carbon reacts completely with 19.63 litre O_{2} at NTP. The cooled gases are pased through 2 litre of 2.5 N NaOH solution. Calculate concentration of remaining NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution. (CO does not react with NaOH under these conditions.)

- View Text Solution

2.5 g of a sample of brass were dissolved in 1 litre dil. $\mathrm{H}_{2} \mathrm{SO}_{4} .20 \mathrm{~mL}$ of this solution were mixed with KI and liberated iodine required 20 mL of 0.0327 N hypo solution for titration. Calculate the amount of copper in the alloy.

- View Text Solution

Example 27

1. One litre sample of water contains $0.9 \mathrm{mg} \mathrm{CaCl} l_{2}$ and 0.9 mg of MgCl_{2}. Find the total hardness in terms of parts permillion of CaCO_{3}.

- Watch Video Solution

2. An excess KI solution is mixed in a solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and liberated iodine required 72 mL of $0.05 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ for complete reaction. How many grams of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ were present in the solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$? The reaction occurs as :
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{I}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}$

- View Text Solution

Illustrations

1. A metal M of equivalent mass E forms an oxide of molecular formula
$M_{x} O_{y}$ The atomic mass of the metal is given by the correct equation.
A. $\frac{2 E n}{m}$
B. 2 mEn
C. $\frac{E}{n}$
D. $\frac{M E}{2 n}$

Answer: A

D Watch Video Solution

2. In the reaction,
$\mathrm{Fe} \mathrm{S}_{2}+\mathrm{KMnO}_{4}+\mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{SO}_{2}+\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}$
the equivalent mass of $F e S_{2}$ would be equal to :
A. molar mass
B. $\frac{\text { molar mass }}{10}$
C. $\frac{\text { molar mass }}{11}$
D. $\frac{\text { molar mass }}{13}$

Answer: C

- Watch Video Solution

3. The equivalent mass of $\mathrm{H}_{3} \mathrm{BO}_{3}$ in its reaction with NaOH to form
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ is equal to :
A. molar mass / 4
B. molar mass / 3
C. molar mass / 2
D. molar mass

Answer: D

- Watch Video Solution

4. For the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, if molecular masses of $N H_{3}$ and N_{2} and M_{1} and M_{2}, their equivalent masses are
E_{1} and E_{2}, then $\left(E_{1}-E_{2}\right)$ is:
A. $\frac{2 M_{1}-M_{2}}{6}$
B. $M_{1}-M_{2}$
C. $3 M_{1}-M_{2}$
D. $M_{1}-3 M_{2}$

Answer: A

- Watch Video Solution

5. X gm of metal gave Y gm of its oxide, so equivalent mass of metal is :
A. $\left(\frac{X}{Y-X}\right) \times 8$
B. $\left(\frac{Y-X}{X}\right) \times 8$
c. $\left(\frac{Y+X}{X}\right) \times 8$
D. $\frac{X}{Y} \times 8$

- Watch Video Solution

6. KMnO_{4} (m.w. $=158$) oxidises oxalic acid in acid medium to CO_{2} and water as follows :
$5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
What is the equivalent weigth of KMnO_{4} ?
A. 158
B. 31.6
C. 39.5
D. 79

Answer: B

Watch Video Solution

7. The formula mass of Mohr's salt is 392 . The iron present in it is oxidised by KMnO_{4} in acid medium. The equivalent mass of Mohr's salt is :
A. 392
B. 31.6
C. 278
D. 156

Answer: A

- Watch Video Solution

8. In a redox reaction, dichromate ion $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)$ is reduced to Cr^{3+} ion, the equivalent mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in this reaction is :
A. $\frac{\text { molecular mass }}{3}$
B. $\frac{\text { molecular mass }}{6}$
c. $\frac{\text { molecular mass }}{1}$
D. $\frac{\text { molecular mass }}{2}$

Answer: B

- Watch Video Solution

9. How many grams of NaHCO_{3} are required to neutralise 1 mL of 0.0902 N vinegar ?
A. $8.4 \times 10^{-3} g$
B. $1.5 \times 10^{-3} g$
C. $0.758 \times 10^{-3} g$
D. $1.07 \times 10^{-3} g$

Answer: C

10. 0.7 g of $\mathrm{Na}_{2} \mathrm{CO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ were dissolved in water and the volume was made to $100 \mathrm{~mL}, 20 \mathrm{~mL}$ of this solution required $19.8 m L$ of $N / 10 \mathrm{HCl}$ for complete neutralization. The value of x is:
A. 7
B. 3
C. 2
D. 5

Answer: C

- Watch Video Solution

11. Calculate the equivalent mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ when it is titrated against HCl in presence of phenolphthalein.
A. 106
B. 53
C. 26.5
D. 212

Answer: A

Watch Video Solution

12. 1 mol $\mathrm{H}_{2} \mathrm{SO}_{4}$ will exactly neutralise :
A. 2 mol of ammonia
B. 1 mol of $\mathrm{Ba}(\mathrm{OH})_{2}$
C. 0.5 mol of $\mathrm{Ba}(\mathrm{OH})_{2}$
D. 2 mol of KOH

Answer: A::B::D

13. Which of the following gives equivalent mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ when titrated against HCl in the presence of methyl orange?
A. 5.3
B. 53
C. 10.6
D. 106

Answer: B

- Watch Video Solution

14. How many moles of MnO_{4}^{-}ions will react with 1 mole of ferrous oxalate in acid medium ?
A. $1 / 5$
B. $2 / 5$
C. $3 / 5$
D. $5 / 3$

Answer: C

15. The molecular mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is 294 amu . It acts as oxidising agent in a redox titration. Its equivalent mass in acid medium will be :
A. 294
B. 49
C. 147
D. 74

Answer: B

16. In acid medium, both KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ act as oxidising agents. Which among the following is correct about the oxidising behaviou?
A. $\mathrm{KMnO}_{4}>\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. $\mathrm{KMnO}_{4}<\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
C. $\mathrm{KMnO}_{4}=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
D. Cannot be predicted

Answer: A

- View Text Solution

17. KMnO_{4} reacts with oxalic acid according to the equation, $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ Here, 20 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ is equivalent to :
A. 120 mL of $0.25 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
B. 150 mL of0. $1 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. 50 mL of0.1 $\mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. 50 mL of0.2 $\mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Answer: C

- View Text Solution

18. A solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ is titrated against a solution of KMnO_{4}.

The reaction is :
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
If it requires 46.9 mL of $0.145 \mathrm{M} \mathrm{KMnO}_{4}$ to oxidise 20 g of $\mathrm{H}_{2} \mathrm{O}_{2}$, the mass percentage of $\mathrm{H}_{2} \mathrm{O}_{2}$ in this solution is :
A. 2.9
B. 29
C. 21
D. 4.9

- View Text Solution

19. In an oxidation-reduction, MnO_{4}^{-}ion is converted to Mn^{2+}, what is the number of equivalents of KMnO_{4} (mol. Wt.=158) present in 250 mL of $0.04 \mathrm{M} \mathrm{KMnO}_{4}$ solution ?
A. 0.02
B. 0.05
C. 0.04
D. 0.07

Answer: B

- View Text Solution

20. The strenth of 10 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is:
A. 10
B. 68
C. 60.70
D. 30.36

Answer: D

- View Text Solution

Practice Problems

1. Calculate the equivalent mass of underlines species:
2. $\mathrm{Na}_{2} \mathrm{SO}_{3}+\underline{\mathrm{Na}_{2} \mathrm{CrO}_{4}} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Cr}(\mathrm{OH})_{3}$
(ii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+\underline{\mathrm{KMnO}_{4}} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{MnO}_{2}$
(iii) $\underline{2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
(iv) $\mathrm{As}_{2} \mathrm{~S}_{3}+10 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow 10 \mathrm{NO}_{2}+2 \mathrm{AsO}_{4}^{3-}+3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
(v) $\underline{\mathrm{H}_{3} \mathrm{PO}_{3}} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{PH}_{3}$

$$
\underline{5 \mathrm{SO}_{2}}+2 \mathrm{KMnO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+2 \mathrm{H}_{2}-(2) \mathrm{SO}_{4}
$$

- View Text Solution

2. 12 mL of 0.2 N sulphuric acid is neutralised with 15 mL of sodium hydroxide solution on titration. Calculate the normality of sodium hydroxide solution.

- View Text Solution

3. What will be the volume of $N / 10$ solution of oxalic acid obtained by dissolving 63 g of oxalic acid ?

- View Text Solution

4. If 1.26 g of oxalic acid is dissolved in 250 mL of solution, find its normality. The equivalent mass of oxalic acid is 63 .
5. (a) 50 mL of $0.2 \mathrm{NKMnO}_{4}$ is required for complete oxidation of 0.45 g of anhydrous oxalic acid. Calculate the normality of oxalic acid solution.
(b) In the titration of Fe^{2+} ions with KMnO_{4} in acid medium, why is dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ used and not dilute HCl ?

- View Text Solution

6. 30 mL of sodium carbonate solution is mixed with 20 mL of 0.8 N sulphuric acid. The resultant solution needed 20 mL of 0.7 N hydrochloric acid solution for complete neutralisation. Determine the strength of the sodium carbonate in gram per litre. (Take sodium carbonate to be anhydrous.)
7. 0.25 g of an oxalate salt was dissolved in 100 mL of water. 10 mL of this solution required 8 mL of $\mathrm{N} / 20 \mathrm{KMnO}_{4}$ for its oxidation. Calculate the percentage of oxalate in the salt.

- View Text Solution

8. 1.13 g of an ammonium sulphate were treated with 50 mL of normal NaOH solution and boiled till no more ammonia was given off. The excess of the alkali solution left over was titrated with normal $\mathrm{H}_{2} \mathrm{SO}_{4}$. The volume required was 30 mL . Find out the percentage of NH_{3} in the salt.

- View Text Solution

9. The normality of the mixture of HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is $\mathrm{N} / 5$.
0.287 g of AgCl is obtained when 20 mL of this solution is treated with excess of AgNO_{3}. Calculate the percentage of both the acids in the mixture.
10. 1.17 g of an impure sample of oxalic acid was dissolved and made up to 200 mL with water. 10 mL of this solution in acid medium required 8.5 mL of a solution of potassium permanganate containing 3.16 g per litre of oxidation. Calculate the percentage purity of oxalic acid.

- View Text Solution

11. What amount of silver chloride will be obtained when $20 \mathrm{~mL} N / 20$ HCl is made to react with excess of AgNO_{3} ?

- View Text Solution

12. 1.0 g carbonate of a metal was dissolved in $50 \mathrm{~mL} N / 20 \mathrm{HCl}$ solution. The resulting liquid required 25 mL of $N / 5 \mathrm{NaOH}$ solution to
neutralise it completely. Calculate the equivalent mass of the metal carbonate.

- View Text Solution

13. 0.35 g of a metal was dissolved in 50 mL N -acid. The whole solution then required 20.85 mL of normal alkaline solution to neutralise the excess of the acid. Calculate the equivalent mass of the metal.

- View Text Solution

14. 2.650 g of anhydrous sodium carbonate are dissolved in water and the solution made up to 500 mL . On titration 50 mL of this solution neutralises 50 mL of a solution of sulphuric acid. How much water should be added to 450 mL of this acid as to make it exactly $N / 12$?
15. Two acids A and B titrated separately each time with 25 mL of N $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and require 10 mL and 40 mL respectively for complete neutralisation. What volume of A and B would you mix to produce one litre of normal acid solution ?

- View Text Solution

16. 1.64 g of a mixture of calcium carbonate and magnesium carbonate were dissolved in 50 mL of 0.8 N hydrochloric acid. The excess of the acid required $16 m L N / 4$ sodium hydroxide solution for neutralisation.

Find out the percentage composition of the mixture of two carbonates.

- View Text Solution

17. 30 mL of $N / 10 \mathrm{HCl}$ are required to neutralise 50 mL of a sodium carbonate solution. How many mL of water must be added to 30 mL of
this solution so that the solution obtained may have a concentration equal to $N / 50$?

- View Text Solution

18. 2.65 g of diacidic base was dissolved in water and made up to 500 mL .20 of this solution completely neutralised 12 mL of $N / 6 \mathrm{HCl}$. Find out the equivalent mass and molecular mass of the base.

- View Text Solution

19. In a sample of sodium carbonate, some sodium sulphate is mixed.
2.50 g of this sample is dissolved and the volume made up to 500 mL . 25 mL of this solution neutralises 20 mL of $N / 10$ in the sample.

- View Text Solution

20. Some amount of $\mathrm{NH}_{4} \mathrm{Cl}$ was boiled with 50 mL of 0.75 N NaOH solution till the reaction was complete. After the completion of the reaction, 10 mL of $0.75 \mathrm{NH}_{2} \mathrm{SO}_{4}$ were required for the neutralisation of the remaining NaOH . Calculate the amount of $\mathrm{NH}_{4} \mathrm{Cl}$ taken.

- View Text Solution

21. 25 mL of a mixed solution of sodium carbonate and sodium bicarbonate required 10 mL of $N / 20 \mathrm{HCl}$ when titrated in the presence of phenolphthalein but 25 mL of the same when titrated separately in presence of methyl orange required 25 mL of $N / 10 \mathrm{HCl}$. Calculate the amount of anhydrous sodium carbonate and bicarbonate in grams per litre of the solution.

- View Text Solution

22.4 g of a mixture of NaCl and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were dissolved in water and volume made up to 250 mL .15 mL of this solution required 50 mL of $N / 10 \mathrm{HCl}$ for complete neutralisation. Calculate the percentage composition of the original mixture.

- View Text Solution

23. 40 mL of a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH when titrated against
$N / 10 \mathrm{HCl}$, the end point with phenolphthalein was reached at 25 mL of HCl and at this stage methyl orange was added, the quantity of acid further required for second end point was 5 mL . Calculate the amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH in g / L of the solution.

- View Text Solution

24. Find out the percentage of oxalate in a given sample of an oxalate salt of which when 0.3 g were dissolved in 100 mL of water required 90
mL of $\mathrm{N} / 20 \mathrm{KMnO}_{4}$ solution for complete oxidation.

- View Text Solution

25. A 1.0 g sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution containing 'x' per cent by weight requires x mL of KMnO_{4} solution for complete oxidation under acidic conditions. Calculate the normality of the KMnO_{4} solution.

- View Text Solution

26. 25 g of a sample of ferrous sulphate was dissolved in water containing dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the volume made up to one litre. 25 mL of this solution required 20 mL of $\mathrm{N} / 10 \mathrm{KMnO}_{4}$ solution for complete oxidation. Calculate the percentage of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in the sample.

- View Text Solution

27. A sample of KCl is contaminated with NaCl .4 .176 g of the sample is dissolved in distilled water and the solution is made to 500 mL .25 mL of the above solution required 27.50 mL of a solution of silver nitrate (normality factor 0.115) to react completely with it. Calculate the percentage contamination of the sample.

View Text Solution

28. The saponification number of fat or oil is defined as the number of mg of KOH required to saponify 1 g oil or fat. A sample of peanut oil weighing 1.5763 g is added to 25 mL of 0.421 M KOH . After saponification is complete, 8.46 mL of $0.2732 \mathrm{MK}_{2} \mathrm{SO}_{4}$ is needed to neutralise excess of KOH . What is the saponification number of peanut oil ?

- View Text Solution

29. 500 mL of $2 \mathrm{M} \mathrm{HCl}, 100 \mathrm{~mL}$ of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and one gram equivalent of monoacidic alkali are mixed together. 30 mL of this solution required 20 mL of $\mathrm{Na}_{2} \mathrm{CO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ solution obtained by dissolving 143 g $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ in one litre solution. Calculate the water of crystallisation of $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{xH}_{2} \mathrm{O}$.

- View Text Solution

30. 1 g of the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$ was passed through a cation exchanger to produce HCl . The acid liberated was diluted to 1 litre. What is the normality of this acid solution?

- View Text Solution

31. 5.0 g of bleaching powder was suspended in water and volume made up to half a litre. 20 mL of this suspension when acidified with acetic acid and treated with excess of KI solution liberated iodine which
required 20 mL of a decinormal hypo solution for titration. Calculate percentage of available chlorine in bleaching powder.

- View Text Solution

32. To a solution of excess of KI in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. 25 mL of an unknown solution of KMnO_{4} were added. The liberated iodine was exactly reduced by 42.5 mL of $\mathrm{N} / 10 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. Calculate the concentration of KMnO_{4} solution.

- View Text Solution

33. In 20 mL of a solution of $\mathrm{HCl}, 3 \mathrm{~g}$ of CaCO_{3} were dissolved, 0.5 g of CaCO_{3} being left undissolved. Find out the strength of this solution in terms of (i) normality and (ii) g / L. Find the volume of this acid which would be required to make 1 litre of normal solution of this acid.

- View Text Solution

34. 1.0 litre of a solution contains 5.3 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 8 g of NaOH .20 mL of this solution are taken and titrated against $N / 10 \mathrm{HCl}$ using separately (a) methyl orange as an indicator and (b) phenolphthalein as an indicator. What will be the titre values in these two cases ?

- View Text Solution

35. To 20 mL of a copper solution after necessary treatment were added excess of KI and the liberated iodine required 11.2 mL decinormal solution of hypo. Express the strength of the original solution in grams of copper per litre of the solution.

- View Text Solution

36. 0.28 g of a commercial sample of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ was dissolved in water. Excess of KI was added to it along with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. lodine liberated was then titrated against sodium thiosulphate solution containing
24.82 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ per litre. The thiosulphate solution required was 50 mL . Find the percentage purity of the sample of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

- View Text Solution

37. A mixture containing KCl and NaCl was dissolved and total halide was determined by titration with silver nitrate. A sample weighing 0.3250 g required 51 mL of 0.1 N solution. Calculate the percentage of each salt in the sample.

- View Text Solution

38. 1.355 g of pyrolusite sample are added to 50 mL of 1 N oxalic acid solution containing sulphuric acid. After the reaction is completed, the contents are transferred to a measuring flask and the volume made up to 200 mL .20 mL of this solution is titrated against KMnO_{4} solution
whose strength is $2 g / L$ and 31.6 mL of KMnO_{4} solution are required.
Calculate the percentage purity in the given sample of pyrolusite.

- View Text Solution

39. 0.5 g of bleaching powder was suspended in water an excess of KI added. On acidifying with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ iodine was liberated which required 50 mL of $N / 10$ hypo solution. Calculate the percentage of available chlorine in bleaching powder.

- View Text Solution

40. Calculate the number of oxalic acid molecules in 100 mL of 0.02 N oxalic acid solution.
41. 1.26 g of a dibasic acid were dissovled in water and made up to 200 mL .20 mL of this solution were completely neutralised by 10 mL of $N / 5$ caustic soda solution. Calculate the equivalent mass and molecular mass of the acid.

- View Text Solution

42. 3.0 g of a sample of impure ammonium chloride were boiled with excess of caustic soda solution. Ammonia gas so evolved was passed into 120 mL of $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$. 28 mL of $\mathrm{N} / 2 \mathrm{NaOH}$ were required to neutralise residual acid. Calculate the percentage of purity of the given sample of ammonium chloride.

- View Text Solution

43. 2.20 g of an ammonium salt were boiled with 75 mL of NaOH till the emission of ammonia gas ceased. The excess of unused NaOH solution
required 70 mL of $N / 2$ sulphuric acid for neutralisation. Calculate the percentage of ammonia in the salt.

- View Text Solution

44. 3.45 g of a metallic carbonate were mixed with 240 mL of $N / 4 \mathrm{HCl}$. The excess acid was neutralised by 50 mL of $N / 5 \mathrm{KOH}$ solution. Calculate the equivalent mass of the metal.

- View Text Solution

45. (a) 2 g of metal carbonate were dissolved in 50 mL of N HCl .100 mL of 0.1 N NaOH were required to neutralise the resultant solution. Calculate the equivalent mass of the metal carbonate.
(b) How much water should be added to 75 mL of 3 N HCl ot make it a normal solution?
46. Upon mixing 45.0 mL of 0.25 M lead nitrate solution with 25 mL of 0.1 M chromic sulphate solution, precipitation of lead sulphate takes place. How many moles of lead sulphate are formed? Also calculate the molar concentrations of the species left behind in the final solution. Assume that lead sulphate is completely insoluble.

- View Text Solution

47. In an ore the only oxidisable material is Sn^{2+}. This ore is titrated with a dichromate solution containing $2.5 g K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in 0.50 litre. A 0.40 g of sample of the ore required $10.0 \mathrm{~cm}^{3}$ of the titrant to reach equivalent point. Calculate the percentage of tin in ore. $(\mathrm{K}=39.1, \mathrm{Cr}=52$, $\mathrm{Sn}=118.7$)

- View Text Solution

48. 2.26 g of impure ammonium chloride were boiled with 100 mL of NaOH solution till no more ammonia was given off. The excess of NaOH solution left over required $30 \mathrm{~mL} 2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ for neutralisation. Calculate the percentage purity of the salt. ($\mathrm{H}=1, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Na}=23, \mathrm{~S}=32, \mathrm{Cl}=35.5$)

- View Text Solution

49. Metallic tin in the presence of HCl is oxidised by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution to stannic chloride. What volume of decinormal dichromate solution would be reduced by 1 g of Sn ?

- View Text Solution

50. A 0.5 g sample containing MnO_{2} is treated with HCl liberating Cl_{2}. The Cl_{2} is passed into a solution of KI and $30.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{Na} \mathrm{N}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
are required to tirate the liberated iodine. Calculate the percentage of MnO_{2} in the sample.

- View Text Solution

51. 3.2 g of a mixture of calcium carbonate and sodium chloride was dissolved in 100 mL of 1.02 N HCl . After the reaction the solution was filtered and after separating the precipitate the volume was raised to 200 mL .20 mL of this solution required $25 \mathrm{mLN} / 5$ caustic soda solution for neutralisation. Find out the percentage of calcium carbonate in the mixture.

- View Text Solution

52.4 g of a mixture of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were dissolved in pure and volume made up to 250 mL .20 mL of this solution required 25 mL of $\mathrm{N} / 5 \mathrm{H}_{2} \mathrm{SO}_{4}$ for complete neutralisation. Calculate the percentage composition of the mixture.
53. A 1.2 g mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ was dissolved in water to form $100 \mathrm{~cm}^{3}$ of a solution. $20 \mathrm{~cm}^{3}$ of this solution required $40 \mathrm{~cm}^{3}$ of 0.1 N HCl for neutralisation. Calculate the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in the mixture.

- View Text Solution

54. One litre of a mixture of O_{2} and O_{3} at NTP was allowed to react with an excess of acidified solution of KI . The iodine liberated required 40 mL of $M / 10$ sodium thiosulphate solution for titration. What is the weight per cent of ozone in the decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photon can decompose required for the complete decomposition of ozone in the original mixture?
55. 20 mL of a solution containing 0.2 g of impure sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ reacts with 0.316 g of KMnO_{4} (acidic). Calculate :
(a) Purity of $\mathrm{H}_{2} \mathrm{O}_{2}$
(b) Volume of dry O_{2} evolved at $27^{\circ} \mathrm{C}$ and 750 mm pressure.

- View Text Solution

56. Five gram of copper alloy was dissolved in one litre of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. 20 mL of this solution was titrated iodometrically and it required 20 mL of a hypo solution. 20 mL of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ which contained 2.4 g per litre, in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and excess of KI , required 30 mL of the same hypo solution. Calculate the \% purity of copper in the alloy.

- View Text Solution

57. How many millilitres of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to dissolve 0.5 g of
58. An aqueous solution containing $0.10 \mathrm{~g}_{\mathrm{KIO}}^{3}$ (formula weight $=214.0$) was treated with an excess of KI solution. The solution was acidified with HCl . The liberated iodine consumed 45.0 mL of thiosulphate solution to decolourise the blue starch-iodine complex.

Calculate the molarity of the sodium thiosulphate solution.

- View Text Solution

59. Grastric juice contains 3 g of HCl per litre. If a person produces 2.5
litre of gastric juice per day, how many antacid tablets each containing 400 mL of $\mathrm{Al}(\mathrm{OH})_{3}$ are needed to neutralise all the HCl produced in one day?
60. A mixture of KOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution required 15 mL of $\mathrm{N} / 20$ HCl using phenolphthalein as indicator. The same amount of alkali mixture when titrated using methyl orange as indicator required 25 mL of same acid. Calculate amount of KOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in solution.

- View Text Solution

61. $1000 \mathrm{mLO}_{2}$ at NTP was passed through Siemen's ozonizer so that the volume is reduced to 888 mL at same condition. Ozonized oxygen is passed through KI solution. Liberated I_{2} was titrated with 0.05 N hypo. Calculate volume of hypo used.

- View Text Solution

62. 30 mL of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ liberated iodine from KI solution when the iodine was titrated with hypo solution $(N / 20)$, the titre value was 45
mL . Find the concentration of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in g per litre.

- View Text Solution

63. Excess of KI and dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ were mixed in $50 \mathrm{mLH}_{2} \mathrm{O}_{2}$. The liberated I_{2} required 20 mL of $0.1 N N a_{2} S_{2} O_{3}$. Find out the strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ in g per litre.

- View Text Solution

64. $25 \mathrm{mLH}_{2} \mathrm{O}_{2}$ were added to excess of acidified solution of KI . The iodine so liberated required 20 mL of 0.1 N sodium thisulphate for titration. Calculate the strength in terms of normality percentage and volume.
65. $C l_{2}$ gas can be produced in the lab by the reaction, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{CrCl} l_{3}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cl}_{2}$ If a 6.13 g sample that is $96 \% \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is allowed to react with 320 mL of HCl solution density $1.15 \mathrm{~g} / \mathrm{mL}$ and containing 30% by mass of HCl , what mass of $C l_{2}$ is generated?

- View Text Solution

66. What is the weight in gram of available O_{2} per litre from a solution of $\mathrm{H}_{2} \mathrm{O}_{2}, 10 \mathrm{~mL}$ of which when titrated with $\mathrm{N} / 20 \mathrm{KMnO}_{4}$ solution required 25 mL for the reaction ?
$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{KHSO}_{4}+2 \mathrm{MnSO}_{4}$

- View Text Solution

67. A quantity of KMnO_{4} was boiled with HCl and the gas evolved was led into a solution of KI . When the reaction was complete, the I_{2}
liberated was titrated with titrated with a solution of hypo containing 124 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ per litre. It was found that exactly 60 mL were required to decolourise the solution of I_{2}. What weight of KMnO_{4} was used?

- View Text Solution

68. 0.5 g of a sample of bleaching powder was suspended in water and excess KI is added. On acidifying with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$. I_{2} was liberated which required 50 mL of $\mathrm{N} / 10$ hypo $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}\right)$. Calculate the percentage of available $C l_{2}$ in bleaching powder.

- View Text Solution

69. 1.2 g of a sample of CaOCl_{2} were suspended in water made up to 100 mL .25 mL of this solution was treated with KI and the I_{2} liberated corresponded to 10 mL of $\mathrm{N} / 25$ hypo. Calculate the percentage of $C l_{2}$ available in CaOCl_{2}.
70.1 .6 g of pyrolusite was treated with 60 mL of normal oxalic acid and some $\mathrm{H}_{2} \mathrm{SO}_{4}$. The oxalic acid left undecomposed was made up to 250 $\mathrm{mL}, 25 \mathrm{~mL}$ of this solution required 32 mL of 0.1 N potassium permangante $\left(\mathrm{KMnO}_{4}\right)$. Calcualte the percentage of pure MnO_{2} in pyrolusite.

- View Text Solution

71. A smaple of pyrolusite weighing 0.5 g is distilled with conc. HCl . The evolved Cl_{2} when passed through a solution of KI liberates sufficient I_{2} to react with 125 mL of $\mathrm{N} / 12.5$ hypo $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}\right)$. Calculate the percentage of MnO_{2} in pyrolusite.

- View Text Solution

72. The iodide content of a solution was determined by titration with sodium thiosulphate crystalline containing 11.2 \% impurity. Calculate the normality of iodide ion solution in 250 mL of the iodide solution required 20 mL hypo (42 g hypo is dissolved in 1 litre).

- View Text Solution

73. The formula weight of an acid is 82 . In a titration, $100 \mathrm{~cm}^{3}$ of a solution of this acid containing 39.0 g of the acid per litre were completely neutralised by $95.0 \mathrm{~cm}^{3}$ of aqueous NaOH containing 40.0 g of NaOH per litre. What is the basicity of the acid?

- View Text Solution

74.20 mL of a solution containing ferrous sulphate and ferric sulphate acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$ is reduced by metallic zinc. The solution required 27.4 mL of 0.1 N solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for oxidation. However before
reduction with zinc, 20 mL of same solution required 17.96 mL of same $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. Calculate the mass of FeSO_{4} and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ per litre of the solution.

- View Text Solution

75. 3.0 g of pyrolusite ore were treated with 20 g of pure ferrous ammonium sulphate (Mol.mass $=392 \mathrm{~g} \mathrm{~mol}^{-1}$) and dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. After the reaction, the solution was diluted to 500 mL .50 mL of diluted solution required 10 mL of $0.1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution. Calculate the \% of pure MnO_{2} in pyrolusite.

- View Text Solution

76. To measure the quantity of MnCl_{2} dissolved in an aqueous solution, it was completely converted to KMnO_{4} using the reaction.
77. A normal solution :
A. contains one gram equivalent mass of the substance in one litre solution
B. contains one gram molecular mass of the substance in one litre solution
C. contains one gram equivalent mass of the substance in 100 mL of the solution
D. is that whose concentration is known

Answer: A

- View Text Solution

2. Which one of the following is a standard solution ?
A. It contains one gram equivalent mass of the substance in one litre solution
B. Its strength is accurately known
C. Its strength is to be determined
D. A solution which has been prepared from pure substance

Answer: B

- View Text Solution

3. The molecular mass of $\mathrm{H}_{3} \mathrm{PO}_{3}$ is 82 . Its equivalent mass, if it is completely neutralised, is:
A. 82
B. 27.3
C. 41
D. 246

Answer: C

- View Text Solution

4. The molecular mass of Mohr's salt, $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, is 392. Its equivalent mass is:
A. 196
B. 39.2
C. 98.0
D. 392

Answer: D

- View Text Solution

5. According to the following equation,
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3[\mathrm{O}]$ the
equivalent mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is :
A. mol. Mass / 3
B. mol.mass / 6
C. mol.mass
D. mol.mass / 12

Answer: B

- View Text Solution

6. Amount of oxalic acid required to prepare 250 mL of $N / 10$ solution (Mol. Mass of oxalic acid $=126$) is :
A. 1.5759 g
B. 3.15 g
C. 15.75 g
D. 63.0 g

- View Text Solution

7. Normality of $2 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution by volume is nearly :
A. 2
B. 4
C. 0.2
D. 0.4

Answer: D

- View Text Solution

8. The molecular mass of KMnO_{4} is M . Its equivalent mass in acidic medium will be :
A. M
B. $M / 2$
C. $M / 5$
D. $M / 4$

Answer: C

- View Text Solution

9. When KMnO_{4} is reduced with oxalic acid in acidic medium, the oxidation number of Mn changes from :
A. 7 to 4
B. 6 to 4
C. 7 to 2
D. 4 to 2

Answer: C

10. For the half cell reaction,
$2 \mathrm{BrO}_{3}^{-}+12 \mathrm{H}^{+}+10 e \rightarrow \mathrm{Br}_{26 \mathrm{H}_{2} \mathrm{O}}$
the equivalent mass of sodium bromate is:
A. equal to its mol. Mass
B. $1 / 3$ of its mol. Mass
C. $1 / 6$ of its mol. Mass
D. $1 / 5$ of its mol. Mass

Answer: D

- View Text Solution

11. In the reaction,
$I_{2}+2 S_{2} O_{3}^{2-} \rightarrow 2 I^{-}+S_{4} O_{6}^{2-}$
equivalent mass of iodine is :
A. equal to its molecular mass
B. $1 / 2$ the molecular mass
C. $1 / 4$ the molecular mass
D. twice the molecular mass

Answer: B

- View Text Solution

12. A molal solution is one that contains one mole of the solute in :
A. 1000 g of the solvent
B. one litre of the solvent
C. one litre of the solution
D. 22.4 litre of the solvent

- View Text Solution

13. In alkaline conditions, KMnO_{4} reacts as follows,
$2 \mathrm{KMnO}_{4}+2 \mathrm{KOH} \rightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}+[\mathrm{O}]$
Therefore, its equivalent mass will be :
A. 31.6
B. 52.7
C. 72
D. 158.0

Answer: D

- View Text Solution

14. 0.1 N solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is being titrated with 0.1 N HCl , the best indicator to be used is :
A. potassium ferricyanide`
B. phenolphthalein
C. methyl orange
D. litmus

Answer: C

- View Text Solution

15. For the preparation of a litre of $\mathrm{N} / 10$ solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$, we need :
A. 9.8 g
B. 4.9 g
C. 10 g
D. 98 g

Answer: B

- View Text Solution

16. Molecular mass of a tribasic acid is M. Its equivalent mass will be :
A. $M / 3$
B. $3 M$
C. $M / 2$
D. $2 M$

Answer: A

17. A solution containing Fe^{2+} ions is titrated with KMnO_{4} solution, Indicator used will be :
A. phenolphthalein
B. methyl orange
C. litmus
D. none of these

Answer: D

- View Text Solution

18. If 200 mL of $N / 10 \mathrm{HCl}$ were added to 1 g calcium carbonate, what would remain after the reaction?
A. CaCO_{3}
B. HCl
C. Neither of the two
D. Parth of both

Answer: C

19. How many mL of $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ acid solution is required to neutralise 10 mL of 1 M NaOH ?
A. 5 mL
B. 2.5 mL
C. 10 mL
D. 20 mL

Answer: A

20. 200 mL of 3 N HCl were mixed with 200 mL of $6 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. The final normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the resultant solution will be:
A. 9 N
B. 3 N
C. 6 N
D. 2 N

Answer: B

- View Text Solution

21. The volume of water to be added to 400 mL of $N / 8 \mathrm{HCl}$ to make it exactly $N / 12$, is :
A. 400 mL
B. 300 mL
C. 200 mL
D. 100 mL

Answer: C

22. 100 mL of 0.3 N HCl were mixed with 200 mL of $0.6 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution. The final normality of acid was :
A. 0.4 N
B. 0.5 N
C. 0.6 N
D. 0.9 N

Answer: B

23. The M mass of NaOH is 40.50 mL of a solution containing 2 g of NaOH in 500 mL will require for complete neutralisation :
A. 10 mL decinormal HCl
B. 20 mL decinormal HCl
C. 50 mL decinormal HCl
D. 25 mL decinormal HCl

Answer: C

- View Text Solution

24. 50 g of a sample of NaOH required for complete neutralisation, 1 litre N HCl . What is the percentage purity of NaOH ?
A. 80
B. 70
C. 60
D. 50

Answer: A

- View Text Solution

25. Weight of iodine required to oxidise $500 \mathrm{~mL} \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, is
A. 6.35 g
B. 63.5 g
C. 127 g
D. 254 g

Answer: B

26. $25 \mathrm{mLNK} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ acidified solution will liberate .. Iodine from KI solution.
A. 0.3175 g
B. 3.175 g
C. 31.75 g
D. 317.5 g

Answer: B

- View Text Solution

27. The indicator used in iodometric titrations is:
A. phenolphthalein
B. litmus
C. potassium iodide
D. starch

Answer: D

- View Text Solution

28. Which of the following acids is added in the titration of oxalic acid and potassium permanganate?
A. HNO_{3}
B. HCl
C. $\mathrm{CH}_{3} \mathrm{COOH}$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: D

29. In the titration of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ iodometrically, near the end point the colour of the solution becomes :
A. green
B. red
C. yellow
D. blue

Answer: A

- View Text Solution

30. In the titration of ferrous ammonium sulphate and potassium dichromate, the external indicator used is :
A. KCNS
B. $\mathrm{NH}_{4} \mathrm{CNS}$
C. $K_{3} F e(C N)_{6}$
D. $K_{4} F e(C N)_{60}$

Answer: C

View Text Solution

31. 0.1 N solution of a dibasic acid can be prepared by dissolving 0.45 g of the acid in water and diluting to 100 mL . The molecular mass of the acid is :
A. 45
B. 90
C. 135
D. 180

Answer: B

32. 100 mL of 0.2 N HCl solution is added to 100 mL of $0.2 \mathrm{~N} \mathrm{AgNO}_{3}$ solution. The molarity of nitrate ions in the resulting mixture will be :
A. 0.05 M
B. 0.5 M
C. 0.1 M
D. 0.2 M

Answer: C

View Text Solution

33. In an experiment, 20 mL of a decinormal HCl solution was added to 15 mL of a decinormal AgNO_{3} solution. AgCl was precipitated out and excess of acid was titrated with $N / 20 \mathrm{NaOH}$ solution. The volume of NaOH required was :
A. 10 mL
B. 20 mL
C. 30 mL
D. 5 mL

Answer: A

D View Text Solution

34. Iodine solution is prepared by dissolving iodine in :
A. NaOH
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. KI

Answer: D

35. Which one of the following is not a primary standard :
A. Oxalic acid
B. Sodium thiosulphate
C. Sodium hydroxide
D. Potassium dichromate

Answer: C

- View Text Solution

36. Which one of the following is a primary standard ?
A. KMnO_{4}
B. $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
C. I_{2}
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: B

- View Text Solution

37. When 10 mL of 10 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 100 mL of 1 M solution of NaOH are mixed, the resulting solution will be :
A. acidic
B. neutral
C. alkaline
D. Cannot be predicted

Answer: A

38. 1.0 g of metal carbonate neutralises 200 mL of 0.1 N HCl . The equivalent mass of the metal will be :
A. 50
B. 40
C. 20
D. 100

Answer: A

- View Text Solution

39. The normality of a 26% mass/volume solution of ammonia (density $0.885 g / m L$) is approximately :
A. 1.5
B. 4
C. 0.4
D. 15.3

Answer: D

- View Text Solution

40. The molarity of pure water is :
A. 18 M
B. 50.0 M
C. 55.6 M
D. 100 M

Answer: C

View Text Solution
41. 5.0 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ is present in 100 mL of the solution. The molecular mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 34 . The molarity of the solution is:
A. 1.5 M
B. 0.15 M
C. 3.0 M
D. 50 M

Answer: A

- View Text Solution

42. 2 N solution of sodium carbonate is equivalent to a solution of strength :
A. 106 g per 100 mL
B. 53 g per 100 mL
C. 10.6 g per 100 mL
D. 5.3 g per 100 mL

Answer: C

View Text Solution

43. Which one of these solution has the highest normality ?
A. 8 g KOH per 100 mL
B. $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
C. 6 g per of NaOH per 100 mL
D. $1 \mathrm{NH}_{3} \mathrm{PO}_{4}$

Answer: C

44. 1 g of a metal required 50 mL of 0.5 N HCl to dissovle it. The equivalent mass of the metal is :
A. 25
B. 50
C. 20
D. 40

Answer: D

- View Text Solution

45. What volume of CO_{2} at NTP will be liberated by the action of 100 mL of 0.2 N HCl on CaCO_{3} ?
A. 112 mL
B. 224 mL
C. 448 mL
D. 120 mL

Answer: B

- View Text Solution

46. The equivalent mass of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is 49 . It behaves as Acid.
A. monobasic
B. dibasic
C. tribasic
D. tetrabasic

Answer: B

47. The normality of 10% (mass / volume) acetic acid is :
A. 1 N
B. 10 N
C. 1.7 N
D. 0.83 N

Answer: C

- View Text Solution

48. Equivalent mass of KMnO_{4}, when it is converted to MnSO_{4}, is :
A. $M / 5$
B. $M / 3$
C. $M / 6$
D. $M / 2$

- View Text Solution

49. How many grams of $\mathrm{CH}_{3} \mathrm{OH}$ would have to be added to water to prepare 150 mL of a solution that is 2.0 M CH OH ?
A. 9.6
B. 2.4
C. 9.6×10^{3}
D. 4.3×10^{2}

Answer: A

- View Text Solution

50. On dissolving 1 mole of each of the following acids in one litre water, the acid which does not give a solution of strength 1 N is :
A. HCl
B. HClO_{4}
C. HNO_{3}
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$

Answer: D

- View Text Solution

51. 0.16 g a dibasic acid required 25 mL of decinormal NaOH solution for complete neutralisation. The molecular mass of the acid is :
A. 32
B. 64
C. 128
D. 256
52.5 mL of $\mathrm{N} \mathrm{HCl}, 20 \mathrm{~mL}$ of $\mathrm{N} / 20 \mathrm{H}_{2} \mathrm{SO}_{4}$ and 30 mL of $\mathrm{N} / 3 \mathrm{HNO}_{3}$ are mixed together and volume made to one litre. The normality of the resulting solution is :
A. $N / 5$
B. $N / 10$
C. $N / 20$
D. $N / 40$

Answer: D

- View Text Solution

53. The equivalent mass of MnSO_{4} is half its molecular mass when it is converted to :
A. $M n_{2} O_{3}$
B. MnO_{2}
C. MnO_{4}^{-}
D. MnO_{4}^{2-}

Answer: B

- View Text Solution

54. For the redox reaction,

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

the correct coefficients of the reactants for the balanced reaction are :
A. $\begin{array}{ccc}\mathrm{MnO}_{4}^{-} & \mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{H}^{+} \\ 2 & 5 & 16\end{array}$
B. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$ 16
$5 \quad 2$
C. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
D. $\begin{array}{ccc}5 & 16 & 2 \\ \mathrm{MnO}_{4}^{-} & \mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{H}^{+}\end{array}$
$2 \quad 16 \quad 5$

- View Text Solution

55. 100 mL solution consists 4 g caustic soda. The normality of the solution is :
A. 1.0
B. 0.1
C. 0.5
D. 4.0

Answer: A

- View Text Solution

56. The amount of a caustic soda required for complete neutralisation of 100 mL 0.1 N HCl is :
A. 4.0 g
B. 0.04 g
C. 0.4 g
D. 2.0 g

Answer: C

- View Text Solution

57. What volume of $N / 2$ and $N / 10 \mathrm{HCl}$ should be taken in order to make a 2 litre solution of $N / 5$ strength ?
A. 0.5 litre $N / 2 \mathrm{HCl}$ and 1.5 litre of $N / 10 \mathrm{HCl}$
B. 1 litre $N / 2 \mathrm{HCl}$ and 1 litre $N / 10 \mathrm{HCl}$
C. 1.5 litre $N / 2 \mathrm{HCl}$ and 0.5 litre $N / 10 \mathrm{HCl}$
D. 0.7 litre $N / 2 \mathrm{HCl}$ and 1.3 litre $N / 10 \mathrm{HCl}$
58. The molar concentration of the chloride ion in the solution obtained by mixing 300 mL of 3.0 M NaCl and 200 mL of 4.0 M solution of $B a C l_{2}$ is :
A. 1.6 M
B. 1.8 M
C. 5.0 M
D. 0.5 M

Answer: C

- View Text Solution

59. The normality of 0.3 M phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ is:
A. 0.1
B. 0.9
C. 0.3
D. 0.6

Answer: D

- View Text Solution

60. A 100 mL solution of 0.1 N HCl was titrated with 0.2 N NaOH solution. The titration was discontinued after adding 30 mL of NaOH solution. The titration was completed by adding 0.25 N KOH solution.

The volume of KOH required for completing the titration is :
A. 70 mL
B. 32 mL
C. 35 mL
D. 16 mL

Answer: D

- View Text Solution

61. An aqueous solution of 6.3 g of oxalic acid dihydrate is made up to 250 mL . The volume of 0.1 N NaOH required to completely neutralise 10 mL of this solution is:
A. 40 mL
B. 20 mL
C. 10 mL
D. 4 mL

Answer: A

- View Text Solution

62. In order to prepare one litre nomal solution of KMnO_{4}, how many grams of KMnO_{4} are required if the solution is to be used in acid medium for oxidation ?
A. 158 g
B. 31.6 g
C. 62 g
D. 790 g

Answer: B

- View Text Solution

63. 3 g of an oxide of a metal is converted to chloride completely and it yielded 5 g of chloride. Equivalent weight of the metal is :
A. 33.25
B. 3.325
C. 12
D. 20

Answer: A

- View Text Solution

64. Phosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}$ can not be neutralised to :
A. HPO_{4}^{2-}
B. PO_{4}^{2-}
C. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
D. HPO_{3}^{2-}

Answer: D

65. a' $\mathrm{g} \mathrm{KHC}_{2} \mathrm{O}_{4}$ required to reduce 100 mL of $0.02 \mathrm{M}_{\mathrm{KMnO}}^{4}$ in acid medium and 'b' g $\mathrm{KHC}_{2} \mathrm{O}_{4}$ neutralises 100 mL of $0.05 \mathrm{MCa}(\mathrm{OH})_{2}$ then :
A. $a=b$
B. $2 a=b$
C. $a=2 b$
D. none of these

Answer: B

- View Text Solution

66. Which of the following statements is not true about $\mathrm{H}_{3} \mathrm{PO}_{2}$?
A. It is a tribasic acid
B. One mole of it is neutralised by 0.5 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$
C. $\mathrm{NaH}_{2} \mathrm{PO}_{2}$ is not an acidic salt
D. It disproportionates to $H_{3} P O_{3}$ and PH_{3} on heating

Answer: A

View Text Solution

67. Mixture of 1 mole BaF_{2} and 2 mole $\mathrm{H}_{2} \mathrm{SO}_{4}$ can not be neutralised by :
A. 2 mole $\mathrm{Ba}(\mathrm{OH})_{2}$
B. 2 mole $\mathrm{Ca}(\mathrm{OH})_{2}$
C. 4 mole NaOH
D. 2 mole KOH

Answer: D

68.

$28 \mathrm{NO}_{3}^{-}+3 \mathrm{As}_{2} \mathrm{~S}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{AsO}_{4}^{3-}+28 \mathrm{NO}+9 \mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{+}$.
What will be the equivalent mass of $A s_{2} S_{3}$ in above reaction?
A. $\frac{M \cdot w t .}{2}$
B. $\frac{M . w t}{4}$
C. $\frac{M . w t .}{24}$
D. $\frac{M . w t .}{28}$

Answer: D

- View Text Solution

69. The number of moles of KMnO_{4} that will need to react completely with one mole of ferrous oxalate in acidic solution is :
A. $2 / 5$
B. $3 / 5$
C. $4 / 5$
D. 1

Answer: B

- View Text Solution

70. The number of moles of KMnO_{4} that will be needed to react with one mole of sulphite ion in acidic solution is:
A. $2 / 5$
B. $3 / 5$
C. $4 / 5$
D. 1

Answer: A

71. The equivalent weight of KIO_{3} in the reaction, $2 \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{OH}^{-}+\mathrm{KIO}_{3} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{KI}$ is :
A. molecular weight
B. $\frac{\text { molecular weight }}{3}$
C. $\frac{\text { molecular weight }}{6}$
D. $\frac{\text { molecular weight }}{2}$

Answer: C

- View Text Solution

72. In the reaction,
$I_{2}+2 S_{2} O_{3}^{2-} \rightarrow 2 I^{-}+S_{4} O_{6}^{2-}$
equivalent weight will be equal to :
A. $4 / 6$ of molecular weight
B. molecular weight
C. $2 / 9$ of molecular weight
D. twice the molecular weight

Answer: B

- View Text Solution

73. The volume of a concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, mixed with 0.5 N KOH to prepare $150 \mathrm{~cm}^{3}$ of 0.2 N KOH . Solution is:
A. $50 \mathrm{~cm}^{3}$
B. $60 \mathrm{~cm}^{3}$
C. $70 \mathrm{~cm}^{3}$
D. $80 \mathrm{~cm}^{3}$

Answer: B

74. For the decolorisation of 1 mole of KMnO_{4}, the number of moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is :
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C

- View Text Solution

75. The product of oxidation of I^{-}with MnO_{4}^{-}in alkaline medium is :
A. IO_{3}^{-}
B. I_{2}
C. IO^{-}
D. IO_{4}^{-}

Answer: A

- View Text Solution

76. Volume of $0.1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ required to oxidise 35 mL of $0.5 \mathrm{MFeSO}_{4}$ solution is :
A. 29.2 mL
B. 17.5 mL
C. 175 mL
D. 145 mL

Answer: A

77. A commercial sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ is labelled 10 volume. Its percentage strength is nearly :
A. 0.01
B. 0.03
C. 0.1
D. 0.9

Answer: B

- View Text Solution

78. 50 mL of $10 \mathrm{NH}_{2} \mathrm{SO}_{4}, 25 \mathrm{~mL}$ of 12 N HCl and 40 mL of $5 \mathrm{~N} \mathrm{HNO}_{3}$ are mixed and the volume of the mixture is made 1000 mL by adding water.

The normality of the resulting solution will be :
A. 1 N
B. 2 N
C. 3 N
D. 4 N

Answer: A

- View Text Solution

79. Acidified KMnO_{4} oxidizes acid to CO_{2}. What is the volume (in litre) of $10^{-4} \mathrm{MKMnO}_{4}$ required to completely oxidize 0.5 litre of $10^{-2} \mathrm{M}$ oxalic acid in acid medium ?
A. 125
B. 1250
C. 200
D. 20

Answer: D

80. The concentration of oxalic acid is ' x ' mol litre $^{-1} .40 \mathrm{~mL}$ of this solution reacts with 16 mL of 0.05 M acidified KMnO_{4}. What is the pH of 'x' M oxalic acid solution ?
(Assume that oxalic acid dissociates completely.)
A. 1.3
B. 1.699
C. 1
D. 2

Answer: C

- View Text Solution

81. Consider the titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The
number of moles of Mohr's salt required per mole of dichromate is :
A. 3
B. 4
C. 5
D. 6

Answer: D

D View Text Solution

82. The number of moles of KMnO_{4} that will be needed to react with one mole of sulphite ion in acidic solution is :
A. $\frac{4}{5}$
B. $\frac{2}{5}$
C. 1
D. $\frac{3}{5}$

Answer: B

- View Text Solution

83. For the reaction between KMnO_{4} and $\mathrm{H}_{2} \mathrm{O}_{2}$ the number of electrons transferred per mole of $\mathrm{H}_{2} \mathrm{O}_{2}$ is :
A. one
B. two
C. three
D. four

Answer: C

- View Text Solution

84. Number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by one mole of Sn^{2+} is :
A. $1 / 3$
B. 3
C. $1 / 6$
D. 6

Answer: A

- View Text Solution

85. The formula mass of Mohr's salt is 392 . The iron present in it is oxidised by KMnO_{4} in acid medium. The equivalent mass of Mohr's salt is :
A. 392
B. 31.6
C. 278
D. 156

Answer: A

- View Text Solution

86. To neutralise completely 20 mL of 0.1 M aqueous solution of phosphorus acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$, the volume of 0.1 M aqueous KOH solution required is :
A. 10 mL
B. 20 mL
C. 40 mL
D. 60 mL

Answer: C

- View Text Solution

$87.10 \mathrm{~cm}^{3}$ of 0.1 N monobasic acid requires $15 \mathrm{~cm}^{3}$ of sodium hydroxide solution whose normality is :
A. 0.066 N
B. 0.66 N
C. 1.5 N
D. 0.15 N

Answer: A

- View Text Solution

88. Amount of oxalic acid present in solution can be oxidised by its titration with KMnO_{4} solution in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The titration gives unsatisfactory result when carried out in the presence of HCl , because HCl :
A. oxidises oxalic acid to carbon dioxide and water
B. gets oxidised by oxalic acid to chlorine
C. furnishes H^{+}ions in addition to those from oxalic acid
D. reduces permanganate to Mn^{2+}

Answer: D

- View Text Solution

89. How many moles of acidified FeSO_{4} can be completely oxidised by one mole of 'KMnO_(4)~ ?
A. 10
B. 5
C. 6
D. 2
90. In the titration of nitric acid against potassium carbonate, the indicator used is :
A. methyl orange
B. self indicator
C. phenolphthalein
D. diphenylamine

Answer: C

- View Text Solution

91. In transforming 0.01 mole of PbS to PbSO_{4}, the volume of 10 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ required will be :
A. 11.2 mL
B. 22.4 mL
C. 33.6 mL
D. 44.8 mL

Answer: D

- View Text Solution

92. A solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH requires 300 mL of 0.1 N HCl using phenolphthalein as an indicator. Methyl orange is then added to above titrated solution when a further 25 mL of 0.2 N HCl is required.

The amount of NaOH present in the original solution is:
A. 0.5 g
B. 1 g
C. 2 g
D. 4 g

- View Text Solution

93. Ceric ammonium sulphate and potassium permanganate are used as oxidising agents in acidic medium for oxidation of ferrous ammonium sulphate to ferric sulphate. The ratio of number of moles of ceric ammonium sulphate required per mole of ferrous ammonium sulphate to the number of moles of KMnO_{4} required per mole of ferrous ammonium sulphate is :
A. 5.0
B. 0.2
C. 0.6
D. 2.0

Answer: A

94. One kilogram of sea water contains 6 mg of dissolved O_{2}. The concentration of O_{2} in the sample in ppm is :
A. 0.6
B. 6.0
C. 60.0
D. 2.0

Answer: B

- View Text Solution

95. The estimation of available chlorine in bleaching powder is done by:
A. Acid-base titration
B. Permanganometric titration
C. Iodimetric titration
D. Iodometric titration

Answer: D

- View Text Solution

96. What volume of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is required in litres to neutralize completely 1 litre of a solution containing 20 g of NaOH ?
A. 5.0
B. 0.5
C. 2.5
D. 10.0

Answer: C

97. The normality of 10 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ is :
A. 0.176
B. 0.88
C. 1.78
D. 3.52

Answer: C

- View Text Solution

98. In volumetric experiment, it was found that a solution of KMnO_{4} is reduced to MnSO_{4}. If the normality of solution is 1 N , then molarity of solution will be :
A. 0.5 M
B. 0.2 M
C. 1 M
D. 0.4 M

Answer: B

- View Text Solution

99. 0.222 g of iron ore was brought into solution, Fe^{3+} is reduced to Fe^{2+} with SnCl_{2}. The reduced solution required 20 mL of $0.1 \mathrm{NKMnO}_{4}$ solution. The percentage of iron present in the ore is (equivalent weight of iron is 55.5) :
A. 55.5%
B. 45.0%
C. 50.0%
D. 40.0%

Objective Question Level B

1. The value of n in the equation,
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+\not \boldsymbol{F}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ is :
A. 2
B. 3
C. 4
D. 6

Answer: D

View Text Solution
2. The number of moles of acidified KMnO_{4} required to oxidise one mole of ferrous oxalate $\left(\mathrm{FeC}_{2} \mathrm{O}_{4}\right)$ is :
A. 5
B. 3
C. 0.6
D. 1.5

Answer: C

- View Text Solution

3. A solution contains $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}. 10 mL of the solution required 2.5 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ for neutralisation using phenophthalein as indicator. Methyl orange is then added when a further 2.5 mL of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ was required. Then the amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} in 1 litre of the solution is:
A. 5.3 g and 4.2 g
B. 3.3 g and 6.2 g
C. 4.2 g and 5.3 g
D. 6.2 g and 3.3 g

Answer: A

D View Text Solution

4. $V_{1} \mathrm{~mL}$ of NaOH of normality x and $V_{2} \mathrm{~mL}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ of normality y are together sufficient to neutralize exactly 100 mL of 0.1 N HCl . If $V_{1}: V_{2}=1: 4$ and if $\mathrm{x}: \mathrm{y}=4: 1$, what fraction of the acid is neutralised by $\mathrm{Ba}(\mathrm{OH})_{2}$?
A. 0.5
B. 0.33
C. 0.67
D. 0.25

Answer: A

- View Text Solution

5. A 0.518 g sample of limestone is dissolved in HCl and then the calcium is precipitated as $\mathrm{Ca}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. After filtering and washing the precipitate, it requires 40 mL of $0.25 \mathrm{~N} \mathrm{KMnO}_{4}$ solution acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$ to titrate it as,

$$
\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2}+\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}
$$

The percentage of CaO in the sample is :
A. 0.54
B. 27.1%
C. 0.42
D. 0.84

- View Text Solution

6. When 40 mL of 0.1 N HCl and 20 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are mixed together, the normality of the mixture will be :
A. $\frac{1}{5} N$
B. $\frac{2}{15} N$
C. $\frac{15}{2} N$
D. $\frac{5}{1} N$

Answer: B

- View Text Solution

7. What is the normality of $0.3 \mathrm{MH}_{3} P O_{4}$ when it undergoes the
$\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{3}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$
A. 0.3 N
B. 0.15 N
C. 0.60 N
D. 0.90 N

Answer: C

- View Text Solution

8. In the mixture of $\left(\mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, volume of HCl required is x mL with phenolphthalein indicator and y mL with mthyl orange inidicator in same titration. Hence, volume of HCl for complete reaction of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is:
A. 2 x
B. y
C. $x / 2$
D. $(y-x)$

Answer: A

- View Text Solution

9. 40 mL of $0.05 \mathrm{MNa}_{2} \mathrm{CO}_{3} . \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (sesquicarbonate) is titrated against $0.05 \mathrm{M} \mathrm{HCl} . \mathrm{X}$ and of HCl is used when phenolphthalein is the indicator in two separate titrations, hence $(y-x)$ is :
A. 80 mL
B. 30 mL
C. 120 mL
D. none of these

Answer: A

10. Equivalent mass of $\mathrm{H}_{3} \mathrm{PO}_{2}$ when it disproportionates into PH_{3} and $\mathrm{H}_{3} \mathrm{PO}_{3}$ is (Molecular mass=M) :
A. M
B. $\frac{M}{2}$
C. $\frac{M}{4}$
D. $\frac{3 M}{4}$

Answer: D

- View Text Solution

11. The reagent commonly used to determine harness of water titrimetrically is :
A. Oxalic acid
B. disodium salt EDTA
C. sodium citrate
D. sodium thiosulphate

Answer: B

- View Text Solution

12. The equivalent mass of sodium thiosulphate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}\right)$ in the reaction,
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is :
A. 248
B. 124
C. 596
D. 62
13. If 100 mL of the acid is neutralised by 100 mL of 4 M NaOH , the purity of concentrated $\mathrm{HCl}(\mathrm{sp}$. Gravity $=1.2$) is :
A. 0.12
B. 0.98
C. 0.73
D. 0.43

Answer: A

- View Text Solution

14. 2 moles of FeSO_{4} are oxidised by x moles of KMnO_{4} in acid medium into ferric sulphate. 3 moles of ferric oxalate are oxidised by y moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acid medium. The value of (x / y) is:
A. $6 / 5$
B. $2 / 15$
C. $18 / 5$
D. $3 / 5$

Answer: B

- View Text Solution

15. What volume of $0.05 \mathrm{MCr}_{2} \mathrm{O}_{7}^{2-}$ in acid medium is needed for complete oxidation of 200 mL of $0.6 \mathrm{MFeC}_{2} \mathrm{O}_{4}$ solution?
A. 0.6 L
B. 1.2 L
C. 2.4 L
D. 3.6 L

Answer: B

16. KMnO_{4} reacts with oxalic acid according to the reaction :
$2 \mathrm{KMnO}_{4}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
Then, 20 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ is equivalent to :
A. 30 mL of $0.5 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ (oxalic acid)
B. 50 mL of $0.1 \mathrm{MC} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ (oxalic acid)
C. 20 mL of $0.5 \mathrm{MC}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ (oxalic acid)
D. 10 mL of $0.1 M C_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ (oxalic acid)

Answer: B

- View Text Solution

17. Potassium permanganate is titrated against ferrous ammonium sulphate in acidic medium, the equivalent mass of potassium
permanganate is :
A. $\frac{\text { molecular mass }}{3}$
B. $\frac{\text { molecular mass }}{5}$
C. $\frac{\text { molecular mass }}{2}$
D. $\frac{\text { molecular mass }}{10}$

Answer: B

- View Text Solution

18. Number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ that can be reduced by 1 mole of Sn^{2+} ions is:
A. $1 / 3$
B. $3 / 2$
C. $5 / 6$
D. $6 / 5$

- View Text Solution

19. Potassium permanganate acts as an oxidising agent in acidic, alkaline as well as neutral media. Which among the following statements is incorrect ?
A. $N=M / 5($ in acid medium $)$
B. $N=M / 3$ (in alkaline medium)
C. $N=M / 3$ (in neutral medium)
D. $N=M$ (in alkaline medium $)$

Answer: B

- View Text Solution

20. The number of equivalents of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required for the volumetric estimation of one equivalent of Cu^{2+} is :
A. $1 / 3$
B. 1
C. $3 / 2$
D. $2 / 3$

Answer: B

- View Text Solution

21. The equivalent mass of MnSO_{4} becomes half of its molecular mass when it is converted into :
A. MnO_{4}^{-}
B. MnO_{2} or $\mathrm{Mn}_{3} \mathrm{O}_{4}$
C. MnO_{4}^{-}
D. $\mathrm{Mn}_{2} \mathrm{O}_{4}^{2-}$

Answer: B

- View Text Solution

22. A solution of 10 mL of $\frac{M}{10} \mathrm{FeSO}_{4}$ was titrated with KMnO_{4} solution in acidic medium, the amount of KMnO_{4} used will be :
A. 10 mL of 0.5 M
B. 10 mL of 0.1 M
C. 10 mL of 0.02 M
D. 5 mL of 0.1 M

Answer: C

23. Among the following reactions, used in titrations, select the reaction (s) in which the chlorine is oxidised:
24. $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
25. $2 \mathrm{KI}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
26. $\mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2}$
27. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{HCl}$
A. reaction 2,3 and 4
B. reaction 1 only
C. reaction 1 and 3
D. reaction 4 only

Answer: C

- View Text Solution

24. Oxalic acid dihydrate, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is often used as a primary reagent to standardise sodium hydroxide solution. Which of these facts are reasons to choose this substance as a primary standard ?
I. It is diprotic.
II. It is a stable compound that can be weighed directly in air. III. It is available in pure form.
A. III only
B. I and II only
C. II and III only
D. I, II and III

Answer: C

- View Text Solution

25. A 20 mL sample of a $\mathrm{Ba}(\mathrm{OH})_{2}$ solution is titrated with 0.245 M HCl . If 27.15 mL of HCl is required, what is the molarity of the $\mathrm{Ba}(\mathrm{OH})_{2}$ solution?
A. 0.166 M
B. 0.180 M
C. 0.333 M
D. 0.666 M

Answer: A

- View Text Solution

26. A solution of which substance can best be used as both titrant and its own indicator in an oxidation-reduction titration?
A. I_{2}
B. NaOCl
C. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
D. KMnO_{4}

Answer: D

- View Text Solution

27. A 0.2 g sample of benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, is titrated with a $0.120 \mathrm{MBa}(\mathrm{OH})_{2}$ solution. What volume of the $\mathrm{Ba}(\mathrm{OH})_{2}$ solution is required to reach the equivalence point ?
$\frac{\text { Substance }}{C_{6} H_{5} \mathrm{COOH}} \quad \frac{\text { Molar mass }}{122.1 g \mathrm{~mol}^{-1}}$
A. 6.82 mL
B. 13.6 mL
C. 17.6 mL
D. 35.2 mL

View Text Solution

28. What mass of magnesium hydroxide is required to neutralise 125 mL of 0.136 M HCl solution ?
$\frac{\text { Substance }}{M g(O H)_{2}}$
$\frac{\text { Molar mass }}{58.33 \mathrm{~g} \mathrm{~mol}^{-1}}$
A. 0.248 g
B. 0.496 g
C. 0.992 g
D. 1.98 g

Answer: B

- View Text Solution

29. In the titration of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and FeSO_{4}, the following data is obtained : $V_{1} m L$ of $1 M_{1} K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ requires $V_{2} m L$ of $1 M_{2} \mathrm{FeSO}_{4}$.

Which of the following relations is true for the above titration ?
A. $6 M_{1} V_{1}=M_{2} V_{2}$
B. $M_{1} V_{1}=6 M_{2} V_{2}$
C. $M_{1} V_{1}=M_{2} V_{2}$
D. $3 M_{1} V_{1}=4 M_{2} V_{2}$

Answer: A

- View Text Solution

30. When 20 mL of $\frac{M}{10} \mathrm{NaOH}$ are added to 10 mL of $\frac{M}{10} H C l$, the resulting solution will :
A. turn blue litmus red
B. turn phenolphthalein solution pink
C. turn methyl orange red
D. have no effect on either red or blue litmus

Answer: B

- View Text Solution

31. A sample of coconut oil weighing 1.5763 g is mixed with 25 mL of 0.4210 M KOH . Some KOH is used in saponification of coconut oil. After the saponification is complete, 8.46 mL of $0.2732 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is required to neutralize excess KOH. The saponification number of peanut oil is :
A. 209.6
B. 98.9
C. 108.9
D. 218.9

Answer: A

32. 12.5 mL of a solution containing 6 g of a dibasic acid in one litre was found to be neutralized by 10 mL of a decinormal solution of NaOH . The molecular mass of the acid is :
A. 110
B. 75
C. 120
D. 150

Answer: D

- View Text Solution

33. 20 mL of $0.1 \mathrm{MH}_{3} \mathrm{BO}_{3}$ solution on complete neutralisation requires $x \mathrm{~mL}$ of 0.05 M NaOH solution. The value of x will be :
A. 20 mL
B. 40 mL
C. 120 mL
D. 80 mL

Answer: B

- View Text Solution

34. The ammonia evolved from the treatment of 0.30 g of an organic compound for the estimation of nitrogen was passed in 100 mL of 0.1 M sulphuric acid. The excess of acid required 20 mL of 0.5 M sodium hydroxide solution for complete neutralization. The organic compound is :
A. acetamide
B. benzamide
C. urea
D. thiourea

Answer: C

- View Text Solution

35. A solution contains $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$ of this solution required 2.5 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ for neutralisation using phenolphthalein indicator. Methyl orange is added after first end point, further titration required 2.5 mL of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} in 1 litre of the solution is:
A. 5.3 g and 4.2 g
B. 3.3 g and 6.2 g
C. 4.2 g and 5.3 g
D. 6.2 g and 3.3 g

Answer: A

36. MnO_{4}^{-}ions are reduced in acidic condition to Mn^{2+} ions whereas they are reduced in neutral condition to MnO_{2}. The oxidation of 25 mL of a solution X containing Fe^{2+} ions required in acidic condition, 20 mL of a solution Y containing MnO_{4}^{-}ions. What volume of solution Y would be required to oxidise 25 mL of solution X containing Fe^{2+} ions in neutral condition?
A. 11.4 mL
B. 12 mL
C. 33.3 mL
D. 35 mL

Answer: C

- View Text Solution

37. 100 mL each of $1 \mathrm{NH}_{2} \mathrm{O}_{2}$ and $11.2 \mathrm{VH}_{2} \mathrm{O}_{2}$ solution are mixed, then the resultant solution will be :
A. $3 \mathrm{MH}_{2} \mathrm{O}_{2}$
B. $0.5 \mathrm{NH}_{2} \mathrm{O}_{2}$
C. $25.5 \mathrm{~g} / \mathrm{LH}_{2} \mathrm{O}_{2}$
D. $2.55 \mathrm{~g} / \mathrm{LH}_{2} \mathrm{O}_{2}$

Answer: C

- View Text Solution

38. $0.1 \mathrm{gKIO}_{3}$ and excess KI when treated with HCl , the iodine is liberated. The liberated iodine required 45 mL solution thiosulphate for titration. The molarity of sodium thisoulphate will be equivalent to :
A. 0.252 M
B. 0.126 M
C. 0.0313 M
D. 0.0623 M

Answer: D

- View Text Solution

Assertion Reason Type Questions

1. Assertion : $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid.

Reason : Two H -atoms are directly attached to phosphorus ' P '.
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.

Answer: C

- View Text Solution

2. Assertion : Equivalent mass of $K M n O_{4}$ is equal to one-fifth of its molecular mass when it acts as an oxidising agent in acidic medium.

Reason : Oxidation number of Mn in KMnO_{4} is +7 .
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.
3. Assertion : 5 M HCl solution is diluted 10 times, its molarity becomes 50.

Reason : On dilution, molarity of the solution decreases.
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.

Answer: D

- View Text Solution

4. Assertion : In the reactin, $2 S_{2} \mathrm{O}_{3}^{2-}+I_{2} \rightarrow S_{4} \mathrm{O}_{6}^{2-}+2 I^{-}: I_{2}$ is oxidised.

Reason : During oxidation, loss of electron takes place.
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.

Answer: D

- Watch Video Solution

5. Assertion : In the titration of HCl against NaOH , phenolphthalein is used as suitable indicator.

Reason : Phenolphthalein is pink coloured in basic medium.
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.

Answer: B

- View Text Solution

6. Assertion : Concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ is expressed in volume.

Reason : Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}=$ Normality $\times 5.6$.
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.

Answer: B

D View Text Solution

7. Assertion : Iodimetric titrations are redox titrations.

Reason : The iodine solution acts as an oxidising agent.
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.

Answer: A

- View Text Solution

8. Assertion : Starch is used as absorption indicator in iodometric and iodimetric titrations.

Reason : Starch forms iodostarch complex with iodine, which is blue coloured.
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.

- View Text Solution

9. Assertion : $\mathrm{H}_{3} \mathrm{BO}_{3}$ is monobasic Lewis acid but its salt $\mathrm{Na}_{3} \mathrm{BO}_{3}$ exists.

Reason : $\mathrm{H}_{3} \mathrm{BO}_{3}$ reacts with NaOH to give $\mathrm{Na}_{3} \mathrm{BO}_{3}$.
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.

Answer: C

10. Assertion : Equivalent weight of a base $=\frac{\text { Molecular weight }}{\text { Acidity }}$ Reason: Acidity is the number of replaceable hydrogen atoms in one molecule of the base.
A. If both Assertion and Reason are correct, and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
C. If Assertion is correct, but Reason is incorrect.
D. If Assertion is incorrect, but Reason is correct.

Answer: C

- Watch Video Solution

Integer Answer Type Questions

1. The volume (in mL) of $0.1 \mathrm{MAgNO}_{3}$ required to completely precipitat the chloride ions present in 30 mL of 0.01 M of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$, as silver chloride is close to :

- View Text Solution

2. Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 5.6 , its normality will be :

- Watch Video Solution

3. Inneutral or faintly alkaline solution, 8 moles of permanganate anion quantitatively oxidize thiosulphate anions to produce X moles of a sulphur containing product. The magnitude of X is :

- View Text Solution

1. Pyrolusite, MnO_{2}, is the main ore from which manganese is produced. The manganese content of the ore may be determined by reducing the MnO_{2} under acetic conditions to Mn^{2+} with the oxalate ion, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$, the oxalate ion being oxidised to carbon dioxide during the reaction. The analytical determination is carried out by adding a known excess volume of oxalate solution to a suspension of the pyrolusite and digesting the mixture on a hot water bath until all the
MnO_{2} has been reduced. The excess, unreacted oxalate solution is then titrated with standardised potassium permanganate, KMnO_{4} solution after which the manganese content of the ore can be calculated.

A student prepared a standard solution of sodium oxalate by weighing
3.2 g of the dry anhydrous salt, dissolving it in distilled water and making the solution up to 500 mL .25 mL of the oxalate solution required 24.76 mL of KMnO_{4} solution.

What is the equivalent mass of MnO_{2} in the present titration ?
A. $\frac{M \cdot w .}{1}$
B. $\frac{M \cdot w .}{2}$
C. $\frac{M \cdot w .}{3}$
D. $\frac{2 M . w}{3}$

Answer: B

- View Text Solution

2. Pyrolusite, MnO_{2}, is the main ore from which manganese is produced. The manganese content of the ore may be determined by reducing the MnO_{2} under acetic conditions to Mn^{2+} with the oxalate ion, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$, the oxalate ion being oxidised to carbon dioxide during the reaction. The analytical determination is carried out by adding a known excess volume of oxalate solution to a suspension of the pyrolusite and digesting the mixture on a hot water bath until all the MnO_{2} has been reduced. The excess, unreacted oxalate solution is then titrated with standardised potassium permanganate, KMnO_{4} solution after which the manganese content of the ore can be

calculated.

A student prepared a standard solution of sodium oxalate by weighing 3.2 g of the dry anhydrous salt, dissolving it in distilled water and making the solution up to 500 mL .25 mL of the oxalate solution required 24.76 mL of KMnO_{4} solution.

How many moles of $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ ions will be oxidised by 1 mole MnO_{4}^{-}?
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C

- View Text Solution

3. Pyrolusite, MnO_{2}, is the main ore from which manganese is produced. The manganese content of the ore may be determined by
reducing the MnO_{2} under acetic conditions to Mn^{2+} with the oxalate ion, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$, the oxalate ion being oxidised to carbon dioxide during the reaction. The analytical determination is carried out by adding a known excess volume of oxalate solution to a suspension of the pyrolusite and digesting the mixture on a hot water bath until all the
MnO_{2} has been reduced. The excess, unreacted oxalate solution is then titrated with standardised potassium permanganate, KMnO_{4} solution after which the manganese content of the ore can be calculated.

A student prepared a standard solution of sodium oxalate by weighing
3.2 g of the dry anhydrous salt, dissolving it in distilled water and making the solution up to 500 mL .25 mL of the oxalate solution required 24.76 mL of KMnO_{4} solution.

Molarity of the sodium oxalate solution is ..
A. 0.04776
B. 0.07446
C. 0.06447

Answer: A

- View Text Solution

4. Pyrolusite, MnO_{2}, is the main ore from which manganese is produced. The manganese content of the ore may be determined by reducing the MnO_{2} under acetic conditions to Mn^{2+} with the oxalate ion, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$, the oxalate ion being oxidised to carbon dioxide during the reaction. The analytical determination is carried out by adding a known excess volume of oxalate solution to a suspension of the pyrolusite and digesting the mixture on a hot water bath until all the MnO_{2} has been reduced. The excess, unreacted oxalate solution is then titrated with standardised potassium permanganate, KMnO_{4} solution after which the manganese content of the ore can be calculated.

A student prepared a standard solution of sodium oxalate by weighing
3.2 g of the dry anhydrous salt, dissolving it in distilled water and making the solution up to 500 mL .25 mL of the oxalate solution required 24.76 mL of KMnO_{4} solution.

What is the molarity of KMnO_{4} solution ?
A. 0.04776
B. 0.01929
C. 0.038
D. 0.028

Answer: B

- View Text Solution

5. Pyrolusite, MnO_{2}, is the main ore from which manganese is produced. The manganese content of the ore may be determined by reducing the MnO_{2} under acetic conditions to Mn^{2+} with the oxalate ion, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$, the oxalate ion being oxidised to carbon dioxide during
the reaction. The analytical determination is carried out by adding a known excess volume of oxalate solution to a suspension of the pyrolusite and digesting the mixture on a hot water bath until all the MnO_{2} has been reduced. The excess, unreacted oxalate solution is then titrated with standardised potassium permanganate, KMnO_{4} solution after which the manganese content of the ore can be calculated.

A student prepared a standard solution of sodium oxalate by weighing 3.2 g of the dry anhydrous salt, dissolving it in distilled water and making the solution up to 500 mL .25 mL of the oxalate solution required 24.76 mL of KMnO_{4} solution.

Role of KMnO_{4} in the given titration can be described as:
A. oxidising agent
B. reducing agent
C. indicator
D. oxidising agent and indicator

View Text Solution

Passage 2

1. For a series of indicators the following colours and pH range over which colour change takes place are as follows:
Indicator
U
V
W
X
Y

Colour change over pli range

vellow to blue	(1)H0い1
red to yellow	(phl2x+..a)
red to yellow	
yellow to blue	
colourless to red	($\mathrm{pH} \times 2 \mathrm{l}$ (10)

Indicator V could be used to find the equivalence point for 0.1 M acetic acid and 0.1 M ammonium hydroxide solution :
(a) True
(b) False

2．For a series of indicators the following colours and pH range over which colour change takes place are as follows ：
Indicator
U
V
W
X
Y

> Colour change over pH range
> vellow to blue
> red to yellow
> red to yellow
> (pH0\%1か
> (pH2. FH (1) 11
> (pH4.2wsx)
> yellow to blue
> colourless to red
> ($\mathrm{pH} 6.0 \mathrm{O} / \mathrm{O} 77$
> (pH 8.2 (0) 10)

Indicator Y could be used to distinguish between the solutions of ammonium chloride and sodium acetate solution ：
（a）True
（b）False

－View Text Solution

3．For a series of indicators the following colours and pH range over which colour change takes place are as follows ：
Indicator
U
V
W
X
Y

Colour change over pH range

vellow to blue
（pHO）いい
red to yellow
（pH2Xw＋1）
red to yellow
（pH42m＜x）
yellow to blue colourless to red
（ pH H6（1） 77
Y
（ pH 8.2 ml （0）

Indicator X could be used to distinguish between the solution of ammonium chloride and sodium acetate solution :
(a) True
(b) False

View Text Solution

4. For a series of indicators the following colours and pH range over which colour change takes place are as follows :
Indicator
Z
V
W
X
Y

Colour change over pll range	
vellow to blue	(phl ${ }^{\text {(1) }}$)
red to yellow	(1 H2 2×1.11
red to vellow	
yellow to blue	(pH H (1)
colourless to red	(pll 2.010

Indicator W would be suitable for use in the determination of the concentration of acetic acid in white vinegar by base titration :
(a) True
(b) False
5. For a series of indicators the following colours and pH range over which colour change takes place are as follows :

Colour change over pH range

> vellow to blue (phl w l (1)
red to yellow

red to yellow
($\mathrm{pH6}$ () はフ7)
(pH 8.2 (0) 10)

Indicator U could be used to distinguish between 0.1 M and 0.01 M solution of sulphuric acid:
(a) True
(b) False

- View Text Solution

Passage 3

1. Chemists work with standardised solution, a solution whose concentration is known. The requirements to standardise the solution are :
2. the volume of the solution.
3. the number of moles of solute in that volume.

A primary standard solution is used in determining the molarity of a solution. To find the molarity of $\mathrm{HCl}, 0.317 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the primary standard dissolved in water, is used in titrating the solution of HCl .22 .9 mL of acid are required to neutralise the sodium carbonate. This is the needed volume (first requirement). The stoichiometric equation is used to know the second requirement.
$2 \mathrm{HCl}($ aq. $)+\mathrm{Na}_{2} \mathrm{CO}_{3}($ aq. $) \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
What is the molarity of HCl in the above case ?
A. 0.261 M
B. 0.522 M
C. 0.1 M
D. 1 M

Answer: A

2. Chemists work with standardised solution, a solution whose concentration is known. The requirements to standardise the solution are :
3. the volume of the solution.
4. the number of moles of solute in that volume.

A primary standard solution is used in determining the molarity of a solution. To find the molarity of $\mathrm{HCl}, 0.317 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the primary standard dissolved in water, is used in titrating the solution of HCl .22 .9 mL of acid are required to neutralise the sodium carbonate. This is the needed volume (first requirement). The stoichiometric equation is used to know the second requirement.
$2 \mathrm{HCl}($ aq. $)+\mathrm{Na}_{2} \mathrm{CO}_{3}($ aq. $) \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
Equivalent mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the above equation will be :
A. 106
B. 53
C. 26.5
D. 13.25

Answer: B

- View Text Solution

3. Chemists work with standardised solution, a solution whose concentration is known. The requirements to standardise the solution are:
4. the volume of the solution.
5. the number of moles of solute in that volume.

A primary standard solution is used in determining the molarity of a solution. To find the molarity of $\mathrm{HCl}, 0.317 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the primary standard dissolved in water, is used in titrating the solution of HCl .22 .9 mL of acid are required to neutralise the sodium carbonate. This is the needed volume (first requirement). The stoichiometric equation is used to know the second requirement.
$2 \mathrm{HCl}(a q)+.\mathrm{Na}_{2} \mathrm{CO}_{3}($ aq. $) \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
The suitable indicator in the above titration will be :
A. phenolphthalein
B. methyl orange
C. litmus
D. bromothymol blue

Answer: B

- View Text Solution

4. Chemists work with standardised solution, a solution whose concentration is known. The requirements to standardise the solution are:
5. the volume of the solution.
6. the number of moles of solute in that volume.

A primary standard solution is used in determining the molarity of a solution. To find the molarity of $\mathrm{HCl}, 0.317 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the primary standard dissolved in water, is used in titrating the solution of HCl .22 .9 mL of acid are required to neutralise the sodium carbonate. This is the
needed volume (first requirement). The stoichiometric equation is used to know the second requirement.
$2 \mathrm{HCl}(a q)+.\mathrm{Na}_{2} \mathrm{CO}_{3}($ aq. $) \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
Solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in water will be :
A. acidic
B. neutral
C. basic
D. Cannot be predicted

Answer: C

- View Text Solution

5. Chemists work with standardised solution, a solution whose concentration is known. The requirements to standardise the solution are :
6. the volume of the solution.
7. the number of moles of solute in that volume.

A primary standard solution is used in determining the molarity of a solution. To find the molarity of $\mathrm{HCl}, 0.317 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the primary standard dissolved in water, is used in titrating the solution of HCl 22.9 mL of acid are required to neutralise the sodium carbonate. This is the needed volume (first requirement). The stoichiometric equation is used to know the second requirement.
$2 \mathrm{HCl}($ aq. $)+\mathrm{Na}_{2} \mathrm{CO}_{3}(a q.) \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$

What fraction of $n a_{2} \mathrm{CO}_{3}$ will be neutralised by HCl in presence of phenolphthalein indicator?
A. $1 / 3$
B. $2 / 3$
C. $1 / 2$
D. $1 / 4$

Answer: C

1. 0.5 g bleaching powder was suspended in water and excess KI is added. On acidifying with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{I}_{2}$ was liberated which required 50 mL of $\mathrm{N} / 10$ hypo $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}\right)$ in presence of starch. The reactions involved are :
I. $\mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
II. $2 \mathrm{KI}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
III. $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$

In the reaction (I), which one is reduced ?
A. CaOCl_{2}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. Both
D. none of these

Answer: D

2. 0.5 g bleaching powder was suspended in water and excess KI is added. On acidifying with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{I}_{2}$ was liberated which required 50 mL of $\mathrm{N} / 10$ hypo ($\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$) in presence of starch. The reactions involved are :
I. $\mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
II. $2 \mathrm{KI}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
III. $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$

In the given titration, starch acts as :
A. oxidising agent
B. indicator
C. reducing agent
D. catalyst

Answer: B

3. 0.5 g bleaching powder was suspended in water and excess KI is added. On acidifying with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{I}_{2}$ was liberated which required 50 mL of $\mathrm{N} / 10$ hypo $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ in presence of starch. The reactions involved are :
I. $\mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
II. $2 \mathrm{KI}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
III. $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$ In reaction (II), $C l_{2}$ acts as :
A. reducing agent
B. oxidising agent
C. indicator
D. both oxidising agent and indicator

Answer: B

- View Text Solution

4. 0.5 g bleaching powder was suspended in water and excess KI is added. On acidifying with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{I}_{2}$ was liberated which required 50 mL of $\mathrm{N} / 10$ hypo ($\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$) in presence of starch. The reactions involved are :
I. $\mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
II. $2 \mathrm{KI}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
III. $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$

Percentage of available chlorine in bleaching powder is :
A. 35.5%
B. 71%
C. 17.25%
D. 50%

Answer: A

- View Text Solution

5. 0.5 g bleaching powder was suspended in water and excess KI is added. On acidifying with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{I}_{2}$ was liberated which required 50 mL of $\mathrm{N} / 10$ hypo $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ in presence of starch. The reactions involved are :
I. $\mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
II. $2 \mathrm{KI}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
III. $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$

Starch forms iodo-starch complex in the given titration. The colour of the complex will be :
A. green
B. blue
C. pale yellow
D. milky white

Answer: B

1. Hypo is the common name of sodium thiosulphate, with molecular formula $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. It is used as intermediate in iodometric as well as in iodimetric titrations.
lodine and chlorine react with hypo in different ways as follows:
$2 n a_{2} S_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{Cl}^{-}+\mathrm{S}
$$

Suppose, 50 mL of $0.01 M N a_{2} S_{2} O_{3}$ solution and $5 \times 10^{-4} \mathrm{~mol}$ of Cl_{2} are allowed to react according to the above equation. Hypo is also used in photography to dissolve AgBr , forming a complex compound.
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{AgBr} \rightarrow \mathrm{Na} a_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]+\mathrm{NaBr}$
The balanced chemical reaction with $C l_{2}$ is:
A. $\mathrm{Cl}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{NaCl}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
B. $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}+\mathrm{S}$
C. $\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{S}+\mathrm{Cl}^{-}$
D. none of the above

Answer: B

- View Text Solution

2. Hypo is the common name of sodium thiosulphate, with molecular formula $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. It is used as intermediate in iodometric as well as in iodimetric titrations.

Iodine and chlorine react with hypo in different ways as follows :
$2 n a_{2} S_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
$\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{Cl}^{-}+\mathrm{S}$
Suppose, 50 mL of $0.01 M N a_{2} S_{2} O_{3}$ solution and $5 \times 10^{-4} \mathrm{~mol}$ of Cl_{2} are allowed to react according to the above equation. Hypo is also used in photography to dissolve AgBr , forming a complex compound.
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{AgBr} \rightarrow \mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]+\mathrm{NaBr}$
Number of moles of $S_{2} O_{3}^{2-}$ present in the sample is:
A. 0.0005
B. 0.01
C. 0.0025
D. 0.02

Answer: A

- View Text Solution

3. Hypo is the common name of sodium thiosulphate, with molecular formula $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. It is used as intermediate in iodometric as well as in iodimetric titrations.
lodine and chlorine react with hypo in different ways as follows :
$2 n a_{2} S_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
$\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{Cl}^{-}+\mathrm{S}$
Suppose, 50 mL of $0.01 \mathrm{MNa} a_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and $5 \times 10^{-4} \mathrm{~mol}$ of Cl_{2} are allowed to react according to the above equation. Hypo is also used in photography to dissolve AgBr , forming a complex compound.
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{AgBr} \rightarrow \mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]+\mathrm{NaBr}$

What is the molarity of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ formed in the reaction between $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and Cl_{2} ?
A. 0.08 M
B. 0.04 M
C. 0.02 M
D. 0.01 M

Answer: D

- View Text Solution

4. Hypo is the common name of sodium thiosulphate, with molecular formula $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. It is used as intermediate in iodometric as well as in iodimetric titrations.
lodine and chlorine react with hypo in different ways as follows:
$2 n a_{2} S_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
$\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{Cl}^{-}+\mathrm{S}$

Suppose, 50 mL of $0.01 M N a_{2} S_{2} O_{3}$ solution and $5 \times 10^{-4} \mathrm{~mol}$ of $C l_{2}$ are allowed to react according to the above equation. Hypo is also used in photography to dissolve AgBr , forming a complex compound. $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{AgBr} \rightarrow \mathrm{Na} a_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]+\mathrm{NaBr}$

The process of photography, in which $N a_{2} S_{2} O_{3}$ is used, is called
A. developing
B. image fixing
C. tonning
D. all of these

Answer: B

- View Text Solution

5. Hypo is the common name of sodium thiosulphate, with molecular formula $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. It is used as intermediate in iodometric as well as in iodimetric titrations.

Iodine and chlorine react with hypo in different ways as follows:
$2 \mathrm{na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
$\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{Cl}^{-}+\mathrm{S}$
Suppose, 50 mL of $0.01 \mathrm{MNa} a_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and $5 \times 10^{-4} \mathrm{~mol}$ of Cl_{2} are allowed to react according to the above equation. Hypo is also used in photography to dissolve AgBr , forming a complex compound.
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{AgBr} \rightarrow \mathrm{Na} a_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]+\mathrm{NaBr}$
Oxidation state of silver in $\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$ is :
A. 0
B. +1
C. +2
D. -1

Answer: B

- View Text Solution

Passage 6

1. Equivalent mass of a substance may be calculated as,

Equivalent mass $=\frac{\text { Molecular mass }}{\mathrm{n} \text {-factor }}=\frac{\text { Atomic mass }}{n-f a c \rightarrow r}$
n -factor= Basicity of acid or acidity of base
n-factor= Number of moles of electrons gainted or lost per mole of oxidising or reducing agents
n -factor= Total positive or negative valency of a salt n -factor= Valency of an ion.

Concept of n -factor is very important for redox as well as for non-redox reactions.

When KMnO_{4} is titrated against ferrous ammonium sulphate in acid medium then equivalent mass of KMnO_{4} will be :
A. $\frac{\text { Molecular mass }}{10}$
B. $\frac{\text { molecular mass }}{5}$
C. $\frac{\text { Molecular mass }}{3}$
D. $\frac{\text { molecular mass }}{2}$

Answer: B

- View Text Solution

2. Equivalent mass of a substance may be calculated as,

Equivalent mass $=\frac{\text { Molecular mass }}{\text { n-factor }}=\frac{\text { Atomic mass }}{n-f a c \rightarrow r}$
n-factor= Basicity of acid or acidity of base
n-factor $=$ Number of moles of electrons gainted or lost per mole of oxidising or reducing agents
n-factor= Total positive or negative valency of a salt
n-factor= Valency of an ion.

Concept of n-factor is very important for redox as well as for non-redox reactions.

Equivalent mass of ferrous oxalate $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in the following reaction is

$$
\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}
$$

A. $\frac{\text { Molecular mass }}{1}$

B. $\frac{\text { Molecular mass }}{2}$
C. $\frac{\text { Molecular mass }}{3}$
D. $\frac{\text { Molecular mass }}{4}$

Answer: C

- Watch Video Solution

3. Equivalent mass of a substance may be calculated as,

Equivalent mass $=\frac{\text { Molecular mass }}{\mathrm{n} \text {-factor }}=\frac{\text { Atomic mass }}{n-f a c \rightarrow r}$ n -factor= Basicity of acid or acidity of base n-factor $=$ Number of moles of electrons gainted or lost per mole of oxidising or reducing agents n -factor= Total positive or negative valency of a salt n -factor= Valency of an ion.

Concept of n -factor is very important for redox as well as for non-redox reactions.

Equivalent mass of $\mathrm{H}_{3} \mathrm{PO}_{2}$ when it undergoes disporportionation to PH_{3} and $\mathrm{H}_{3} \mathrm{PO}_{3}$ will be :
A. M. $w . / 2$
B. $M . w . / 4$
C. M. w. $/ 24$
D. $3 M . w . / 4$

Answer: D

- View Text Solution

4. Equivalent mass of a substance may be calculated as,

Equivalent mass $=\frac{\text { Molecular mass }}{\mathrm{n} \text {-factor }}=\frac{\text { Atomic mass }}{n-f a c \rightarrow r}$
n -factor= Basicity of acid or acidity of base
n -factor= Number of moles of electrons gainted or lost per mole of oxidising or reducing agents
n -factor= Total positive or negative valency of a salt
n -factor= Valency of an ion.
Concept of n -factor is very important for redox as well as for non-redox reactions.
BrO_{3}^{-}ion reacts with Br^{-}to form Br_{2}, in acid medium. The equivalent mass of $B r_{2}$ in this reaction is :
A. $\frac{4 M . w}{6}$
B. $\frac{3 M \cdot w}{5}$
C. $\frac{5 M \cdot w}{3}$
D. $\frac{5 M \cdot w}{8}$

Answer: B

- View Text Solution

Passage 7

1. Bleaching powder and bleach solution are produced on a large scale and used in several household products. The effectiveness of bleach solution is often measured by iodometry.

25 mL of household bleach solution was mixed with 30 mL of 0.50 M KI and 10 mL of 4 N acetic acid. In the titration of the liberated iodine, 48 mL of $0.25 \mathrm{NNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was used to reach the end point. The molarity of the household bleach solution is :
A. 0.48 M
B. 0.96 M
C. 0.24 M
D. 0.024 M

Answer: C

2. Bleaching powder and bleach solution are produced on a large scale and used in several household products. The effectiveness of bleach solution is often measured by iodometry.

Bleaching powder contains a salt of an oxoacid as one of its components. The anhydride of that oxoacid is :
A. $\mathrm{Cl}_{2} \mathrm{O}$
B. $\mathrm{Cl}_{2} \mathrm{O}_{7}$
C. ClO_{2}
D. $\mathrm{Cl}_{2} \mathrm{O}_{6}$

Answer: A

- View Text Solution

Section I

1. For decolorisation of 1 mole of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is:
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{7}{2}$

Answer: C

- View Text Solution

2. If equal volume of $1 M K M n O_{4}$ and $1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solutions are allowed to oxidise Fe^{2+} to Fe^{3+} in acidic medium, then Fe^{2+} will be oxidised:
A. more by KMnO_{4}
B. more by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
C. equal in both cases
D. cannot be determined

Answer: A

- View Text Solution

3. MnO_{2} on reaction with conc. HCl liberates chlorine, the liberated chlorine ontreatment with aqueous Kl gives iodine. The iodine is neutralized by 40 of 0.1 N hypo solution. The reaction is :
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
The amount of MnO_{2} used in the reaction is :
A. 10 g
B. 0.174 g
C. 1.74 g
D. 0.0174 g

Answer: B

- View Text Solution

4. 1.520 g of hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent mass of metal is :
A. 1.52
B. 0.995
C. 190
D. 9

Answer: D

- View Text Solution

5. Identify the incorrect statement regarding the volumetric estimation of FeSO_{4} :
A. KMnO_{4} can be used in aqueous HCl
B. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ can be used in aqueous HCl
C. KMnO_{4} can be used in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ can be used in aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: A

- View Text Solution

6. When one gram mole of KMnO_{4} is mixed with hydrochlroic acid then, the volume of chlorine gas liberated at NTP will be :
A. 11.2 litre
B. 22.4 litre
C. 56 litre
D. 44.8 litre
7. 0.7 g of $\mathrm{Na}_{2} \mathrm{CO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ was dissolved in water to make 100 mL solution, 20 mL of this solution required 19.8 mL of 0.1 N HCl for complete neutralisation. The value of x is :
A. 5
B. 2
C. 3
D. 4

Answer: B

- View Text Solution

8. 0.5 g of impure ammonium chloride was heated with caustic soda solution to evolve ammonia gas, the gas is absorbed in 150 mL of
$\mathrm{N} / 5 \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Excess sulphuric acid required 20 mL of 1 N NaOH for complete neutralization. The percentage of NH_{3} in the ammonium chloride is :
A. 0.68
B. 0.34
C. 0.48
D. 0.17

Answer: B

- View Text Solution

9. One mole of a mixture of CO and CO_{2} requires exactly 20 g of NaOH to convert all the CO_{2} into $\mathrm{Na}_{2} \mathrm{CO}_{3}$. How many more grams of NaOH would it require for conversion into $\mathrm{Na}_{2} \mathrm{CO}_{3}$ if the mixture (one mole) is completely oxidised to CO_{2} ?
A. 60 g
B. 80 g
C. 40 g
D. 20 g

Answer: A

- View Text Solution

10. 0.1 litre of $0.01 \mathrm{MKMnO}_{4}$ is used by 100 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ in acidic medium. Volume of same KMnO_{4} required in alkaline medium to oxidise 0.1 litre of some $\mathrm{H}_{2} \mathrm{O}_{2}$ will be :
A. $\frac{100}{3} m L$
B. $\frac{500}{3} m L$
C. $\frac{300}{5} m L$
D. $\frac{400}{3} m L$

Section li

1. One mole of acidic KMnO_{4} reacts with :
A. $\frac{5}{3} \mathrm{~mol}$ of $\mathrm{FeC}_{2} \mathrm{O}_{4}$
B. $\frac{5}{2} \mathrm{~mol}$ of SO_{2}
C. 4 mol of FeS
D. 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: A::B

View Text Solution
2. Boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ is :
A. tribasic
B. dibasic
C. monobasic
D. aprotic

Answer: C::D

D View Text Solution

3. $0.6 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, in acid medium can oxidise :
A. 3.6 mol FeSO 4 to $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
B. $0.1 \mathrm{~mol} \mathrm{FeSO}_{4}$ to $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
C. 0.05 mol of Sn^{2+} to $S n^{4+}$
D. 1.8 mol of $S n^{2+}$ to $S n^{4+}$

Answer: A::D

4. Which of the following statement(s) is/are correct ?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$ both are dibasic
B. $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ both are tribasic
C. $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$ both are monobasic
D. HNO_{3} and HCl both are monobasic

Answer: A::C::D

- View Text Solution

5. In the titration of $\mathrm{CH}_{3} \mathrm{COOH}$ against NaOH , we cannot use the :
A. methyl orange
B. methyl red
C. phenolphthalein
D. bromothymol blue

Answer: A::B::D

- View Text Solution

Section lii

1. Statement-1: Equivalent mass of $H_{3} P_{2}$ is equal to its molecular mass.

Statement-2: $\mathrm{H}_{3} \mathrm{PO}_{2}$ is a monobasic acid.
A. Statement- 1 is true, statement -2 is true, statement- 2 is a correct
explanation for statement-1.
B. Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1.
C. Statement-1 is true, statement-2 is false.
D. Statement- 1 is false, statement-2 is true.

Answer: A

- View Text Solution

2. Statement-1: When $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is titrated against HCl in presence of phenolphthalein indicator, it is converted to NaCl .

Statement-2: Phenolphathalein shows colour change in the pH range of
A. Statement- 1 is true, statement -2 is true, statement- 2 is a correct explanation for statement-1.
B. Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1.
C. Statement- 1 is true, statement- 2 is false.
D. Statement- 1 is false, statement- 2 is true.
3. Statement-1: 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is neutralised by 2 mol of NaOH , however, 1 equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is neutralised by 1 equivalent of NaOH . Statement-2: Equivalent mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is half of its moelcular mass, however, the equivalent mass of NaOH is equal to its moelcular mass.
A. Statement -1 is true, statement -2 is true, statement -2 is a correct explanation for statement-1.
B. Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1.
C. Statement- 1 is true, statement-2 is false.
D. Statement- 1 is false, statement-2 is true.

Answer: B

1. Match the Column-I with Column-II :
C Chithon-1
Column-11
(p) Perhydrol
(a) 10 volume $\mathrm{H}_{2} \mathrm{O}_{2}$
(q) 5.358 N
(c) 30 volume $\mathrm{H}_{2} \mathrm{O}_{2}$
(d) 100 volume $\mathrm{H}_{2} \mathrm{O}_{2}$
(r) 1.785 M
(s) 3.03%

- View Text Solution

2. Match the Column-I with Column-II :
```
Column-I
(Bcid)
```

(a) $\mathrm{CH}_{3} \mathrm{COOH}$
(b) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(d) $\mathrm{H}_{3} \mathrm{PO}_{3}$

Column-11
(Information)
(p) Tribasic
($E_{w}=$ M.w./3)
(q) Dibasic reducing
(r) Dibasic

$$
\left(E_{\mathrm{w}}=\mathrm{M} \cdot \mathrm{w} \cdot / 2\right)
$$

(s) Monobasic ($E_{w}=$ M.w. $)$
3. Match the Column-I with Column-II :

Column-1
(Pcaction)
(a) $\mathrm{NH}_{3} \longrightarrow \mathrm{NO}_{3}^{-}$
(p) M.w. $/ 20$
(b) $\mathrm{Fe}_{2} \mathrm{~S}_{3} \longrightarrow \mathrm{FeSO}_{4}+\mathrm{SO}_{2}$
(q) M.w. $/ 2$
(c) $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow$
(r) M.w./ 8
(d) $\mathrm{CuS} \longrightarrow \mathrm{CuSO}_{4}$
(s) 50

- View Text Solution

Section V

1. What volume of 0.1 M HCl will be oxidised by 1 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$?

- Watch Video Solution

2. In how many acids among following, the basicity is greater than 1 ?
$\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{BO}_{3}$
3. A sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ is labelled 10 vol. Its percentage strength will be nearly__- \%.
