©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - G.R. BATHLA \& SONS CHEMISTRY (HINGLISH)

Chemical Thermodynamics and Thermochemistry

Example

1. A gas expands by 0.5 L against a constant pressure of 1atm. Calculate the work done in joule and calorie.

- Watch Video Solution

2. One mole of an ideal gas is put through a series of changes as shown in the graph in which A, B, and C, mark the three stages of the system. At each stage the variables are shown in the graph.
a. Calculate the pressure at three stages of system.
b. Name the process during the following chnages:
i. A to B ii. B to C
iii. Cto A iv. Overall change

- Watch Video Solution

3. The diagram shows a PV graph of a thermodynamic behavious of an ideal gas. Find out from this graph (i) work done in the process $A \rightarrow B, B \rightarrow C, C \rightarrow D$ and $D \rightarrow A$, (ii) work done in the complete cycle $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$.
4. Calculate the work done when 1.0 mol of water at 373 K vaporises against an atmosheric pressure of 1.0atm. Assume ideal gas behaviour.

Watch Video Solution

5. Identify different steps in the following cyclic process:

6. 1 mol of a mono-atomic gas is subjected to following cyclic process:

$$
V \longrightarrow
$$

a. Calculate T_{1} and T_{2}.
b. Calculate $\Delta U, q$, and W in calories in each step of cyclic process.

- Watch Video Solution

7. If 500 calorie of heat energy are added to a system and the system does 350 calorie of work on the surroundings, what is the energy change of the system?

- Watch Video Solution

8. If 100 calorie of heat are added to the same system as in example 1 and a work of 50 calorie is done on the system, calculate the energy change of the system.

- Watch Video Solution

9. A gas contained in a cylinder fitted with a frictionless piston expands against a constant pressure 1 atmosphere from a volume of 4 litre to a volume of 14 litre. In doing so, it absorbs 800 J thermal energy from surroundings. Determine ΔU for the process.

- Watch Video Solution

10. Calculate the lattice energy of the reaction
$L i^{\oplus}(g)+C I^{\Theta}(g) \rightarrow \operatorname{LiCI}(s)$
from the following data:

$$
\begin{aligned}
& \Delta_{\text {sub }} H^{\Theta}\left(\mathrm{Li}^{2}\right)=160.67 \mathrm{kJmol}^{-1}, \frac{1}{2} D\left(C I_{2}\right)=122.17 \mathrm{kJmol}^{-1}, \mathrm{IP}(\mathrm{Li})=520.07 \mathrm{kJmol}^{-1} \\
& , E_{A}(C I)=-365.26 \mathrm{kJmol}^{-1} \text { and } \Delta_{f} H^{\Theta}(L i C I)=-401.66 \mathrm{kJmol}^{-1}
\end{aligned}
$$

(D) Watch Video Solution

11. When a mole of crystalline sodium chloride is prepared, 410 kJ of heat is produced. The heat of sublimation of sodium metal is 180.8 kJ . The heat of dissociation fo chloride gas into atoms is 242.7 kJ . The ionisation energy of Na and electron affinity of CI are $493 . \mathrm{kJ}$ and -368.2 kJ , respectively. calculate the lattice enegry of NaCI.

- Watch Video Solution

12. 0.5 g of benzoic acid was subjected to combustion in a bomb calorimeter at $15^{\circ} \mathrm{C}$ when the temperature of the calorimeter system (including water) was found to rise by $0.55^{\circ} \mathrm{C}$. Calculate the heat of combustion of benzoic acid (i) at constant volume and (ii) at constant pressure. the thermal capacity of the calorimeter including water was found to be 23.85 kJ .
13. A sample of 0.16 gCH was subjected to combustion at $27^{\circ} \mathrm{C}$ in a bomb calorimeter. The temperature of the calorimeter system (including water) was found to rise by $0.5^{\circ} \mathrm{C}$. Calculate the heat of combustion of methane at (a) constant volume and (b) constant pressure. The thermal capacity of calorimeter system is $17.0 \mathrm{kJK}^{-1}$ and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

14. The heat of combustion of ethane gas is $-368 \mathrm{kcalmol}^{-1}$. Assuming that 60% of heat is useful, how many m^{3} of ethane measured at $N T P$ must be burned to supply heat to convert 50 kg of water at $10^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$?

- Watch Video Solution

15. Will the reaction,

$$
I_{2}(s)+H_{2} S(g) \rightarrow 2 H I(g)+S(s)
$$

proceed spontaneously in the forward direction of 298 K
$\Delta_{f} G^{\Theta} \mathrm{HI}(\mathrm{g})=1.8 \mathrm{kJmol}^{-1}, \Delta_{f} G^{\Theta} \mathrm{H}_{2} S(g)=33.8 \mathrm{kJmol}^{-1} ?$

- Watch Video Solution

16. Compute the standard free enegry of the reaction at $27^{\circ} \mathrm{C}$ for the combustion for methane using the give data:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Species $\quad \begin{array}{lllll}\mathrm{CH}_{4} & \mathrm{O}_{2} & \mathrm{CO}_{2} & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\end{array}$
$\begin{array}{llllll}\Delta_{f} H^{\Theta}\left(\mathrm{kJmol}^{-1}\right) & -74.8 & - & -393.5 & -285.8 \\ S^{\Theta}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) & 186 & 205 & 214 & 70\end{array}$

Watch Video Solution

17. The emf of the cell reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(a q) \rightarrow \mathrm{Zn}^{2+}(a Q)+\mathrm{Cu}(s)$
is 1.1 V . Calculate the free enegry change for the reaction. If the enthalpy of the reaction is $-216.7 \mathrm{kJmol}^{-1}$, calculate the entropy change for the reaction.

(D) Watch Video Solution

18. Calculate the equilibrium constant for the reaction $\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(a q) \rightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(\mathrm{s}), E_{\text {cell }}^{\circ}=0.46 \mathrm{~V}$.

Watch Video Solution

19. Calculate ΔG^{Θ} for the following reaction:
$\mathrm{CO}(\mathrm{g})+\left(\frac{1}{2}\right) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-282.84 \mathrm{~kJ}$
Given,
$S_{\mathrm{CO}_{2}}^{\Theta}=213.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S_{\mathrm{CO}(\mathrm{g})}^{\Theta}=197.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S_{\mathrm{O}_{2}}^{\Theta}=205.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
20. For the reaction
$A(s) \rightarrow B(s)+C(s)$

Calculate the entropy change at 298 K and 1 atm if absolute etropies (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) are $A=130, B=203, C=152$

- Watch Video Solution

21. Calculate the maximum efficiency of an engine operating between $100^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$

- Watch Video Solution

22. Heat supplied to a Carnot engine is 453.6 kcal . How much useful work can be done by the engine that works between $10^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$?

- Watch Video Solution

Solved Example
1.1 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 2 mole of Al are mixed at temperature $25^{\circ} \mathrm{C}$ and the reaction is completedto give:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{l}), \Delta \mathrm{H}=-850 \mathrm{~kJ}
$$

The liberated heat is retained within the products, whose combined specific heat over a wide temperature range is about $0.8 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$. The melting point of iron is $1530^{\circ} \mathrm{C}$. Show that the quantity of heat liberated is sufficient to raise the temperature of the product to the melting point of iron in order to get it welded.

- Watch Video Solution

2. Calculate w and ΔU for the conversion of 0.5 mole of water at $100^{\circ} \mathrm{C}$ to steam at 10 atm pressure. Heat of vaporisation of water at $100^{\circ} \mathrm{C}$ is $40670 \mathrm{Jmol}^{-1}$

- View Text Solution

3. Calculate the work done when 50 g of iron is dissolved in HCl at $25^{\circ} \mathrm{C}$ in (i) a cloed vessel and (ii) an open beaker when the atmospheric pressure is 1atm.

- Watch Video Solution

4.5 moles of oxygen are heated at constant volume from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. The change in internal energy of a gas.
$\left[C_{P}=7.03 \mathrm{calmol}^{-1} \mathrm{deg}^{-1}\right.$ and $\left.R=8.3 \mathrm{Jmol}^{-1} \mathrm{deg}^{-1}\right]$

- Watch Video Solution

5. Calculate the amount of work done by 2 mole of an ideal gas at 298 K in reversible isothermal expansion from 10 litre to 20 litre.

- Watch Video Solution

6. 5 moles of an ideal gas expand isothermally and reversible from a pressure of 10 atm to 2 atom at 300 K . What is the largest mass which can be lifted through a height of 1 metre in this expansion?

- Watch Video Solution

7. Two moles of an ideal monoatomic gas at NTP are compressed adiabatically and reversibly to occupy a volume of $4.48 \mathrm{dm}^{3}$. Calculate the amount of work done, ΔU, final temperature and pressure of the gas. C_{V} for ideal gas $=12.45 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

8. A certain volume of dry air at NTP is expanded reversible to four times its volume (a) isothermally (b) adiabatically. Calculate the final pressure and temperature in each case, assuming ideal behaviour.
($\frac{C_{P}}{C_{V}}$ for air=1.4)
9. Calculate $\mathrm{q}, \mathrm{w}, \Delta U$ and ΔH for the reversible isothermal expansion of one mole of an ideal gas at $127^{\circ} \mathrm{C}$ from a volume of $10 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$.

- Watch Video Solution

10. A gas expands from $3 \mathrm{dm}^{3}$ to $5 \mathrm{dm}^{3}$ against a constant pressure of 3 atm. The work done during expansion is used to heat 10 mol of water at a temperature of 290 K. Calculate final temperature of water. Specific heat of water $=4.184 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$

- Watch Video Solution

11. 10 g of argon gas is compressed isothermally and reversibly at a temperature of $27^{\circ} \mathrm{C}$ from 10 L to 5 L . Calculate $q, w, \Delta U$, and ΔH for this process. $R=2.0$ calK ${ }^{-1} \mathrm{~mol}^{-1}, \log _{10} 2=0.30$. Atomic weight of $\mathrm{Ar}=40$.

- Watch Video Solution

12. Calculate the maximum work done in expanding 16 g of oxygen at 300 K occupying volume of $5 \mathrm{dm}^{3}$ and isothermally untill the volume become $25 \mathrm{dm}^{3}$?

- Watch Video Solution

13. How much heat is required to change 10 g ice at $0^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$? Latent heat of fusion and vaporisation for $\mathrm{H}_{2} \mathrm{O}$ are $80 \mathrm{clg}^{-1}$ and $540 \mathrm{calg}^{-1}$, respectively. Specific heat of water is $1 \mathrm{calg}^{-1}$.

- Watch Video Solution

14. A swimmer coming out from a pool is covered with a film of water weighing about 80 g . How much heat must be supplied to evaporate this water ? If latent heat of evaporation for $\mathrm{H}_{2} \mathrm{O}$ is $40.79 \mathrm{kJmol}^{-1}$ at $100^{\circ} \mathrm{C}$.
15. The heat of combustion of ethylene at $18^{\circ} \mathrm{C}$ and at constant volume is -335.8 kcal when water is obtained in liquid state. Calculate the heat of combusion at constant pressure and at $18^{\circ} \mathrm{C}$.

- Watch Video Solution

16. The enthalpy of formation of methane at constant pressure and 300 K is -75.83 kJ . What will be the heat of formation at constant volume? $\left[R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$

- Watch Video Solution

17. Calculate the enthalpy change for the following reaction:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

given, enthalpies of formation of $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ are - 74.8 kJ $\mathrm{mol}^{-1},-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-286.2 \mathrm{~kJ} \mathrm{ml}^{-1}$ respectively.
18. The standard heats of formation at 298 K for $\mathrm{CCl}_{4}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{g})$ are -25.5, -57.8, - 94.1 and -22.1 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ respectively. Calculate ΔH_{298}° for the reaction.
$\mathrm{CCl}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{HCl}(\mathrm{g})$.

- Watch Video Solution

19. The molar heat of formation of $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$ is -367.5 kJ and those of $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are +81.46 kJ and -285.78 kJ respectively at $25^{\circ} \mathrm{C}$ and 1 atmospheric pressure. Calculate the ΔH and ΔU for the reaction, $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

- Watch Video Solution

20. The heats of combustion of CH_{4} and $\mathrm{C}_{4} \mathrm{H}_{10}$ are -890.3 and $-2878.7 \mathrm{kJmol}^{-1}$, respectively. Which of the two has greater efficiency as fuel per gram?

- Watch Video Solution

21. In a gobar gas plant, gobar gas is formed by bacterial fermentation of animal refuse. It mainly contains methane and its heat of combustion is $-809 \mathrm{kJmol}^{-1}$ according to following equation:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-809 \mathrm{~kJ}$
How much gobar gas would have to be produced per day for a small village of 50 families, it it is assumed that each family requires 20000 kJ of enegry per day? The methane content in gobar gas is 80% by mass.

- Watch Video Solution

22. The standard molar heats of formation of ethane, carbon dioxide, and liquid water are -21.1, -94.1, and -68.3 kcal , respectively. Calculate the standard molar heat of combustion of ethane.

- Watch Video Solution

23. An intimate mixture of ferric oxide and aluminium is used as solid fuel in rockets. Calculate the fuel value per cm^{3} of the mixture. Heats of formation and densities are as follows:
$H_{f}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=-399 \mathrm{kcal} \mathrm{mol}^{-1}, \mathrm{H}_{f}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=-199 \mathrm{kcal} \mathrm{mol}^{-1} \quad$ Itbr. Density of $\mathrm{Fe}_{2} \mathrm{O}_{3}=5.2 \mathrm{~g} / \mathrm{cm}^{3}$, Density of $\mathrm{Al}=2.7 \mathrm{~g} / \mathrm{cm}^{3}$

- Watch Video Solution

24. When 2 mole of $C_{2} H_{6}$ are completely burnt -3129 kJ of heat is liberated. Calculate the heat of formation of $\mathrm{C}_{2} \mathrm{H}_{6} \cdot \Delta_{f} H^{\Theta}$ for CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are - 395 and -286 kJ , respectively.

- Watch Video Solution

25. Standard heat of formation of $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are $-76.2,-394.8$ and $-241.6 \mathrm{kJmol}^{-1}$ respectively. Calculate the amount of heat evolved by burning $1 \mathrm{~m}^{3}$ of CH_{4} measured under normal conditions.
26. A gas mixture of 3.67 L of ethylene and methane on complete combustion at $25^{\circ} \mathrm{C}$ produces 6.11 L of CO_{2}. Find out the heat evolved on buring $1 L$ of the gas mixture. The heats of combustion of ethylene and methane are - 1423 and $-891 \mathrm{kJmol}^{-1}$, respectively, at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

27. 150 mL of 0.5 N nitric acid solution at $25.35^{\circ} \mathrm{C}$ was mixed with 150 mL of 0.5 N sodium hydroxide solution at the same temperature. The final temperature was recorded to be $28.77^{\circ} \mathrm{C}$. Calculate the heat of neutralisation of nitric acid with sodium hydroxide.

- Watch Video Solution

28. Whenever an acid is neutralised by a base, the net reaction is
Θ
$H^{\oplus}(a q)+O H(a q) \rightarrow H_{2} O(l), \Delta H=-57.1 \mathrm{~kJ}$
Calculated the heat evolved for the following experiments?
a. 0.50 mol of HCI solution is neutralised by 0.50 mol of NaOH solution.
b. 0.50 mol of HNO_{3} solution is mixed with 0.30 mol of KOH solution.
c. 100 mL of 0.2 MHCI is mixed with 100 mL fo 0.3 MNaOH solution.
d. 400 mL of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is mixed with 600 mL of 0.1 MKOH solution.

- Watch Video Solution

29. $100 \mathrm{~cm}^{3}$ of 0.5 NHCI solution at 299.95 K was mixed with $100 \mathrm{~cm}^{3}$ of 0.5 NNaOH solution at 299.75 K in a thermos flask. The final temperature was found to be 302.65 K . Calculate the enthalpy of neutralisation of HCI. Water equivalent of thermos flask is 44 g .

- Watch Video Solution

30. When a student mixed 50 mL of 1 MHCI and 150 mL of 1 MNaOH in a coffee cup calorimeter, the temperature of the resultant solution increases from $21^{\circ} \mathrm{C}$ to $27.5^{\circ} \mathrm{C}$. Assuming that the calorimeter absorbs only a negligible quantity of heat, that the total volume of solution is 100 mL , its density $1 \mathrm{gm}-\mathrm{mL} \mathrm{L}^{-1}$ and that its specific heat is $4.18 \mathrm{Jg}^{-1}$.
calculate:
a. The heat change during mixing.
b. The enthalpy change for the reaction
$\mathrm{HCI}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCI}(a q)+\mathrm{H}_{2} \mathrm{O}(a q)$

- Watch Video Solution

31. The enthalpies of neutralisation of a string acid $H A$ and a weaker acid HB by NaOH are -13.7 and $-12.7 \mathrm{kcalEq}^{-1}$, respectively. When one equivalent of NaOH is added to a mixture containing one equivalent of $H A$ and $H B$, the enthalpy change was $-13.5 k c a l$. In what ratio is the base distributed between $H A$ and $H B$?

- Watch Video Solution

32. Calculate the standard heat of formation of carbon disulphide (I).

Given that the standard heats of combustion of carbon (s), sulphur (s) and carbon disulphide (I) are -393.3, -293.72 and $-1108.76 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

(D) Watch Video Solution

33. Calculate the heat of formation of acetic acid form the following date:
a. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}^{\Theta}=-200.0 \mathrm{kcal}$
b. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-94.0 \mathrm{kcal}$
c. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H^{\Theta}=-68.0 \mathrm{kcal}$

- Watch Video Solution

34. Given the following standard heats of reactions:
(a) heat of formation of water $=-68.3 \mathrm{kcal}$, (b) heat of combustion of $\mathrm{C}_{2} \mathrm{H}_{2}=-310.6 \mathrm{kcal}$, (c) heat of combustion of ethylene $=-337.2 \mathrm{kcal}$.

Calculate the heat of reaction for the hydrogenation of acetylene at constant volume and at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

35. For the following reaction,
$C_{\text {diamond }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-94.3 \mathrm{kcal}$
$C_{\text {graphite }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-97.6 \mathrm{kcal}$
the heat require to change 1 g of
$C_{\text {diamond }} \rightarrow C_{\text {graphite }}$ is:

D Watch Video Solution

36. Methanol can be prepared synthetically by heating carbon monoxide and hydrogen gases under pressure in the presenc eof a catalyst. The reaction is
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
Determine the enthalpy of this reaction by an appropriate combinantion of the following date:
a. $C_{(\text {graphite })}+\frac{1}{2} O_{2}(g) \rightarrow C O(g), \Delta H^{\Theta}=-110.5 \mathrm{kJmol}^{-1}$
b. $C_{\text {(graphite) }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-393.5 \mathrm{kJmol}^{-1}$
c. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H^{\Theta}=-285.9 \mathrm{kJmol}^{-1}$
d. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}^{\Theta}=-726.6 \mathrm{kJmol}^{-1}$

- Watch Video Solution

37. How much heat will be required to make 2 kg of calcium carbide $\left(\mathrm{CaC}_{2}\right)$ according to the following reaction?
$\mathrm{CaO}(\mathrm{s})+3 \mathrm{C}(\mathrm{s}) \rightarrow \mathrm{CaC}_{2}(\mathrm{~s})+\mathrm{CO}(\mathrm{g})$
The heats of formations of $\mathrm{caO}(\mathrm{s}), \mathrm{CaC}_{2}(\mathrm{~s})$, and $\mathrm{CO}(\mathrm{g})$ are -151.0, - 14.0 ,and -26.0kcal, respectively.

- Watch Video Solution

H

38. Calculate ΔH of the reaction, $\mathrm{H}-\mathrm{ClCI}-\mathrm{CI}(g) \rightarrow C(s)+2 H(g)+2 C I(g)$

Bond enegry for $C-H$ bond and $C-C I$ bond are 400 kJ and 320 kJ , respectively.

- Watch Video Solution

39. Calculate the enthalpy of the following reaction:
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}(\mathrm{~g})$
The bond enegries of $C-H, C-C, C=C$, and $H-H$ are 99, 83,147 , and 104kcal respectively.

- Watch Video Solution

40. The bond dissociation energy of gaseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104, 58 and $103 \mathrm{kcalmol}^{-1}$ respecitvely. Calculate the enthalpy of formation for HCl gas.

- Watch Video Solution

41. Calculate the enthalpy of formation of ammonia from the following bond enegry data:

$$
\begin{aligned}
& (N-H) \text { bond }=389 \mathrm{kJmol}^{-1},(H-H) \text { bond }=435 \mathrm{kJmol}^{-1}, \quad \text { and } \\
& (N \equiv N) \text { bond }=945.36 \mathrm{kJmol}^{-1} .
\end{aligned}
$$

42. Calculate the resonance enegry of $\mathrm{N}_{2} \mathrm{O}$ form the following data
$\Delta_{f} H^{\Theta} o f N_{2} O=82 \mathrm{kJmol}^{-1}$
Bond enegry of $N \equiv N, N=N, O=O$, and $N=O$ bond is $946,418,498$, and $607 \mathrm{kJmol}^{-1}$, respectively.

- Watch Video Solution

43. The enthalpies for the following reactions $\left(\Delta H^{\Theta}\right)$ at $25^{\circ} \mathrm{C}$ are given below.
a. $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{OH}(\mathrm{g})$
$\Delta H=10.06 \mathrm{kcal}$
b. $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g}), \Delta H=104.18 \mathrm{kcal}$
c. $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g}), \Delta H=118.32 \mathrm{kcal}$

Calculate the $O-H$ bond energy in the hydroxyl radical.

- Watch Video Solution

44. The standard molar enthalpies of formation of cyclohexane (I) and benzene (I) at $25^{\circ} \mathrm{C}$ are -156 and $+49 \mathrm{kJmol}^{-1}$, respectively. The standard enthaly of hydrogenation of cyclohenxene (I) at $25^{\circ} \mathrm{C}$ is $-119 \mathrm{kJmol}^{-1}$ Use this data to estimate the magnitude of the resonance enegry of benzene.

- Watch Video Solution

45. Calculate heat of combusion of ethene:
H

$$
\mathrm{C}=\mathrm{c}^{\mathrm{H}^{\mathrm{H}}-30=\mathrm{O} \longrightarrow 20=\mathrm{C}=\mathrm{O}+\mathrm{O}}
$$

$\begin{array}{ll}\mathrm{H} & \mathrm{H}\end{array}$

- Watch Video Solution

46. Using the data (all values are in kilocalorie per mole at $25^{\circ} \mathrm{C}$) given below, calculate the bond enegry of $C-C$ and $C-H$ bonds.
ΔH^{Θ} combustion of ethane $=-372.0$
ΔH^{Θ} combustion of propane $=-530.0$
ΔH^{Θ} for $C($ garphite $) \rightarrow C(g)=+172.0$
Bond enegry of $H-H$ bond $=+104.0$
$\Delta_{f} H^{\Theta} o f H_{2} O(l)=-68.0$
$\Delta_{f} H^{\Theta}{ }_{o f C O}^{2}(g)=-94.0$

- Watch Video Solution

47. Using the bond enthalpy data given below, calculate the enthalpy of formation of acetone (g).

Bond enegry $C-H=413.4 \mathrm{kJmol}^{-1}$, Bond enegry $C-C=347.0 \mathrm{kJmol}^{-1}$,

Bond enegry $C=O=728.0 \mathrm{kJmol}^{-1}$,
Bond enegry $O=O=495.0 \mathrm{kJmol}^{-1}$,
Bond enegry $\mathrm{H}-\mathrm{H}=435.8 \mathrm{kJmol}^{-1}$,
$\Delta_{\text {sub }} H^{\Theta} C(s)=718.4 \mathrm{kJmol}^{-1}$

- Watch Video Solution

48. The enthalpy change for transition of liquid water to steam is 40.8 kJ mol^{-1} at 373 K . Calculate ΔS for the process.

- Watch Video Solution

49. What is entropy change for the conversion of one gram of ice to water at 273 K and one atmospheric pressure?
$\left(\Delta H_{\text {fusion }}=6.025 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

50. Calculate the enthalpy of vaporisation per mole for ethanol. Given $\Delta S=109.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and boiling point of ethanol is 78.5°.

- Watch Video Solution

51. Calculate the entrpoy change for the following reversible process:
$\alpha-T \in \Leftrightarrow \beta-T \in$ at
1 mol at 1 atm at 300 K
$\left(\Delta_{\text {trans }}{ }^{H}=2090 \mathrm{Jmol}^{-1}\right)$

- Watch Video Solution

52. What is the entropy change (in $J K^{-1} \mathrm{~mol}^{-1}$) when one mole of ice is converted into water at $0^{\circ} \mathrm{C}$?
(The enthalpy change for the conversion of ice to liquid water is $6.0 \mathrm{KJmol}^{-1}$ at $0^{\circ} \mathrm{C}$)

- Watch Video Solution

53. The enthalpy of vaporisation of liquid diethly ether $-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$, is $26.0 \mathrm{kJmol}(-1)$ at its boiling point $\left(35.0^{\circ} \mathrm{C}\right)$. Calculate ΔS for conversion of : (a) liquid to vapour, and (b) vapour to liquid at $35^{\circ} \mathrm{C}$.
54. Calculate entropy change when 10 moles of n ideal gas expands reversibly and isothermally from an initial volume of 10 liter of 100 litre at 300 K.

- Watch Video Solution

55. Oxygen gas weighing 64 g is expanded from 1 atm to 0.25 atm at $30^{\circ} \mathrm{C}$ calculate entropy change, assuming the gas to be ideal.

- Watch Video Solution

56. Calculate the change in entropy when 1 mole nitrogen gas expands isothermally and reversibly from an initial volume of 1 litre to a final volume of 10 litre at $27^{\circ} \mathrm{C}$
57. ΔH and ΔS for the reaction:
$\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})$
are $30.56 \mathrm{kJmol}^{-1}$ and $66.0 \mathrm{JJK}^{-1} \mathrm{~mol}^{-1}$ respectively. Calculate the temperature at which free energy change for the reaction will be zero.

Predict whether the forward reaction will be favoured above or below this temperature.

- Watch Video Solution

58. For the reaction
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2} \mathrm{~g}$
Calculate ΔG at 700 K when enthalpy and entropy changes are
$-113.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-145 \mathrm{~J}^{\prime \prime}$ " $\mathrm{K}^{\wedge}(-1) \mathrm{mol}^{\wedge}(-1)^{\wedge}$ respectively.

- Watch Video Solution

59. In the reaction $A^{+}+B \rightarrow A+B^{+}$there is no entropy change. If enthalpy change is 22 kJ of A^{+}, calculate ΔG for the reaction.

(D) Watch Video Solution

60. ΔH and ΔS for the reaction $\mathrm{Br}_{2}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrCl}(\mathrm{g})$ are 29.37 kJ and 104.7J K^{-1} respectively. Above what temperature will this reaction become spontaneous?

- Watch Video Solution

61. Calculate the temperature at which liquid water will be in equilibrium with water vapour.

$$
\Delta H_{\text {vap }}=40.73 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { and } \Delta S_{\text {vap }}=0.109 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

- Watch Video Solution

62. Zinc reacts with dilute hydrochloric acid to give hydrogen at $17^{\circ} \mathrm{C}$. The enthalpy of the reaction is $-12.55 \mathrm{~kJ} \mathrm{~mol}^{-1}$ of zinc and entropy change equals $5.0 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$ for the reaction. Calculate the free energy change and predict whether the reaction is spontaneous or not.

(D) Watch Video Solution

63. ΔH and ΔS for the system $H_{2} O(l) \Leftrightarrow H_{2} O(g)$ at 1 atm are $40.63 \mathrm{kJmol}^{-1}$ and $108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. Calculate the temperature at which the rates of forward and backward reactions will be the same. Predict the sign of free enegy for this transformation above this temperature.

- Watch Video Solution

64. For the reaction,
$\mathrm{SOCI}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{2}+2 \mathrm{HCI}$
the enthalpy of reaction is 40.0 kJ and the entropy of reaction is $336 \mathrm{JK}^{-1}$.
Calculate ΔG at 300 K and predict the neture of the reaction.

- Watch Video Solution

65. The standard enthalpy and entropy changes for the reaction in equilibrium for the forward direction are given below:
$\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}$
$\Delta H_{300 \mathrm{~K}}^{\circ}=-41.16 \mathrm{kJmol}^{-1}$
$\Delta S_{300 K}^{\circ}=-4.24 \times 10^{-2} \mathrm{kJmol}^{-1}$
$\Delta H_{1200 K}^{\circ}=-32.93 \mathrm{KJmol}^{-1}$
$\Delta S_{1200 K}^{\circ}=-2.96 \times 10^{-2} \mathrm{kJmol}^{-1}$
Calculate K_{p} at each temperature and predict the direction of reaction at 300 K and 1200 K , when $P_{\mathrm{CO}}=P_{\mathrm{CO}_{2}}=P_{\mathrm{H}_{2}}=P_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{~atm}$ at initial state.

D Watch Video Solution

66. The standard Gibbs free energies for the reaction at 1773 K are given
below:
$C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta G^{\Theta}=-380 \mathrm{kJmol}^{-1}$
$2 C(s)+O_{2}(g) \Leftrightarrow 2 C O(g), \Delta G^{\Theta}=-500 \mathrm{kJmol}^{-1}$
Discuss the possibility of reducing $\mathrm{AI}_{2} \mathrm{O}_{3}$ and PbO with carbon at this temperature,
$4 \mathrm{AI}+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AI}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta G^{\Theta}=-22500 \mathrm{kJmol}^{-1}$
$2 \mathrm{~Pb}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PbO}(\mathrm{s}), \Delta G^{\Theta}=-120 \mathrm{kJmol}^{-1}$
67. In a fuel cell, methanol if used as fuel and oxygen gas is used as an oxidiser. The reaction is
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculated standard Gibbs free enegry change for the reaction that can be converted into electircal work. If standard enthalpy of combustion for methanol is $-702 \mathrm{kJmol}^{-1}$, calculate the efficiency of converstion of Gibbs energy into useful work.
$\Delta_{f} G^{\Theta}$ for $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{O}_{2}$ is -394.00, -237.00, - 166.00and $0 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

68. What is the equilibrium constant K_{c} for the following reaction at 400 K
?
$2 \mathrm{NOCI}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{CI}_{2}(\mathrm{~g})$
$\Delta H^{\Theta}=77.2 \mathrm{kJmol}^{-1}$ and $\Delta S^{\Theta}=122 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} a t 400 \mathrm{~K}$.
69. For the equilibrium,
$P C I_{5}(g) \Leftrightarrow$ PCI $_{3}(g)+C I_{2}(g) a t 25^{\circ} C K_{c}=1.8 \times 10^{-7}$
Calculate ΔG^{Θ} for the reaction $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

70. The equilibrium constant at $25^{\circ} \mathrm{C}$ for the process:
$\mathrm{CO}^{3+}(a q)+6 \mathrm{NH}_{3}(a q) \Leftrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(a q)$ is 2×10^{7}.
Calculate the value of ΔG^{Θ} at $25^{\circ} \mathrm{Cat} 25^{\circ} \mathrm{C}\left[R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$.
In which direction the reaction is spontaneous when the recatants and proudcts are in standard state?

- Watch Video Solution

71. The equilibrium constant for the reaction
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) a t 298 \mathrm{~K}$ is 73 . Calculate the value of the
standard free enegry change $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

72. For the water gas reaction,
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
the standard Gibbs free energy of reaction (at 1000 K) is $-8.1 \mathrm{kJmol}^{-1}$.
Calculate its equilibrium constant.

- Watch Video Solution

73. Calculate ΔG^{Θ} for the conversion of oxygen to ozone, $\left(\frac{3}{2}\right) O_{2}(g) \Leftrightarrow O_{3}(g) a t 298 K$, of K_{p} for this conversion is 2.47×10^{-29}.

- Watch Video Solution

74. Acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$ can form a dimer $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$ in the gas phase. The dimer is held together by two H - bonds with a total strength
of 60.0 kJper mole of dimer

If at $25^{\circ} \mathrm{C}$, the equilibrium constant for the dimerisation is 1.3×10^{3}, calculate ΔS^{Θ} for the reaction

$$
2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{~g}) \Leftrightarrow\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}(\mathrm{~g})
$$

- Watch Video Solution

Illustrations of Objective Questions

1. 5 mol of an ideal gas at $27^{\circ} \mathrm{C}$ expands isothermally and reversibly from a volume of 6 L to 60 L . The work done in kJ is
A. -14.7
B. -28.72
C. +28.72
D. -56.72

Answer: B

- Watch Video Solution

2. 10 moles of an ideal gas confined to a volume of 10 L is released into atmosphere at 300 K where the pressure is 1 bar .

The work done by the gas is: ItBrgt $\left(R=0.083 \mathrm{~L}\right.$ bar $\left.K^{-1} \mathrm{~mol}^{-1}\right)$
A. 249 L bar
B. 259 L bar
C. 239 L bar
D. 220 L bar

Answer: C

3. One litre-atmosphere is approximately equal to
A. 101.3 J
B. 8.314 J
C. 931 J
D. 19.2 J

Answer: A

- Watch Video Solution

4. A system absorbs 20 kJ heat and also does 10 kJ of work. The net internal enegry of the system
A. increases by 10 kJ
B. decreases by 10 kJ
C. increases by 30 kJ
D. decreases by 30 kJ

Answer: A

- Watch Video Solution

5. One mole of a gas is heated at constant pressure to raise its temperature by $1^{\circ} \mathrm{C}$. The work done in joules is
A. -4.3
B. -8.314
C. -16.62
D. unpredictable

Answer: B

- Watch Video Solution

6. In open system:
A. there will be exchange of both matter and energy
B. there will be no exchange of matter and energy
C. there wil be exchange of energy only
D. there will be exchange of matter only.

Answer: A

- Watch Video Solution

7. $\Delta H^{\Theta}{ }^{\prime} 298 \mathrm{~K}$ of methanol is given by the chemical equation
A. $\mathrm{CH}_{4}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
B. C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
C. $\mathrm{C}($ diamond $)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
D. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$

Answer: B

D Watch Video Solution

8. The standard molar heats of formation of ethane, carbon dioxide, and liquid water are $-21.1,-94.1$, and -68.3 kcal , respectively. Calculate the standard molar heat of combustion of ethane.
A. -372 kcal
B. -240 kcal
C. 162 kcal
D. 182.5 kcal

Answer: A

9. When ethyne is passed through a red hot tube, then formation of benzene takes place:
$H_{f\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mathrm{g})}^{\circ}=230 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H_{f\left(C_{6} H_{6}\right)(g)}^{\circ}=85 \mathrm{~kJ} \mathrm{~mol}^{-1}$
calculate the standard heat of trimerisation of ethyne to benzene.
$3 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$
A. $205 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $605 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-605 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-205 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

10. For the reaction $\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{HCL}(\mathrm{g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})+\mathrm{C1}_{2}(\mathrm{~g})$
ΔH° at 298 K is $-84.4 \mathrm{Kcal}, \Delta H^{\circ} f(H F)=-64.2 \mathrm{Kcal} / \mathrm{mol}$
$\Delta H^{\circ} f$ for the $\operatorname{HCL}(g)$ per gram is
A. $-22 . \mathrm{kJ} \mathrm{mol}^{-1}$
B. $88 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-91.21 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-183.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

11. Given two processes:

$$
\begin{aligned}
& \frac{1}{2} P_{4}(\mathrm{~s})+3 C I_{2}(g) \rightarrow 2 P C I_{3}(\mathrm{l}), \Delta H=-635 \mathrm{~kJ} \\
& P C I_{3}(\mathrm{l})+C I_{2}(\mathrm{~g}) \rightarrow P C I_{5}(\mathrm{~s}), \Delta H=-137 \mathrm{~kJ} \text { The value of } \Delta H^{\Theta} \text { of } P C I_{5} \text { is }
\end{aligned}
$$

A. $454.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. -454.5 kJ
C. $-772 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-498 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

12. The enthalpy of combustion of H_{2}, cyclohexene $\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ are $-241,-3800$ and -3920 KJ per mol respectively. Heat of hydrogenation of cyclohexene is
A. $-121 \mathrm{~kJ} / \mathrm{mol}$
B. $+121 \mathrm{~kJ} / \mathrm{mol}$
C. $-242 \mathrm{~kJ} / \mathrm{mol}$
D. $+242 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

13. Given:

i. $2 \mathrm{Fe}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta H^{\Theta}=-193.4 \mathrm{~kJ}$
ii. $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{MgO}(\mathrm{s}), \Delta H^{\Theta}=-140.2 k J$

What is ΔH^{Θ} of the reaction?
$3 \mathrm{Mg}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 3 \mathrm{MgO}+2 \mathrm{Fe}$
A. $-227.2 k J$
B. -272.3 kJ
C. 227.2 kJ
D. 272.3 kJ

Answer: A

Watch Video Solution
14. Given that:
i. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-94.05 \mathrm{kcal}$
ii. $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-68.32 \mathrm{kcal}$
iii. $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-310.62 \mathrm{kcal}$ The heat of formation fo acetylene is
A. -1802 kJ
B. +1802 kJ
C. -800kJ
D. +228 kJ

Answer: D

- Watch Video Solution

15. The enthalpy changes for two reactions are given by the equations:
$2 \mathrm{Cr}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta H^{\Theta}=-1130 \mathrm{~kJ}$
$C(s)+\frac{1}{2} O_{2}(g) \rightarrow C O(g), \Delta H^{\Theta}=-110 k J$
What is the enthalpy change in $k J$ for the following reactions?

$$
3 C(s)+\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Cr}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g})
$$

B. -800 kJ
C. $+800 k J$
D. +1020 kJ

Answer: C

- Watch Video Solution

16. The enthalpy change ΔH for the neutralisation fo $1 M H C I$ by caustic potash in dilute solution at 298 K is
A. 68 kJ
B. 65 kJ
C. 57.3 kJ
D. 50 kJ

Answer: C

17. Enthalpy of neutralisation of the reaction between $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$ is $-13.2 \mathrm{kcalEq}^{-1}$ and that of the reaction between $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{KOH}(\mathrm{aq})$ is $-13.7 \mathrm{kcalEq}^{-1}$. The enthalpy of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ is
A. $-0.5 \mathrm{kcal}_{\mathrm{eq}}{ }^{-1}$
B. $+0.5 \mathrm{kcal} \mathrm{eq}^{-1}$
C. $-26.9 \mathrm{kcal} \mathrm{eq}^{-1}$
D. $+13.45 \mathrm{kcal} \mathrm{eq}^{-1}$

Answer: B

- Watch Video Solution

18. Calculate the enthalpy change when 50 mL of $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$ reacts with 25 mL of 0.01 MHCI . Given that ΔH^{Θ} neutralisaiton of strong acid and string base is $140 \mathrm{kcalmol}^{-1}$
A. 14 kcal
B. 35 cal
C. 10 cal
D. 7.5 cal

Answer: B

- Watch Video Solution

19. Equal volumes of 1 MHCI and $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are neutralised by 1 MNaOH solution and x and $y k J /$ equivalent of heat are liberated, respectively. Which of the following relations is correct?
A. $x=2 y$
B. $x=3 y$
C. $x=4 y$
D. $x=1 / 2 y$

Answer: D

- Watch Video Solution

20. Which of the following acid will release maximum amount of heat when completely neutralised by strong base NaOH ?
A. 1 M HCl
B. $1 \mathrm{M} \mathrm{HNO}_{3}$
C. $1 \mathrm{M} \mathrm{HClO}_{4}$
D. $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$

Answer: D

D Watch Video Solution

21. Determine the heat of the following reaction:
$\mathrm{FeO}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})$

Given informations:
$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeO}(\mathrm{s}), \quad \Delta H^{\circ}=-544 \mathrm{~kJ}$
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}), \quad \Delta H^{\circ}=-1648.4 \mathrm{~kJ}$
$\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \rightarrow 3 \mathrm{Fe}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}), \Delta H^{\circ}=+1118.4 k J$
A. $-1074 k J$
B. $-22.2 k J$
C. $+249.8 k J$
D. +2214.6 kJb

- Watch Video Solution

22. Calculate the enthalpy of formation of $\Delta_{f} H$ for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ from tabulated data and its heat of combustion as represented by the following equaitons:
i. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta H^{\Theta}=-241.8 \mathrm{kJmol}^{-1}$
ii. $C(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-393.5 \mathrm{kJmol}^{-1}$
iii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-1234.7 \mathrm{kJmol}^{-1}$ a. $-2747.1 \mathrm{kJmol}^{-1}$ b. $-277.7 \mathrm{kJmol}^{-1}$
c. $277.7 \mathrm{kJmol}^{-1}$ d. $2747.1 \mathrm{kJmol}^{-1}$
A. $-2747.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-277.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $277.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $2747.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

23. Given that $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta H^{\circ}=-x K J$ and
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta H^{\circ}=-y \mathrm{KJ}$ The enthalpy of formation of carbon monoxide will be
A. $\frac{y-2 x}{3}$
B. $\frac{y-2}{2}$
C. $\frac{2 x-y}{2}$
D. $\frac{x-y}{y}$

Answer: B

- Watch Video Solution

24. The enthalpies of combustion of diamond and graphite are - 395.4 kJ and -393.5 kJ respectively calculate the enthalpy of transformation from diamond to graphite.
A. -0.5 kcal
B. +0.5 kcal
C. 1 kcal
D. -1 kcal

Answer: B

25. For the reaction
$3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta H^{\circ}=-879.6 \mathrm{~kJ}$
If $\Delta H_{f}^{\circ}\left[\mathrm{NH}_{3}(\mathrm{~g})\right]=-45.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$\Delta H_{f}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Then $\Delta H_{f}^{\circ}\left[N_{2} \mathrm{O}(g)\right]$ will be:
A. +246 kJ
B. +82 kJ
C. -82 kJ
D. $-246 k J$

Answer: B

- Watch Video Solution

26. The bond energies of $C=C$ and $C-C$ at $298 \mathrm{~K}^{2}$ are 590 and $331 \mathrm{kJmol}^{-1}$, respectively. The enthalpy of polymerisation per mole of ethaylene is
A. $-70 k J$
B. $-72 k J$
C. $72 k J$
D. -68 kJ

Answer: B

- Watch Video Solution

27. For the reaction:
$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g), \Delta H=-571 k J$
bond enegry of $(H-H)=435 \mathrm{~kJ}$ and of $(O=O)=498 \mathrm{~kJ}$. Then, calculate the average bond enegry of $(O-H)$ bond using the above data.
A. 484 kJ
B. $-484 k J$
C. 271 kJ
D. -271 kJ

- Watch Video Solution

28. Use the bond energies in the table to estimate ΔH for this reaction:
$\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CICH}_{2}-\mathrm{CH}_{2} \mathrm{CI}$
A. $\Delta H=-684 k J$
B. $\Delta H=-154 k J$
C. $\Delta H=+89 k J$
D. $\Delta H=+177 k J$

Answer: B

29. Heat of formation of 2 mol of $\mathrm{NH}_{3}(\mathrm{~g})$ is $=-90 \mathrm{~kJ}$, bond energies of $H-H$ and $N-H$ bonds are 435 kJ and $390 \mathrm{kJmol}^{-1}$, respectively. The value of the bond enegry of $N \equiv N$ will be
A. $-472.5 k J$
B. -945kJ
C. 472.5 kJ
D. $945 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: D

- Watch Video Solution

30. If ΔH_{f}° of $\operatorname{Icl}(g), \mathrm{Cl}(\mathrm{g})$ and $\mathrm{I}(\mathrm{g})$ is $17.57,121.34$ and $106.96 \mathrm{Jmol}^{-1}$ respectively. Then bond dissociation energy of $I-\mathrm{Cl}$ bond is
A. 17.57
B. 210.73
C. 35.15
D. 106.96

Answer: B

- Watch Video Solution

31. Calculate the ΔH in joules for
C (graphite) $\rightarrow C$ (diamond)
from the following data:
C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}): \Delta H^{\circ}=-393.5 \mathrm{~kJ}$
$C($ diamond $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \quad \Delta H^{\circ}=-395.4 \mathrm{~kJ}$
A. 1900
B. -788.9×10^{3}
C. 190000
D. $+788.9 \times 10^{3}$

(D) Watch Video Solution

32. The enthalpy change for the following process are listed below:
(a) $\mathrm{Cl}_{2(g)} \rightarrow 2 \mathrm{Cl}_{(\mathrm{g})}, \Delta H=242.3 \mathrm{kJmol}^{-1}$
(b) $I_{2(g)} \rightarrow 2 I_{(g)}, \Delta H=151.0 \mathrm{kJmol}^{-1}$
(c) $\mathrm{ICl}_{(g)} \rightarrow I_{(g)}+\mathrm{Cl}_{(g)}, \Delta H=211.3 \mathrm{kJmol}^{-1}$
(d) $I_{2(s)} \rightarrow I_{2(g)}, \Delta H=62.76 \mathrm{kJmol}^{-1}$

If standard state of iodine and chloride are $I_{2(s)}$ and $C l_{2(g)}$, the standard enthalpy of formation for $\mathrm{ICl}_{(g)}$ is :
A. $-14.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-16.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $+16.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+244.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

33. Given that:
$2 C(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g) \quad(\Delta H=-787 \mathrm{~kJ}) \ldots(\mathrm{i})$
$\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad(\Delta H=-286 k J) \ldots$ (ii)
$\mathrm{C}_{2} \mathrm{H}_{2}+2 \frac{1}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad(\Delta \mathrm{H}=-1310 \mathrm{~kJ}) \ldots$ (iii)
The heat of formation of acetylene is:
A. $-1802 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $+1802 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $+237 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-800 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

34. The bond energies of $H--H, B r--B r$ and $H--B r$ are 433, , 192 and $364 \mathrm{KJmol}^{-1}$ respectively. The ΔH° for the reaction
$\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{HBr}(g)$ is
A. $-261 k J$
B. +103 kJ
C. +261 kJ
D. $-103 k J d$
35. For liquid enthalpy of fusion is $1.435 \mathrm{kcalmol}^{-1}$ and molar entropy change is $5.26 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$. The melting point of the liquid is
A. $0{ }^{\circ} \mathrm{C}$
B. $-273{ }^{\circ} \mathrm{C}$
C. 173 K
D. $100^{\circ} \mathrm{C}$

Answer: A

36. Latent heat of vaporisation of water is $540 \mathrm{cal} \mathrm{g}^{-1}$ at $100^{\circ} \mathrm{C}$ calculate the entropy change when 1000 g water is converted to steam at $100^{\circ} \mathrm{C}$
A. 1447 cal
B. 2447 cal
C. 3447 cal
D. 4447 cal

Answer: A

- Watch Video Solution

37. Enthalpy of fusion of water is $6.01 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The entropy change of 1 mole of ice at its melting point will be:
A. $22 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $109 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $44 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $11 \mathrm{k} \mathrm{mol}^{-1}$

Answer: A

- Watch Video Solution

38. For spontaneous process:
A. $\Delta S_{\text {total }}=0$
B. $\Delta S_{\text {total }}>0$
C. $\Delta S_{\text {total }}<0$
D. none of these

Answer: B

- Watch Video Solution

39. Melting point of a solid is xK and its latent heat of fusion is 600 cal mol^{-1}. The entropy change for fusion of $1 \mathrm{~mol}^{\text {solid }}$ is $2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. The value of x will be:
A. 100 K
B. 200 K
C. 300 K
D. 400 K

Answer: C

- Watch Video Solution

40. The entropy change involved in the conversion of 1 mole of liquid water at 373 K to vapour at the same temperature will be:
A. $0.119 \mathrm{~kJ} / \mathrm{g}$
B. $0.109 \mathrm{~kJ} / \mathrm{g}$
C. $0.129 \mathrm{~kJ} / \mathrm{g}$
D. $0.120 \mathrm{~kJ} / \mathrm{g}$

Answer: B

- View Text Solution

41. The free energy for a reaction having $\Delta H=31400$ cal, $\Delta S=32 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ at $1000^{\circ} \mathrm{C}$ is:
A. - 9336 cal
B. -7386 cal
C. -1936 cal
D. +9336 cal

Answer: A

42. $\mathrm{F}_{2} \mathrm{C}=\mathrm{CF}-\mathrm{CF}=C F_{2} \rightarrow \mathrm{~F}_{2} \mathrm{C}\left|\mathrm{FC}=-C F_{2}\right| C F$
For this reaction (ring closure),
$\Delta H=-49 \mathrm{kJmol}^{-1}, \Delta S=-40.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} . U p$ to what temperature is the forward reaction spontaneous?
A. $1492{ }^{\circ} \mathrm{C}$
B. $1219^{\circ} \mathrm{C}$
C. $946{ }^{\circ} \mathrm{C}$
D. $1080^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

43. For the equilibrium reaction, the value of Gibbs free energy change is:
A. >0
B. <0
C. $=0$
D. $\neq 0$

Answer: C

- Watch Video Solution

44. At $0^{\circ} \mathrm{C}$ ice and water are in equilibrium and $\Delta H=6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for this process:
$\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The values of ΔS and ΔG for conversion of ice into liquid water at $0^{\circ} \mathrm{C}$ are:
A. $-21.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and 0
B. $0.219 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and 0
C. $21.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and 0
D. $0.0219 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and 0

Answer: C

45. For a reaction,
$\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow 2 \mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
$\Delta H, \Delta S$ and T are $40.63 \mathrm{~kJ} \mathrm{~mol}^{-1}, 108.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and 373.3 K respectively. Predict the feasibility of the reaction:
A. feasible
B. non-feasible
C. remains at equilibrium
D. not predicted

Answer: B

- Watch Video Solution

46. For the homogeneous reactions:
$x A+y B \rightarrow I Y+m Z$
$\Delta H=-30 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta S=-100 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

At what temperature the reaction is at equilibrium?
A. $50^{\circ} \mathrm{C}$
B. $250^{\circ} \mathrm{C}$
C. 100 K
D. $27^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

47. For the reaction
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
ΔH and ΔS are $-283 k J$ and $-87 J K^{-1}$, respectively. It was intended to carry out this reaction at $1000,1500,3000$, and 3500 K . At which of these temperatures would this reaction be thermodynamically spontaneous?
A. 1500 and 3500 K
B. 3000 and 3500 K
C. 1000,1500 and 3000 K
D. 1500,3000 and 3500 K

Answer: C

- Watch Video Solution

48. For a reaction
$\Delta H=+29 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta S=-35 \mathrm{KJ}^{-1} \mathrm{~mol}^{-1}$
at what temperature, the reaction will be spontaneous?
A. $828.7^{\circ} \mathrm{C}$
B. 828.7 K
C. Spontaneous at all temperature
D. non possible

Answer: D

49. What is ΔG° for the reaction?
$\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \rightarrow \mathrm{NH}_{3}(g) K_{p}=4.42 \times 10^{4} a t 25^{\circ} \mathrm{C}$.
A. $-26.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-11.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-2.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-0.97 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

50. What is the sign of ΔG^{Θ} and the values of K for an electrochemical cell for which E^{Θ} cell $=0.80$ volt ?
$\Delta G^{\circ} \quad K$
A.

- > 1
$\Delta G^{\circ} \quad K$
B.

```
+ > 1
```

$\Delta G^{\circ} \quad K$
C.
$+\quad<1$
D. $\begin{array}{ll}\Delta G^{\circ} & K \\ - & <1\end{array}$

Answer: A

Watch Video Solution

51. The free energy of formation of NO is $78 \mathrm{kJmol}^{-1}$ at the temperature of an authomobile engine (1000 K). What is the equilibrium constant for this reaction at $1000 K$?
$\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O(g)$
A. 8.4×10^{-5}
B. 7.1×10^{-9}
C. 4.2×10^{-10}
D. 1.7×10^{-19}

- Watch Video Solution

52. Equilibrium constant for the reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{C}_{\mathrm{c}}=50 \mathrm{at} 25^{\circ} \mathrm{C}$
The standard Gibbs free enegry change for the reaction will be:
A. $-6.964 k J$
B. $-9.694 k J$
C. -4.964 kJ
D. -6.496 kJ

Answer: B

53. Standard Gibbs free enegry change ΔG^{Θ} for a reaction is zero. The value of the equilibrium constant will be:
A. 10
B. 1
C. 100
D. ∞

Answer: B

- Watch Video Solution

54. The standard free energy change of a reaction is $\Delta G^{\circ}=-115$ at 298K. Calculate the equilibrium constant K_{P} in log $K_{P} \cdot\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. 20.16
B. 2.303
C. 2.016
D. 13.83

Answer: A

- Watch Video Solution

55. For which of the following reactions, the entropy change will be positive?
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
B. $\mathrm{HCl}(\mathrm{g})+\mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2}(g) \Leftrightarrow \mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Answer: C

56. If an endothermic reaction occurs spontaneously at constant T and P, then which of the following is true
A. $\Delta G>0$
B. $\Delta G<0$
C. $\Delta S>0$
D. $\Delta S<0$

Answer: C

- Watch Video Solution

57. Which is the correct expression that relates changes of entropy with the change of pressure for an ideal gas at constant temperature, among the following?
A. $\Delta S=n R T \ln \frac{P_{2}}{P_{1}}$
B. $\Delta S=T\left(P_{2}-P_{1}\right)$
C. $\Delta S=n R \ln \left(\frac{P_{1}}{P_{2}}\right)$
D. $\Delta S=2.303 n R T \ln \left(\frac{P_{1}}{P_{2}}\right)$

Answer: C

- Watch Video Solution

58. The correct statement regarding entropy is:
A. At absolute zero temperature, entropy of a perfectly crystalline solid is zero
B. At absolute zero temperature, the entropy of a perfectly crystalline substance is +ve
C. At absolute zero temperature, the entropy of all crystalline substances is zero
D. At $0^{\circ} \mathrm{C}$ the entropy of a perfectly crystalline solid is zero.

Answer: A

- Watch Video Solution

Miscellaneous Numerical Examples

1. Bond dissociation enthalpies of $H_{2}(g)$ and $N_{2}(g)$ are $436.0 \mathrm{kJmol}^{-1}$ and $941.8 \mathrm{kJmol}^{-1}$, respectively and enthalpy of formation of $\mathrm{NH}_{3}(\mathrm{~g})$ is $-46 \mathrm{kJmol}^{-1}$. What is the enthalpy of atomisation of $\mathrm{NH}_{3}(\mathrm{~g})$?. What is the avergae bond ethalpy of $N-H$ bond?

- Watch Video Solution

2. Ethanol was oxidised to acetic acid in a catalyst chamber at $18{ }^{\circ} \mathrm{C}$.

Calculate the rate of removel of heat to maintain the reaction chamber at $18{ }^{\circ} \mathrm{C}$ with the feed rate of $30 \mathrm{kgh}^{-1}$ ethanol along with excess oxygen to the system at $18{ }^{\circ} \mathrm{C}$, given that a $42 \mathrm{~mol} \%$ yield based on ethanol is obtained. Given that
$\Delta_{f} H^{\Theta \prime} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-68.0 \mathrm{kcalmol}^{-1}$
$\Delta_{f} H^{\Theta} C_{2} H_{5} O H(l)=-66 \mathrm{kcalmol}^{-1}$
$\Delta_{f} H^{\Theta} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})=-118 \mathrm{kcalmol}^{-1}$

(Watch Video Solution

3. The standared heat of formation listed for gaseous NH_{3} is $-11.0 \mathrm{kcalmol}^{-1}$ at 298 K . Given that at 298 k , the constant pressure heat capacities of gaseous $\mathrm{N}_{2}, \mathrm{H}_{2}$, and NH_{3} are, respectively, 7.0, 6.0 and 8.0 calmol $^{-1}$. Determine $\Delta H^{\Theta} 298 \mathrm{~K}$ and $\Delta H_{773 K}$ for the reactions: $\frac{1}{2} \mathrm{~N}_{2}(g)+\frac{3}{2} \mathrm{H}_{2}(g) \rightarrow \mathrm{NH}_{3}(g)$

- Watch Video Solution

4. The heat of combusion of glycogen is about $476 \mathrm{kJmol}^{-1}$ of carbon. Assume that average heat loss by an adult male is 150 W . If we were to assume that all the heat comes from oxidation of glycogen, how many
units of glycogen (1 mol carbon per unit) must be oxidised per day to provide for this heat loss?

- Watch Video Solution

5. At $25^{\circ} \mathrm{C}$, the following heat of formations are given:

Compound $\quad \mathrm{SO}_{2}(g) \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{f} H^{\Theta} \mathrm{kJmol}^{-1}-296.0-285.0$
For the reactions at $25^{\circ} \mathrm{C}$,
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{FeS}_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-137 \mathrm{kJm} \infty^{-1}$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{So}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-562 \mathrm{kJmol}^{-1}$
Calculate the heat of formation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{FeS}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

6. The 'heat of total cracking' of hydrocarbons $\Delta H_{T C}$ is defined as ΔH at 298.15 K and 101.325 kPa for the process below
$\mathrm{C}_{n} \mathrm{H}_{m}+\left(2 n-\frac{m}{2}\right) \mathrm{H}_{2}(\mathrm{~g}) \rightarrow n \mathrm{CH}_{4}(\mathrm{~g})$
Given that $\Delta H_{T C}$ is $-65.2 k J$ for $\mathrm{C}_{2} \mathrm{H}_{6}$ and $-87.4 k J$ for $\mathrm{C}_{3} \mathrm{H}_{8}$, calculate ΔH
for
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$

D Watch Video Solution

7. A constant pressure calorimeter consists of an insulated beaker of mass $92 g$ made up of glass with heat capacity $0.75 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$. The beaker contains 100 mL of 1 MHCI at $22.6{ }^{\circ} \mathrm{C}$ to which 100 mL of 1 MNaOH at $23.4^{\circ} \mathrm{C}$ is added. The final temperature after the complete reactions is $29.3^{\circ} \mathrm{C}$, What is ΔH per mole for this neutralization reaction? Assume that the heat capacities of all solutions are equal that of same volumes of water.

- Watch Video Solution

8. $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CI}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{CI}_{2}$
$\Delta H=-270.6 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}, \Delta S=-139 \mathrm{~J}$
a. Is the reaction favoured by entropy, enthalpy both or none?
b. Find ΔG if $T=300 K$.

- Watch Video Solution

9. Find bond enthalpy of S-S bond from the following data:
$\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{S}-\mathrm{C}_{2} \mathrm{H}_{5}, \quad \Delta H_{f}^{\circ}=-147.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{S}-\mathrm{S}-\mathrm{C}_{2} \mathrm{H}_{5}, \quad \Delta H_{f}^{\circ}=-201.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$S(g), \Delta H_{f}^{\circ}=222.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- Watch Video Solution

10. A natural gas may be assumed to be a mixture of methane and ethane only. On complete combustion of 10 L of gas at STP the heat evolved was 474.6kJ. Assuming $\quad \Delta_{\text {comb }} H^{\Theta} \mathrm{CH}_{4}(\mathrm{~g})=-894 \mathrm{kJmol}^{-1} \quad$ and $\Delta_{\text {comb }} H^{\Theta} C_{2} H_{6}(g)=-1500 \mathrm{kJmol}^{-1}$. So, find composition of the mixture by volume.

- Watch Video Solution

11. From the data at $25^{\circ} \mathrm{C}$:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}_{\text {(graphite) }} \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}(\mathrm{g}), \Delta H^{\Theta}=492.0 \mathrm{kJmol}^{-1}$
$\mathrm{FeO}(\mathrm{s})+\mathrm{C}_{(\text {graphite })} \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}(\mathrm{g}), \Delta H^{\Theta}=155.0 \mathrm{kJmol}^{-1}$
$C_{(\text {graphite) }}+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-393.0 \mathrm{kJmol}^{-1}$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-282.0 \mathrm{kJmol}^{-1}$
Calculate the standard heat of formation of $\mathrm{FeO}(\mathrm{s})$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$.

- Watch Video Solution

12. Calculate ΔH at $85^{\circ} \mathrm{C}$ for the reaction:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The data: $\Delta H_{298}^{\Theta}=-33.0 \mathrm{kJmol}^{-1}$ and

Substance

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \mathrm{Fe}(\mathrm{~s}) \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{H}_{2}(\mathrm{~g})
$$

$C_{P}^{\circ}\left(J K^{-1} \mathrm{~mol}\right) \quad 103.0 \quad 25.0 \quad 75.0 \quad 28.0$

- Watch Video Solution

13. The standard heats of formation at 298 K for $\mathrm{CCl}_{4}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{g})$ are -25.5, - 57.8, - 94.1 and -22.1 kcal mol ${ }^{-1}$ respectively. Calculate ΔH_{298}° for the reaction.
$\mathrm{CCl}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{HCl}(\mathrm{g})$.

Watch Video Solution

14. Calculateq, $W, \Delta U$ and ΔH for the isothermal reversible expansion of one mole of an ideal gas from an initial pressure of 1.0 bar to a final pressure of 0.1 bar at a constant temperature of 273 K .

- Watch Video Solution

15. A sample of argon gas at 1 atm pressure and $27^{\circ} \mathrm{C}$ expands reversibly and adiabatically from $1.25 \mathrm{dm}^{3}$ to $2.50 \mathrm{dm}^{3}$. Calculate the enthalpy change in this process. C_{vm} for orgon is $12.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
16. Show that the reaction
$\mathrm{CO}(\mathrm{g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
at 300 K is spontaneous and exothermic, when the standard entropy change is $-0.094 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}$. The standard Gibbs free energies of formation for CO_{2} and CO are -394.4and $-137.2 \mathrm{kJmol}^{-1}$, respectively.

- Watch Video Solution

17. Diborane is a potential rocket fuel which undergoes combustion according to the reaction,

$$
\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

from the following data, the enthalpy change for the combustion of diborane will be :

$$
\begin{aligned}
& 2 \mathrm{~B}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s}), \quad \Delta H=-1273 \mathrm{~kJ} \\
& \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \quad \Delta H=-286 \mathrm{~kJ} \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \quad \Delta H=44 \mathrm{~kJ} \\
& 2 \mathrm{~B}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} H_{6}(\mathrm{~g}), \quad \Delta H=46 \mathrm{~kJ}
\end{aligned}
$$

18. An insulated vessel contains 1 mole of a liquid, molar volume 100 mL at 1bar. When liquid is steeply passed to 100 bar , volume decreases to 99 mL . Find ΔH and ΔU for the process.

- Watch Video Solution

19. In the reaction equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

When 5 mol of each is taken and the temperature is kept at 298 K , the total pressure was found to be 20 bar.

Given : $\Delta_{f} G_{n_{2} \mathrm{O}_{4}}^{\ominus}=100 \mathrm{~kJ}, \Delta_{f} G_{\mathrm{NO}_{2}}^{\ominus}=50 \mathrm{KJ}$
a. Find ΔG of the reaction at 298 K .
b. Find the direction of the reaction.

- Watch Video Solution

20. When 1pentyne (A) is treated with 4 N alcoholic KOH at $175^{\circ} \mathrm{C}$, it is slowly converted into an equilibrium mixture of 1.3% of 1pentyne (A), 95.2% 2-pentyne (B) and 3.5% of 1, 2-pentandiene (C). The equilibrium was maintained at $175^{\circ} \mathrm{C}$. calculate ΔG^{Θ} for the following equilibria:
$B \Leftrightarrow A, \Delta G^{\Theta}=1$?
$B \Leftrightarrow C, \Delta G^{\Theta}=2$?
From the calculated value of ΔG^{Θ} 1and ΔG^{Θ}, indicate the order of stability of A, B and C.

- Watch Video Solution

21. Two moles of a perfect gas undergo the following processes:
a. A reversible isobaric expansion from (1.0atm, 20.0L) to (1.0atm, 40.0L).
b. A reversible isochroic change of state from (1.0atm, 40.0L) to
(0.5atm, 40.0L)
c. A reversible isothermal expansion from
(0.5atm, 40.0L) \rightarrow (1.0atm, 20.0L).
i. Sketch with lables each of the processes on the same P - V diagram.
ii. Calculate the total work (w) and the total heat change (q) involved in the above process.
iii. What will be the values of ΔH for the overall process?

- Watch Video Solution

22. The surface of copper gets tarnished by the formation of copper oxide. N_{2} gas was passed to prevent the oxide formation during heating of copper at 1250 K . However, the N_{2} gas contains 1 mole \% of water vapour as impurity. The water vapour oxidises copper as per the reaction given below: $2 \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$ is the minimum partial pressure of H 2 (in bar) needed to prevent the oxidation at 1250 K . The value of \ln is \qquad . (Given: total pressure $=1$ bar, R (universal gas constant)
$=8 J K-1 \mathrm{~mol}^{-1}, \ln (10)=2.3 . \mathrm{Cu}(\mathrm{s})$ and $\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$ are mutually immiscible.
At $1250 \mathrm{~K}: 2 \mathrm{Cu}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$
$\Delta H^{\theta}=-78,000 \mathrm{Jmol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta G^{\theta}=-1,78,000 \mathrm{Jmol}^{-1}, \mathrm{G}$ is the Gibbs energy

- Watch Video Solution

Practice problems

1. Write 'yes' if heat, work or matter are able to cross the boundary of the corresponding system and 'no' if passage is forbidden:

Oppoty	Open yntem	Close system	lrolated system	ddabatic system
Heat	YesNo	Yes/No	Yes/No	Yes/No
Work	Yes/No	Yes/No	Yes/No	Yes/No
Matter	Yes/No	Yes/No	Yes/No	Yes/No

D Watch Video Solution

2. Which of the following are state functions?
(i) Q
(ii) w
(iii). Q+w
(iv) $\mathrm{Q}-\mathrm{w}$
(v) Q_{v}
(vi) $Q_{p P}$
(vii) $\frac{Q}{w}$
(viii). $\frac{Q}{T}$
(ix) $\frac{\Delta X}{T}$
(x) $U+P V$
(xi) $U-P V$

- Watch Video Solution

3.

In the adjoining diagram, the $\mathrm{p}-\mathrm{V}$ graph of an ideal gas is shown. Find out from the graph (i) work done in taking the gas

From the state $A \rightarrow B$ (ii) Work done in taking the gas from $B \rightarrow C$ (iii) Work done in a complete cycle. (1 litre $=10^{-3} \mathrm{~m}^{3}$)

- Watch Video Solution

4. A sample of a gas contracts $200 \mathrm{~cm}^{3}$ by an average of .5 atmosphere while 8.5 J heat flows out into the surroundings what is the change in energy of the system?
(1 litre-atm=101.3J)

- Watch Video Solution

5. Calculate the pressure-volume work by the system when the gas expands from 1.0 litre to 2.0 litre against a constant external pressure of 10 atmospheres. Express the answer in calorie and joule.
6. A sample of a gas in a cyclinder contracts by 7.5 litre at a constant pressure of 5.0 atmosphere. How much work is done on the gas by the surroundings?

- Watch Video Solution

7. A sample of a gas expands from $200 \mathrm{~cm}^{3}$ to $500 \mathrm{~cm}^{3}$ against an average pressure of 750 torr while 1.5 J heat flows into the system. What is the change in energy of the system?
(1 litre-atm=101.3J)

- View Text Solution

8. Calculate the work done when 65.38 g of zinc dissolves in hydrochloric acid in an open beaker at 300K. (At. Mass of $\mathrm{Zn}=65.38$)

- Watch Video Solution

9. 6 moles of an ideal gas expand isothermally and reversible from a volume of $1 \mathrm{dm}^{3}$ to a volme of $10 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$. What is the maximum work done? Express your answer in joule.

- Watch Video Solution

10. 1 mole of a ideal gas at $25^{\circ} \mathrm{C}$ is allowed to expand reversibly and isothermally from 5 atm to 1 atm at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

11. 1 mole of a ideal gas at $25^{\circ} \mathrm{C}$ is allowed to expand reversibly and isothermally from 5 atm to 1 atm at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

12. How much energy is absorbed by 10 moles of an ideal gas if it expands from an initial pressure of 8 atmosphere to 4 atmosphere at a constant
temperature of $27^{\circ} \mathrm{C}$?

$$
\left(R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \quad \mathrm{~K}^{-1}\right)
$$

- Watch Video Solution

13. A given mass of a gas at $0^{\circ} \mathrm{C}$ is compressed reversible and adiabatically to a pressure 20 times the initial value. Calculate the final
temperature of the gas. $\left[\frac{C_{P}}{C_{V}}=1.42\right.$

- Watch Video Solution

14.3 moles of hydrogen are compressed isothermally and reversible from $60 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ and 8.22 kJ of work is done on it. Assuming ideal behaviour, calculate the temperature of the gas.

- Watch Video Solution

15. To what pressure must a certain ideal gas $(\gamma=1.4)$ at 373 K and 1 atmospheric pressure be compressed adiabatically in order to raise its temperature to 773 K ?

- Watch Video Solution

16. 1 mole of an ideal gas $\left(C_{V}=12.55 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ at 300 K is compressed adiabatically and reversibly to one-fourth of its original volu.e What is the final temperature of the gas?

- Watch Video Solution

17. Calculate the internal energy change for the process in which 1.0 kcal of heat is added to1 .2 litre of O_{2} gas in a cyclinder at constant pressure of 1.0 atm and the volume changes to 1.5 litre.

- Watch Video Solution

18. Calculate ΔU and ΔH when $10 \mathrm{dm}^{3}$ of helium at NTP is heated in a cylinder to $100^{\circ} C$, assuming the the gas behaves ideally. $\left(C_{V}=3 / 2 R\right)$

- Watch Video Solution

19. For the conversion of 1 mole of $\mathrm{SO}_{2}(g)$ into $\mathrm{SO}_{3}(g)$ the enthalpy of reaction at constant volume. ΔU, at 298 K is -97.027 kJ . Calculate the enthalpy of reaction, ΔH, at constant pressure.

- Watch Video Solution

20. The heat liberated on complete combustion of 7.8 g benzene is 327 kJ
.The heat has been measured at constant volume at $27^{\circ} \mathrm{C}$. Calculate the heat of combustion of benzene at constant pressure $\left(R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$.

- Watch Video Solution

21. 1 mole of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ was burnt in oxygen gas at $25^{\circ} \mathrm{C}$ at constant volume. The heat evolved was found to be 5138.8 kJ . Calculate the heat of reaction at constant pressure.

$$
\left(R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
$$

- Watch Video Solution

22. The enthalpy of formation of methane at constant pressure and 300 K is -75.83 kJ . What will be the heat of formation at constant volume?
$\left[R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$

- Watch Video Solution

23. The heat change for the reaction,

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

is -92.2 kJ . Calculate the heat of formation of ammonia.
24. $4 \mathrm{~S}(\mathrm{~s})+60_{2} \rightarrow 4 \mathrm{SO}_{3}(\mathrm{~g}), \Delta \mathrm{H}$ for this reaction is -1583.2 kJ . The enthalpy of formation of sulphur trioxide is -

- Watch Video Solution

25. Calculate the heat change in the reaction,
$4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
at 298 K given that heats of formation at 298 K for $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -46.0 and $-286.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

26. Calculate the heat of combustion of 1 mole of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ to form $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 398 K and 1 atmosphere, given that the heats of formation of $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ are $-94.1,-57.8$ and $+12.5 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively.
27. The heats of combustion of $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ are -890.3 and -150 kJ mol^{-1} respectively. Which has higher calorific value?

- Watch Video Solution

28. The heat of combustion of butane is $2880 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the heat liberated by buring 1 kg of butane in excess of oxygen supply?

- Watch Video Solution

29. The heats of formation of $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ and $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$ are -74.8, -84.7 and $-126.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Arrange them in order of their efficiency as fuel per gram. Heats of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -393.5 and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

30. The heat of combustion of carbon to CO_{2} is- $395.5 \mathrm{~kJ} / \mathrm{mol}$.The heat released upon the formation of $35.2 g$ of CO_{2} from carbon and oxygen gas is

- Watch Video Solution

31. Calculate ΔH_{f}° of $C_{6}(s)$ from the following data:,

$$
\begin{aligned}
& \Delta H_{\text {comb }} \quad \text { of } \quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})=-2816 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta H_{f}^{\circ} \quad \text { of } \\
& \mathrm{CO}_{2}(\mathrm{~g})=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { and } \Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=-285.9 \mathrm{~kJ} \mathrm{~mol}^{-1} .
\end{aligned}
$$

- Watch Video Solution

32. Calculate the amount of heat released when:
(i) 100 mL of 0.2 M HCl solution is mixed with 50 mL of 0.2 M KOH .
(ii) 200 mL of $0.1 \mathrm{M}_{2} \mathrm{SO}_{4}$ is mixed with 200 mL of 0.2 M KOH solution.

- Watch Video Solution

33. When 100 mL each of HCl and NaOH solutions are mixed, 5.71 kJ of heat was evolved. What is the molarity of two solution? The heat of neutralisation of HCl is 57.1 kJ

- Watch Video Solution

34. Determine enthalpy change for,
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{CH}_{4(\mathrm{~g})}$
at $25^{\circ} \mathrm{C}$ using heat of combustion values under standard condition.
Compounds $\quad \mathrm{H}_{2(\mathrm{~g})} \quad \mathrm{CH}_{4(\mathrm{~g})} \quad \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})} \quad \mathrm{C}_{(\text {Graphite })}$
$\Delta H^{\circ} \mathrm{inkJ} / \mathrm{mol}-285.8-890.0 \quad-1560.0 \quad-393.5$
The standard heat of formation of $C_{3} H_{8(\mathrm{~g})}$ is $-103.8 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

35. The standard ethelpy of combustion at $25^{\circ} \mathrm{C}$ of hydrogen, cyclohexene $\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)$, and cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ are -241, - 3800, and
$-3920 \mathrm{kJmol}^{-1}$ repectively. Calculate the heat of hydrogenation of cyclohexane.

- Watch Video Solution

36. From the following data of heats of combustion, find the heat of formation of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-726 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-394 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-286 \mathrm{~kJ}$

- Watch Video Solution

37. The heat of combustion of methane is $-880 \mathrm{KJmol}^{-1}$. The quantity of heat liberated in the combustion of 3.2 g methane is

- Watch Video Solution

38. Calculate the standard heat of formation of $\mathrm{C}_{10} \mathrm{H}_{8}$ (naphthalene) if standard heat of combustion of nephathalene is -123.0 kcal at 298 K and standard heats of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -94.0 kcal and -68.4 kcal respectively.

- Watch Video Solution

39. The heat of combustion of liquid ethanol is -327.0 kcal calculate the heat of formation of ethanol. Given that the heats of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -94.0 kcal and -68.4 kcal respectively.

- Watch Video Solution

40. Calculate heeat of formation of cane sugar following data:

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \Delta \mathrm{H}=-68.4 \mathrm{kcal} \\
& \mathrm{C}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-94.4 \mathrm{kcal} \\
& \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-1350.0 \mathrm{kcal}
\end{aligned}
$$

41. The heats of formation of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are 11.70,-68.4 and -94.0 kcal respectively. Calculate the heat of combustion of benzene (I).

- Watch Video Solution

42. Calculate the heat of hydrogenation of $\mathrm{C}_{2} \mathrm{H}_{2}$ to $\mathrm{C}_{2} \mathrm{H}_{4}$.

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \quad \Delta \mathrm{H}=-68.32 \mathrm{kcal} \\
& \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-310.61 \mathrm{kcal} \\
& \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-337.32 \mathrm{kcal}
\end{aligned}
$$

- Watch Video Solution

43. Calculate the heat of hydrogenation,
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$

Given that, the heats of combustion of ethylene, hydrogen and ethane are $-337.0,-68.4$ and -373.0 kcal respectively.

- Watch Video Solution

44. The enthalpies of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ are -1596 KJ and
-1134KJ respectively. ΔH for the reaction
$2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}$ is

- Watch Video Solution

45. Calculate ΔH for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
given the bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{O}=\mathrm{O}$ bonds and $\mathrm{O}-\mathrm{H}$ bond are 433 kJ $\mathrm{mol}^{-1}, 492 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $464 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Watch Video Solution

46. Using the bond enthalpy data, calculate ΔH of the following reaction:
$2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
given that, bond energies of $\mathrm{Cl}-\mathrm{Cl}, \mathrm{H}-\mathrm{Cl}, \mathrm{O}-\mathrm{H}$ and $\mathrm{O}=\mathrm{O}$ are 242.8, 431.8,464 and $442 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

47. Calculate the enthalpy of the reaction
$\mathrm{SnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Sn}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
given that, bond enthalpies of formation of $\mathrm{SnO}_{2}(s)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are -580.7
kJ and -285.8 kJ respectively.

- Watch Video Solution

48. Calculate the enthalpies change for the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
Given that, bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{Cl}$ are 436,243 and 432 kJ mol^{-1}

- Watch Video Solution

49. use the bond energy data and calculate the enthalpy change for
$2 \mathrm{C}(\mathrm{g})+2 \mathrm{H}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{g}) \rightarrow \stackrel{\text { ! }}{\mathrm{H}}-\stackrel{\mathrm{C} \mid \mathrm{Cl}-\mathrm{Cl}}{ }$
The bond energies of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{Cl}$ are 413 and $328 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

50. Calculate the heat of formation of ammonia from the following data:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
The bond energies of $N \equiv N, H-H$ and $N-H$ bonds are 226,104 and 92 kcal respectively.

- Watch Video Solution

51. Calculate ΔH_{f}° for chloride ion from the following data :
$\frac{1}{2} \mathrm{H}_{2(g)}+\frac{1}{2} \mathrm{Cl}_{2(g)} \rightarrow \mathrm{HCl}_{(g)}, \Delta H_{f}^{\circ}=-92.4 k J$
$\mathrm{HCl}_{(g)}+n \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{(a q .)}^{+}+\mathrm{Cl}_{(a q .)}^{-}, \Delta H^{\circ}=-74.8 \mathrm{~kJ}$ $\Delta H_{f}^{\circ} H_{(a q .)}^{+}=0.0 \mathrm{~kJ}$

- Watch Video Solution

52. The heat of ionisation of formic acid is $1.5 \mathrm{~kJ} / \mathrm{mol} .9 .2 \mathrm{~g}$ formic acid on reaction with 7 g ammonium hydroxide gives 10.8 kJ of heat. Calculate the heat of ionisation of ammonium hydroxide. (1cal=4.2J)

- Watch Video Solution

53. Assuming that 50% of the heat is useful, how many kg of water at $15^{\circ} \mathrm{C}$ can be heated to $95^{\circ} \mathrm{C}$ by burning 200 litre of methane at STP ? The heat of combustion of methane is $211 \mathrm{kcal} / \mathrm{mol}$. Specific heat of water is 1.0 kcalkg $^{-1} \mathrm{~K}^{-1}$.

- Watch Video Solution

54. The standard potential for the reaction,
$\mathrm{Ag}^{+}($aq. $)+\mathrm{Fe}^{2+}($ aq. $) \rightarrow \mathrm{Fe}^{3+}($ aq. $)+\mathrm{Ag}(\mathrm{s})$
is 0.028 V . What is the standard free energy change for this reaction?

- Watch Video Solution

55. Calculate the theoretical maximum efficiency of a heat engine operating between 373 K and 173 K .

- Watch Video Solution

56. The standard free energies of formation in the gaseous state of methanol, dimethyl ether and water are -38.7, -27.3 and -54.6 kcal respectively. Is the transformation of methanol to dimehtyl ether and water in gaseous state possible?
$2 \mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{OCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
57. Ethanol boils at $78.4^{\circ} \mathrm{C}$ and the enthalpy of vaporisation of ethanol is $42.4 \mathrm{kJmol}^{-1}$. Calculate the entropy of vaporisation of ethanol.

Watch Video Solution

58. The following data is known about the melting of KCl :
$\Delta H=7.25 \mathrm{~kJ} \mathrm{~mol}^{1}$ and $\Delta S=+0.007 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ Calcualt eits melting point.

- Watch Video Solution

59. ΔH and ΔS for the reaction:
$\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})$
are $30.56 \mathrm{kJmol}^{-1}$ and $66.0 \mathrm{JJK}^{-1} \mathrm{~mol}^{-1}$ respectively. Calculate the temperature at which free energy change for the reaction will be zero. Predict whether the forward reaction will be favoured above or below this temperature.
60. Calculate the boiling point of the liquid if its entropy of vaporization is $110 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and the enthalpy of vaporization is $11 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and the enthalpy of vapporization is $40.85 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Watch Video Solution

61. Using S° values, calculate the entropy of the reaction,
$\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g)$
The S° values for $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} are 248.5,205.0 and $256.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

62. Calculate the entropy change for the following reaction,

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$\begin{array}{lll}S^{\circ} 92.9 & 39.7 & 213.6 J^{-1} \mathrm{~mol}^{-1}\end{array}$
63. Compute the value of ΔS at 298 K for the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
given that, $\Delta G=-228.6 k J$ and $\Delta H=-241.8 k J$

- Watch Video Solution

64. At 300 K , the standard enthalpies of formation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{s}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $-408,-393$ and $-286 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ respectively. Calculate the heat of combustion of benzoic acid at (i) constant pressure and (ii) constant volume. ($R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)

- Watch Video Solution

65. ΔH and ΔS for
$\mathrm{Br}_{2}(\mathrm{l})+\mathrm{CI}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrCI}(\mathrm{g})$
are $29.00 \mathrm{kJmol}^{-1}$ and $100.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. Above what temperature will this reaction become spontaneous?

- Watch Video Solution

66. For the sysnthesis of ammonia,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Calculate $\Delta H^{\circ}, \Delta S^{\circ}$ and ΔG° at 300 K using the following data:
Species
$\begin{array}{lll}\mathrm{N}_{2} & \mathrm{H}_{2} & \mathrm{NH}_{3}\end{array}$
$\Delta H_{f}^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right) \quad 0 \quad 0 \quad-46.2$
$S^{\circ}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \quad 191.5 \quad 130.6 \quad 192.5$

- Watch Video Solution

67. How much heat is required to cahgen 15.6 g of benzene from liquid into vapour at its boiling point of $80^{\circ} \mathrm{C}$? Entropy of vaporization of enzene is $87 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
68. Calculate the standard free energy change for the combustion of glucose at 298 K , using the given data,

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
& \Delta H^{\circ}=-2820 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{~S}^{\circ}=210 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

- Watch Video Solution

69. The specific heat at constant volume for a gas is $0.075 \mathrm{cal} / \mathrm{g}$ and at constant pressure it is $0.125 \mathrm{cal} / \mathrm{g}$. Calculate,
(i) the molecular weight of gas,
(ii). Atomicity of gas.

- Watch Video Solution

70. The polymerisation of ethylene to linear polyethylene is represented by the reaction
$n \mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}$
When n has a large integral value. Given theat the average enthalpies of
bond dissociation for $C=C$ and $C-C$ at 298 $\mathrm{Kare}^{+} 590$ and $+331 \mathrm{kJmol}^{-1}$ respectively, calculate the enthalpy of polymerisation per mole of ethylene at 298 K .

- Watch Video Solution

71. An athelete is given 100 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ of energy equivalent to 1560 kJ . He utilises 50% of this gained enegry in the event. In order to avoid storage of enegry in the body, calculate the weight of water he would need to perspire. The enthalpy of evaporation of water is $441 \mathrm{~kJ} / \mathrm{mol}$.

- Watch Video Solution

72. Calculate the entropy of ideal mixing when 2 m oles of $N_{2}, 3$ moles of H_{2} and 2 moles of NH_{3} are mixed at constant temperature, assuming no chemical reaction is occurring.
73. Calculate free energy change for the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}-\mathrm{Cl}(\mathrm{g})$
By using the bond energy and entropy data.
Bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{Cl}$ bonds are 435kJ $\mathrm{mol}^{-1}, 240 j \mathrm{~K} \mathrm{~mol}^{-1}$ and $430 \mathrm{jk} \mathrm{mol}^{-1}$ respectively standard entropies of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are $130.59,222.95$ and $186.68 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

74. For the reaction,
$4 C(s)+5 H_{2}(g) \rightarrow n C_{4} H_{10}(g)$,
$\Delta H^{\Theta}=-124.73 \mathrm{kJmol}^{-1}, \Delta S^{\Theta}=-365.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$4 \mathrm{C}(\mathrm{s})+5 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow$ iso $-\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$
$\Delta H^{\Theta}=-131.6 \mathrm{kJmol}^{-1}, \Delta S^{\Theta}=-381.079 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Indicate whether normal butane can be spontaneously converted to iso-
butane or not.
75. The temperature of a bomb calorimeter was found to rise by 1.617 K when a current of 3.20 A was passed for 27 s from a 12 V source. Calculate the calorimeter constant.

- Watch Video Solution

76. 1 mol of an ideal gas is allowed to expand isothermally at $27^{\circ} \mathrm{C}$ untill its volume is tripled. Calculated Delya $_{\text {sys }} S$ and $\Delta_{\text {univ }} S$ under the following conditions:
a. The expansion is carried out reversibly.
b. The expansion is a free expansion.

- Watch Video Solution

77. One kilogram water at $0{ }^{\circ} \mathrm{C}$ is brought into contact with a heat reservoir at $100^{\circ} \mathrm{C}$. Find
78. A mono-atomic ideal gas of two moles is taken through a cyclic process starting from A as shwon in the figure below.

The volume ratios are $V_{B} / V_{A}=2$ and $V_{D} / V_{A}=4$. If the temperature T_{A} at
A is $27^{\circ} \mathrm{C}$. Calculate

a. The temperature of gas at B.
b. Heat absorbed or evolved in each process.
c. Total work done in cyclic process.

- Watch Video Solution

79. The reaction, $\mathrm{SOCl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{2}+2 \mathrm{HCl}$, is endothermica by 49.4 kJ and exergonic by 50.8 kJ . What is ht efactor that makes the reaction to be spontaneous? Calculate the entropy change at 298K.

Watch Video Solution

80. What amount of ice will remains when 52 g ice is added to 100 g of water at $40^{\circ} \mathrm{C}$?

Specific heat of water is $1 \mathrm{cal} / \mathrm{g}$ and latent heat of fusion of ice is $80 \mathrm{cal} / \mathrm{g}$.

D Watch Video Solution

81. Calculate the ΔH_{f}° of $C_{6} H_{12} \mathrm{O}_{6}(\mathrm{~s})$ from the following data:
$\Delta H_{\text {comb }}\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})\right]=-2816 . \mathrm{kJ} / \mathrm{mol}$
ΔH_{f}° of $\mathrm{CO}_{2}(\mathrm{~g})=-393.5 \mathrm{~kJ} / \mathrm{mol}$
ΔH_{f}° of $H_{2} O(\mathrm{l})=-285.9 \mathrm{~kJ} / \mathrm{mol}$
82. Thermodynamic is concerned with
A. total energy of a sytem
B. energy chagnes in a system
C. rate of a chemcial change
D. mass changes in nuclear reactions

Answer: B

- Watch Video Solution

2. An isolated system is that system in which
A. there is no exchange of energy with the surroundings
B. there is exchange of mass and energy with the srroundings
C. there is no exchange of energy and mass with the surroundings
D. there is no exchange of mass with the surroundings

Answer: C

- Watch Video Solution

3. Identify intensive property from the following
A. volume
B. mass
C. enthalpy
D. temperature

Answer: D

- Watch Video Solution

4. Which of the following is an extensive property?
A. Enthalpy
B. concentration
C. density
D. viscosity

Answer: A

- Watch Video Solution

5. For an adiabatic process, which of the following relations is correct?
A. $\Delta E=0$
B. $P \Delta V=0$
C. $q=0$
D. $q=+w$

Answer: C

6. Which one is true from the following for isobaric process?
A. $\Delta P=0$
B. $\Delta q=0$
C. $\Delta H=0$
D. $\Delta U=0$

Answer: A

- Watch Video Solution

7. For an ideal gas, the value of $\left(\frac{d U}{d V}\right)_{T}$ is:
A. positive
B. zero
C. negative
D. interchangeable

Answer: B

- Watch Video Solution

8. A process in which pressure remians constant is called
A. isochoric process
B. isothermal process
C. adiabatic process
D. isobaric process.

Answer: D

- Watch Video Solution

9. A process in which volume remians constant is called
A. isochoric process
B. isothermal process
C. adiabatic process
D. isobaric process.

Answer: A

- Watch Video Solution

10. For a cyclic process, the condition is
A. $\Delta U=0$
B. $\Delta H=0$
C. $\Delta U>0$ and $\Delta H>0$
D. both $\Delta U=0$ and $\Delta H=0$

Answer: D

11. Which one of the following is a state property/function?
A. Heat
B. Work
C. Internal energy
D. Potential energy

Answer: C

- Watch Video Solution

12. Internal enegry of a system of molecules is determined by taking into consideration its
A. kinetic energy
B. vibrational energy
C. rotational energy
D. all kinds of energies present in the molecules.

Answer: D

- Watch Video Solution

13. A thermodynamic quantity is that
A. which is used in thermochemistry
B. which obeys all laws of thermodynamics
C. quantity whose value depends only upon the state of the system
D. quantity which is used in mesuring thermal change

Answer: C

- Watch Video Solution

14. The enthalpy change of a reaction does not depend on
A. initial and final starte of the reaction
B. state of the reactants and products
C. nature of the reactants
D. different intermediate states

Answer: D

- Watch Video Solution

15. For the reaction of one mole of zinc dust with one mole of sulphuric acid in a bomb calorimeter ΔU and w correspond to
A. $\Delta U<0, w=0$
B. $\Delta U<0, w<0$
C. $\Delta U>0, w=0$
D. $\Delta U>0, w>0$

Answer: A

16. A system is provided with 50 Joules of heat and the work done on they system is 10 Joules. What is the change in internal energy of the system in Joules?
A. 60
B. 40
C. 50
D. 10

Answer: A

Watch Video Solution

17. During isothermal expansion of an ideal gas its
A. internal energy increases
B. enthalpy decreases
C. enthalpy remains unaffected
D. enthalpy reduces to zero

Answer: C

- Watch Video Solution

18. When an ideal gas is compressed adiabatically and reversibly, the final temperature is:
A. higher than the initial temperature
B. lower than the initial temperature
C. the same as initial temperature
D. dependent upon the rate of compression.

Answer: A

19. Adiabatic reversible expansion of a gas is represented by
A. $\left(\frac{T_{1}}{T_{2}}\right)^{\gamma}=\left(\frac{P_{2}}{P_{1}}\right)^{1-\gamma}$
B. $\left(\frac{T_{1}}{T_{2}}\right)^{\gamma}=\left(\frac{P_{1}}{P_{2}}\right)^{1-\gamma}$
C. $\left(\frac{T_{1}}{T_{2}}\right)^{\gamma}=\left(\frac{P_{2}}{P_{1}}\right)^{\gamma-1}$
D. all are correct

Answer: A

- Watch Video Solution

20. Total energy change for a reversible isothermal cycle is:
A. always positive
B. zero
C. always negative
D. always 100 kJ per degree

Answer: B

- Watch Video Solution

21. Identify the reaction in which the heat liberated corresponds to the heat of formation (ΔH) :
A. $\mathrm{C}($ diamon $)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+$ heat
B. $\mathrm{C}($ diamond $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+$ Heat
C. C (diamond) $+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{CH}_{4}(g)+$ heat
D. $\mathrm{S}($ rhombic $)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)+$ Heat

Answer: D

- Watch Video Solution

22. For an exothermic reaction, ΔH is positive.
(True/False)
A. positive
B. negative
C. zero
D. may be positive or negative

Answer: B

- Watch Video Solution

23. Evaporation of water is
A. a process in which neither heat is evolved nor absorbed
B. a process accompanied by chemical reaction
C. an exothermic change
D. an endothermic change

Answer: D

- Watch Video Solution

24. An endothermic reaction is one in which:
A. heat is converted into electricity
B. heat is absorbed
C. heat is evolved
D. heat changes to mechanical work

Answer: B

- Watch Video Solution

25. If total enthalpy of reactants and products is H_{R} and H_{P} respectively, then for exothermic reaction:
A. $H_{R}=H_{P}$
B. $H_{R}<H_{P}$
C. $H_{R}>H_{P}$
D. $H_{R}-H_{P}=0$

Answer: C

- Watch Video Solution

26. Calculate the work invoved when 1 mol of an ideal gas is compressed reversibly from 1.00 bar to 5.00 bar at a constant temperature of 300 K .
A. 4.01 K
B. -8.02 kJ
C. 18.02 kJ
D. -14.01 kJ
27. Under which of the following condition is the relation $\Delta H=\Delta U+P \Delta V$ valid for a closed system at
A. constant pressure
B. constant pressure
C. constant temperature and pressure
D. constant temperature, pressure and composition

Answer: C

- Watch Video Solution

28. Which of the following is an endothermic reaction?
A. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
C. $\mathrm{NaOH}($ aq. $)+\mathrm{HCl}($ aq. $) \rightarrow \operatorname{NaCl}($ aq. $)+\mathrm{H}_{2} \mathrm{O}(l)$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (aq. $)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Answer: B

- Watch Video Solution

29. The formation of water from $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is an exothermic process because :
A. the chemical energy of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is more than that of water
B. the chemical energy of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is less than that of wa ter
C. the temperature of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is higher than that of water
D. the temperature of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2} \mathrm{~g}$ is lower than that of water.

Answer: A

- Watch Video Solution

30. Which of the following are applicable for a thermochemical equation ? It tells :
A. It tells about physical state of reactants and products.
B. It tells whether the reaction is spontaneous
C. it tells whether the reaction in exothermic or endothermic
D. it tells about the allotropic form (if any) of the reactants.

Answer: B

- Watch Video Solution

31. The enthalpies of all elements in their standard state at $25^{\circ} \mathrm{C}$ and one atmospheric pressure are:
A. Same
B. Always positive
C. Always negative
D. zero

Answer: D

- Watch Video Solution

32. Since the enthalpy of elements in their natural state is taken to be zero, the heat of formation $\left(\Delta_{f} H\right)$ of compounds
A. is always negative
B. is always positive
C. is zero
D. may be positive or negative

Answer: D

- Watch Video Solution

33. The difference between the heats of reaction at constant pressure and a constant volume for the reaction $2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ in kJ is
A. +7.43
B. +3.72
C. -7.43
D. -3.72

Answer: C

- Watch Video Solution

34. For a gaseous reaction, $A(g)+3 B(g) \rightarrow 3 C(g)+3 D(g), \Delta D$ is 17 kcal at $27^{\circ} \mathrm{C}$. Assuming $R=2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, the value of ΔH for the above reaction is:
A. 15.8 kcal
B. 18.2 kcal
C. 20.0 kcal
D. 16.4 kcal

Answer: B

- Watch Video Solution

35. At constant TandP,Which of the following statements is correct for the reaction,
$\mathrm{CO}(\mathrm{G})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$,
A. $\Delta H=\Delta U$
B. $\Delta H<\Delta U$
C. $\Delta H>\Delta U$
D. none of these

Answer: B

36. For the reaction, $\mathrm{Ag}_{2} \mathrm{O}(s) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g)$ which one of the following is true?
A. $\Delta H=\Delta U$
B. $\Delta<\Delta U$
C. $\Delta H>\Delta U$
D. $\Delta H=\frac{1}{2} \Delta U$

Answer: C

- Watch Video Solution

37. Which one of the following is applicable for an adiabatic expansion of ideal gas?

$$
\text { A. } \Delta U=0
$$

B. $W=\Delta U$
C. $W=-\Delta U$
D. $W=0$

Answer: C

- Watch Video Solution

38. Assume each reaction is carried out in an open container.

For which reaction will $\Delta H=\Delta U$?
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
B. $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
C. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
D. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$

Answer: A

39. Reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}, \Delta H=12.40 \mathrm{kcal}$ Itbr. According to this, heat of formation of HI will be:
A. 12.40 kcal
B. -12.4 kcal
C. -6.20 kcal
D. 6.20 kcal

Answer: D

- Watch Video Solution

40. For the reaction
(i) $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g)=2 \mathrm{HCl}(g)+x k J$
(ii). $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})=2 \mathrm{HCl}(\mathrm{l})+y k J$
which one of the following statements is correct?
A. $x>y$
B. $x<y$
C. $x-y=0$
D. $x=y$

Answer: B

- Watch Video Solution

41. For the reactions,
(i) $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g)=2 \mathrm{HCl}(g)+x k J$
(ii) $2 \mathrm{HCl}(g)=\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g)-y k J$

Which one of the following statements is correct?
A. $x-y>0$
B. $x-y<0$
C. $x-y=0$
D. none of these

Answer: C

- Watch Video Solution

42. According to equation, $C_{6} H_{6}(l)+15 / 2 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-3264.4 \mathrm{KJ} \mathrm{mol}^{-1}$ the energy evolved when 7.8 g benzene is burnt in air will be -
A. 163.22 kJ
B. 32.64 kJ
C. 3.264 kJ
D. 326.4 kJ

Answer: D

43. If $\Delta H_{f}(X), \Delta H_{f}(Y), \Delta H_{f}(R)$ and $\Delta H_{f}(S)$ denote the enthalpies of formation of X, Y, R and S respectively, the enthalpy of the reaction $X+Y \rightarrow R+S$ is given by
A. $\Delta H_{f(x)}+\Delta H_{f(y)}$
B. $\Delta H_{f(R)}+\Delta H_{f(S)}$
C. $\Delta H_{f(x)}+\Delta H_{f(y)}-\Delta H_{f(R)}-\Delta H_{f(S)}$
D. $\Delta H_{f(R)}+\Delta H_{f(S)}-\Delta H_{f(x)}-\Delta H_{f(y)}$

Answer: D

- Watch Video Solution

44. The enthalpy change for the reaction,
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})$ is called:
A. enthalpy of formation
B. enthalpy of combustion
C. enthalpy of vaporisation
D. enthalpy of sublimation

Answer: B

- Watch Video Solution

45. The enthalpy change for the reaction

2 C (graphite) $+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ is called
A. enthalpy of formation
B. enthalpy of combustion
C. enthalpy of hydroenation
D. enthalpy of vaporisation

Answer: A

46. The enthalpy of formation of organic compounds are conveniently determined from their:
A. - 286.0
B. -143.0
C. 286.0
D. 143.0

Answer: C

- View Text Solution

47. The enthalpies of formation of organic substances are conveniently determined from
A. boiling points
B. melting points
C. enthalpies of neutralization
D. enthalpies of combustion

Answer: D

- Watch Video Solution

48. The heat of neutralization of any strong acid and strong base is always constant and $\Delta H=-57.3 \mathrm{~kJ}$. This because.
A. both the acid and base undergo complete ionization
B. during neutralization, salt and waer are formed.
C. 1 mole of water is formed from H^{+}and OH^{-}ions
D. the reaction is exothermic.

Answer: A

- Watch Video Solution

49. The enthalpy of neutralization of oxalic acid by strong acid is $-25.4 \mathrm{kcalmol}^{-1}$. The enthalpy of neutralization of strong acid and strong base is $-13.7 \mathrm{kcalequil}^{-1}$. The enthalpy of dissociation of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is
A. $1 \mathrm{kcal} \mathrm{mol}^{-1}$
B. $2 \mathrm{kcal} \mathrm{mol}^{-1}$
C. $18.55 \mathrm{kcal} \mathrm{mol}^{-1}$
D. $11.7 \mathrm{kcal} \mathrm{mol}^{-1}$

Answer: B

- Watch Video Solution

50. The amount of heat liberated when one mole of $\mathrm{NH}_{4} \mathrm{OH}$ reacts with one mole of HCl is
A. 13.7 kcal
B. more than 13.7 kcal
C. less than 13.67 kcal
D. cannot e predicted.

Answer: C

- Watch Video Solution

51. Heat of neutralisation for the reaction:
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
is $57.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The heat released when 0.25 mole of NaOH is titrated against 0.25 mole of HCl will be:
A. 22.5 kJ
B. 57.1 kJ
C. 28.6 kJ
D. 14.3 kJ

Answer: D

D Watch Video Solution

52. If $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+13.7 \mathrm{Kcal}$, the heat of neutralisation for complete neutralisation of 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by base will be
A. 13.7 kcal
B. 27.4 kcal
C. 6.85 kcal
D. 3.425 kcal

Answer: B

- Watch Video Solution

53. In which of the following neutralization reaction, the heat of neutralization will be highest?
A. HCl and NaOH
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and NaOH
C. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NH}_{3} \mathrm{OH}$
D. HCl and $\mathrm{NH}_{4} \mathrm{OH}$

Answer: A

- Watch Video Solution

54. "The enthalpy of formation of a compound is equal in magnitude but of opposite sign to the enthalpy of decomposition of that compound under the same conditions". This law was presented by:
A. Hess
B. Le Chatelier
C. Kirchhoff
D. Lavoisier annd Laplace

- Watch Video Solution

55. "The change of enthalpy of a chemical reaction is the same whether the reaction takes place in one step or in several steps". This law was presented by:
A. Hess
B. Le chatelier
C. Van't Hoff
D. Kirchhoff

Answer: A

56. From the thermochemical reactions,
$C_{(\text {graphite) }}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}, \Delta \mathrm{H}=-110.5 \mathrm{~kJ}$
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta \mathrm{H}=-283.2 \mathrm{~kJ}$
the heat of reaction of $C_{\text {(graphite) }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ is:
A. +393.7 kJ
B. -393.7 kJ
C. -172.7 kJ
D. +172.7 kJ

Answer: B

- Watch Video Solution

57. Calculate heat of formation of $\mathrm{KOH}(s)$ using the following equations
$K(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+a q \rightarrow \mathrm{KOH}(a q)+1 / 2 \mathrm{H}_{2}(g), \Delta H=-48.0 \mathrm{kcal} . . .(i)$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-68.4 \mathrm{kcal} . . .(\mathrm{ii})$
$\mathrm{KOH}(\mathrm{s})+(\mathrm{aq}) \rightarrow \mathrm{KOH}(\mathrm{aq}), \Delta H=-14.0 \mathrm{kcal}($ iii $)$
A. $-68.39+48-14.0$
B. $-68.39-48.0+14.0$
C. $+68.39-48.0+14.0$
D. $+68.39+48.0-14.0$

Answer: B

D Watch Video Solution

58. The enthalpies of combustion of $C_{\text {(graphite) }}$ and $C_{\text {(diamond) }}$ are -393.5 and $-395.4 \mathrm{~kJ} / \mathrm{mol}$ respectively. The enthalpy of conversion of $C_{\text {(graphite) }}$ to $C_{\text {(diamond) }}$ in $\mathrm{kJ} / \mathrm{mol}$ is:
A. -1.9
B. -788.9
C. 1.9
D. 788.9

Answer: C

- Watch Video Solution

59. The heat of combustion of yellow phoshphorus and red phosphorus are $-9.91 \mathrm{KJmol}^{-1}$ and $-8.78 \mathrm{KJ} / \mathrm{mol}$ respectivaly. The heat of transition from yellow phosphrous to red phosphorus is
A. -18.69 kJ
B. +1.13 kJ
C. +18.69 kJ
D. -1.13 kJ

Answer: D

- Watch Video Solution

60. What will be the heat of formation of methane, if the heat of combustion of carbon is ' $-x^{\prime}$ ' k, heat of formation of water is ' -y ' $k J$ heat of combustion of methane is '-z' k]?
A. $(-x-y+z) k J$
B. $(-z-x+2 y) k J$
C. $(-x-2 y-z) k J$
D. $(-x-2 y+z) k J$

Answer: D

- Watch Video Solution

61. Given $\mathrm{C}_{\mathrm{s}}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}, \Delta H=-94.2 \mathrm{Kcal}$
$\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}, \Delta=-68.3 \mathrm{Kcal}$
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}=-210.8 \mathrm{Kcal}$
what will be heat of formation of CH_{4} in (Kcal) ?
A. 45.9
B. 47.8
C. 20
D. 47.3

Answer: C

- Watch Video Solution

62. On combustion carbon forms two oxides CO and CO_{2}, heat of formation of CO_{2} is -94.3 kcal and that of CO is -26 . kcal. Heat of combustion of carbon is:
A. -26.0 kcal
B. -68.3 kcal
C. -94.3kcal
D. -120.3 kcal

Answer: C

- Watch Video Solution

63. The heat of combustion of ethanol was determined in a bomb calorimeter and was found to be $-670.48 \mathrm{kcalmol}^{-1}$ at $25^{\circ} \mathrm{C}$. What will be ΔU for the same reaction at $298 K$?
A. $-760 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$
B. $-670.48 \mathrm{kcal} \mathrm{mol}^{-1}$
C. $+760 \mathrm{kcal} \mathrm{mol}^{-1}$
D. $+670.48 \mathrm{kcal} \mathrm{mol}^{-1}$

Answer: B

- Watch Video Solution

64. For an endothermic reaction where ΔH represent the enthalpy of reaction in $\mathrm{kj} / \mathrm{mol}$, the minimum value for the energy of activation will be:
A. less than ΔH
B. zero
C. equal to ΔH
D. more than ΔH

Answer: C

- Watch Video Solution

65. If $S+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}, \Delta H=-298.2 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3} \Delta H=-98.7 \mathrm{~kJ} \mathrm{~mole}^{-1}$

$$
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta \mathrm{H}=-130.2 \mathrm{~kJ} \mathrm{~mole}^{-1}
$$

$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta \mathrm{H}=-287.3 \mathrm{~kJ}$ mole ${ }^{-1}$
the enthlapy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be
A. -754.4 kJ
B. $+320.5 k J$
C. -650.3 kJ
D. -433.7 kJ

Answer: A

- Watch Video Solution

66. Which of the following units represent the largest amount of energy?
A. Electron-volt
B. Erg
C. Joule
D. Calorie

Answer: D

 what will be the enthalpy change of the reaction $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$?
A. $146 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-196 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-494 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-98 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

68. The bond dissociation energies for Cl_{2}, I_{2} and $I C l$ are 242.3, 151.0 and $211.3 \mathrm{~kJ} / \mathrm{mole}$ respectively. The enthalpy of sublimation of iodine is $62.8 \mathrm{~kJ} / \mathrm{mole}$. What is the standard enthalpy of formation of $\operatorname{ICI}(\mathrm{g})$ nearly equal to
A. $-211.3 \mathrm{~kJ} / \mathrm{mol}$
B. $-14.6 \mathrm{~kJ} / \mathrm{mol}$
C. $16.8 \mathrm{~kJ} / \mathrm{mol}$
D. $33.5 \mathrm{~kJ} / \mathrm{mol}$

Answer: C

- Watch Video Solution

69. The standard heats of formation at 298 K for $\mathrm{CCl}_{4}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{g})$ are -25.5, -57.8, -94.1 and -22.1 kcal mol ${ }^{-1}$ respectively. Calculate ΔH_{298}° for the reaction.
$\mathrm{CCl}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{HCl}(\mathrm{g})$.
A. 36.4 kJ
B. 20.7 kJ
C. -20.7 kJ
D. $-41.4 k J$

- Watch Video Solution

70. Heats of combustion of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ are $-212.8,-373.0,-337.0$ and -310.5 kcal respectively at the same temperature.

The best fuel among these gases is:
A. CH_{4}
B. $\mathrm{C}_{2} \mathrm{H}_{6}$
C. $\mathrm{C}_{2} \mathrm{H}_{4}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: A

71. Given
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-395 \mathrm{~kJ}$
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-295 \mathrm{~kJ}$
$\mathrm{CS}_{2}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-1110 \mathrm{~kJ}$
The heat of formation of $\mathrm{CS}_{2}(\mathrm{l})$ is
A. 250 kJ
B. 62.5 kJ
C. 31.25 kJ
D. 125 kJ

Answer: D

- Watch Video Solution

72. The heats evolved in combustion of rhombic and monoclinic sulphur are, respectively, 70960 and 71030 calmol $^{-1}$. What will be the heat of conversion of rhomic sulphur to monoclinic?
A. -70960 cal
B. -71030 cal
C. 70cal
D. -70 cal

Answer: C

- Watch Video Solution

73. The bond dissociation energy of $\mathrm{C}-\mathrm{H}$ in CH_{4} from the equation
$\mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}), \quad \Delta \mathrm{H}=-397.8 \mathrm{kcal}$
is:
A. +99.45 kcal
B. -99.45 kcal
C. +397.8 kcal
D. +198.9 kcal

- Watch Video Solution

74. The dissociation energy of CH_{40} and $\mathrm{C}_{2} \mathrm{H}_{6}$ are respectively 360 and $620 \mathrm{kcal} / \mathrm{mol}$. The bond energy of $C-C$ bond is :
A. 270 kcal
B. 70 kcal
C. 200 kcal
D. 240 kcal

Answer: B

- Watch Video Solution

75. When 10 mL of a strong acid is added to 10 mL of an alkali, the temperature rises by $5{ }^{\circ} \mathrm{C}$. If 100 mL of the same acid si mixed with 100
mL of the same base, the temperature rise would be:
A. $5{ }^{\circ} \mathrm{C}$
B. $50^{\circ} \mathrm{C}$
C. $20^{\circ} \mathrm{C}$
D. cannot be predicted.

Answer: A

- Watch Video Solution

76. Energy required to dissociate $4 g$ of gaseous hydrogen into free gaseous atoms is 208 Kcal at $25^{\circ} \mathrm{C}$

The bond energy of $H-H$ bond will be
A. 1.04 cal
B. 10.4 kcal
C. 104 kcal
D. 1040 kcal

Answer: C

- Watch Video Solution

77. The enthalpy of combustion of H_{2}, cyclohexene $\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ are $-241,-3800$ and -3920 KJ per mol respectively. Heat of hydrogenation of cyclohexene is
A. $-121 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $121 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-242 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $242 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

78. Given that, heat of neutralisation of strong acid and strong base is 57.1
kJ. Calculate the heat produced when 0.25 mole of HCl is neutralised with
0.25 mole of NaO in aqueous solution:
A. 22.5 kJ
B. 57 kJ
C. 14.275 kJ
D. 28.55 kJ

Answer: C

- Watch Video Solution

79. Which of the following value of ΔH_{f}° represent that the product is least stable?
A. $-94.0 \mathrm{kcal} \mathrm{mol}^{-1}$
B. $-231.6 \mathrm{kcal} \mathrm{mol}^{-1}$
C. $+21.4 \mathrm{kcal} \mathrm{mol}^{-1}$
D. $+64.8 \mathrm{kcal} \mathrm{mol}^{-1}$

Answer: D

- Watch Video Solution

80. The value of ΔH_{O-H} is $109 \mathrm{kcalmol}^{-1}$. Then formation of one mole of water in gaseous state from $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is acccompained by
A. 218 kcal
B. -109 kcal
C. -218 kcal
D. unpredictable

Answer: C

- Watch Video Solution

81. Heat of neutralisation of a strong dibasic acid in dilute solution by NaOH is nearly :
A. $-27.4 \mathrm{kcal} / \mathrm{eq}$
B. $-13.7 \mathrm{kcal} / \mathrm{eq}$
C. $+13.7 \mathrm{kcal} / \mathrm{eq}$
D. $-13.7 \mathrm{kcal} / \mathrm{mol}$

Answer: B

- Watch Video Solution

82. The enthalpy changes at 298 K in successive breaking of $O-H$ bonds of water, are
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{OH}(\mathrm{g}), \Delta \mathrm{H}=498 \mathrm{kJmol}^{-1}$
$\mathrm{OH}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g}), \Delta H=428 \mathrm{kJmol}^{-1}$
The bond energy of the $\mathrm{O}-\mathrm{H}$ bond is
A. $498 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $428 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $463 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: D

- Watch Video Solution

83. The combustion of methane is written as
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The difference between enthalpy change and energy change is equal to:
A. $-2 R T$
B. 0
C. $R T$
D. $\frac{R T}{2}$
84. A spontaneous change is one in which a system under goes
A. an increase in internal energy
B. lowering in entropy
C. lowering in free energy
D. no energy change

Answer: C

- Watch Video Solution

85. In which of the following change entropy decreases?
A. Crystallisation of sucrose from solution
B. Dissolving sucrose in water
C. Meltin of ice
D. Vaporisation of campor

Answer: A

- Watch Video Solution

86. For the percipitation reaction of Ag^{\oplus} ions with NaCI , which of the following statements is true?
A. ΔH is zero for the reaction
B. ΔG is zero for the reaction
C. ΔG is negative for the negative
D. ΔG should be equal to ΔH

Answer: C

- Watch Video Solution

87. If the enthalpy of vaporisation of water is $186.5 \mathrm{Jmol}^{-1}$, then entropy of its vaporisation will be
A. 0.5
B. 1
C. 1.5
D. 2

Answer: A

- Watch Video Solution

88. A reaction is non-spontaneous when:
A. ΔH is $+v e, \Delta S$ is -ve
B. both ΔH and ΔS are -ve
C. ΔH is -ve and ΔS is +ve
D. none of these

- Watch Video Solution

89. Standard entropy of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 K J$, to be at equilibrium, the temperature will be:
A. 750 K
B. 1000 K
C. 1250 K
D. 500 K

Answer: A

D Watch Video Solution

90. The unit of entropy is
A. $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $\mathrm{J} \mathrm{mol}^{-1}$
C. $J^{-1} K^{-1} \mathrm{~mol}^{-1}$
D. $\mathrm{JK} \mathrm{mol}-1$

Answer: A

- Watch Video Solution

91. Given that $\Delta h_{f}(H)=218 \mathrm{~kJ} / \mathrm{mol}$. Express the $H-H$ bond energy in Kcal/mol
A. 52.15
B. 911
C. 109
D. 5.2153

Answer: C

92. For which reaction from the following, ΔS will be maximum?
A. $\mathrm{Ca}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaO}(\mathrm{s})$
B. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
C. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$

Answer: B

- Watch Video Solution

93. A particular reaction at $27^{\circ} \mathrm{C}$ for which $\Delta H>0$ and $\Delta S>0$ is found to be non-spontaneous. The reaction may proceed spontaneously if
A. the temperature is decreased
B. the temperature is kept constant
C. the temperature is increased.
D. it is carried in open vessel at $27^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

94. Althought he dissolution of ammonium chloride in water is an endothermic reaction, even then it is spontaneous because:
A. ΔH is positive, ΔS is -ve
B. ΔH is + ve, Δ is zero
C. ΔH is positive, $T \Delta S<\Delta H$
D. ΔH is +ve ΔS is positive and $\Delta H<T \Delta S$

Answer: D

- Watch Video Solution

95. In general, for exothermic reactions to be spontaneous
A. temperature must be high
B. temperature must be zero
C. temperature may have any magnitude
D. temperature must be low

Answer: D

- Watch Video Solution

96. For the reversible process, the value of ΔS is given by the expression:
A. $\frac{q_{r e v}}{T}$
B. $T-q_{\text {rev }}$
C. $q_{r e v} \times T$
D. $q_{r e v}-T$

D Watch Video Solution

97. In an electrochemical cell, if E° is the e.m.f. of the cell involving ' n ' mole of electrons, then ΔG° is
A. $\Delta G^{\circ}=n F E^{\circ}$
B. $\Delta G^{\circ}=-n F E^{\circ}$
C. $E^{\circ}=n F \Delta G^{\circ}$
D. $\Delta G^{\circ}=n F / E^{\circ}$

Answer: B

- Watch Video Solution

98. The standard Gibb's free energy change, ΔG° is related to equilibrium
A. $\Delta G^{\circ}=R T \ln K$
B. $K=e^{-\Delta G^{\circ} / 2.303 R T}$
C. $\Delta G^{\circ}=-R T \log K$
D. $K=10^{-\Delta G^{\circ} / 2.303 R T}$

Answer: D

D Watch Video Solution

99. The value of entropy in the universe is
A. constant pressure
B. decreasing
C. increasing
D. zero

Answer: C

100. Which of the following thermodynamic relation is correct?
A. $d G=V d P-S d T$
B. $d U=P d V+T d S$
C. $d H=-V d P+T d S$
D. $d G=V d P+S d T$

Answer: A

- Watch Video Solution

101. The enthalpy of formation for $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ and 1 atm. Pressure be $52,-394$ and $-286 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of combustion of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ will be
A. $+141.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $+1412 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-141.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-1412 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: D

- Watch Video Solution

102. Identify the correct statement regarding entropy
A. at absolute zero, the entropy of a perfectly crystalline substance is $+\mathrm{ve}$.
B. at absolute zero, the entropy of a perfectly crystalline substance is zero.
C. at $0^{\circ} \mathrm{C}$ the entropy of a perfectly crystalline substance is taken to be zero.
D. at absolute zero of temperature the entropy of all crystalline substances is taken to be zero.

Answer: B

D Watch Video Solution

103. When enthalpy and entropy change for a chemical reaction are -2.5×10^{3} cals and 7.4 cals deg^{-1} respectively. Predict that reaction at 298 K is
A. spontaneous
B. reversible
C. irreversible
D. non-spontaneous

Answer: A

104. One mole of an ideal gas at 300 K is expanded isothermally from an inital volume of 1 litre to 10 litres. The ΔE for this process is $\left(R=2\right.$ calmol $\left.^{-1} K^{-1}\right)$
A. 163.7 cal
B. 1381.1 cal
C. 8 litre-atm
D. zero

Answer: D

- Watch Video Solution

105. Latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is $10.0 \mathrm{kcal} / \mathrm{mol}$. What will be the change in internal energy (ΔE) of 3 mol of liquid at same temperature?
A. 13.0 kcal
B. -13.0 kcal
C. 27.0 kcal
D. - 27.0 kcal

Answer: C

- Watch Video Solution

106. The enthalpy change of a reaction does not depend on
A. state of reactants and products
B. nature of reactants and products
C. different intermediates reaction
D. initial and final enthalpy change of reaction.

Answer: C

107. Which plot represents for an exothermic reaction ?
(a)

A. Reaction coordinate
(b)

B. Reaction coordinate
(c)

C.
(d)

D.

Answer: A

- Watch Video Solution

108. Given : $S_{(s)}+\frac{3}{2} O_{2(g)} \rightarrow \mathrm{SO}_{3(g)}+2 X$ Kcal
$\mathrm{SO}_{2(\mathrm{~s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{YKcal}$
The heat of formation of SO_{2} is : -
A. $y-2 x$
B. $2 x+y$
C. $x+y$
D. $2 x / y$

Answer: A

- Watch Video Solution

109. $\mathrm{NH}_{3}(g)+3 \mathrm{Cl}_{2} \rightarrow \mathrm{NCl}_{3}(g)+3 \mathrm{HCl}(g), \Delta H_{1}$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}_{2}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}_{3}$
The heat of formation of $\mathrm{NCl}_{3}(\mathrm{~g})$ in the terms of
$\Delta H_{1}, \Delta H_{2}, \Delta H_{3}$ is :
A. $\Delta H_{f}=-\Delta H_{1}+\frac{1}{2} \Delta H_{2}-\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=\Delta H_{1}+\frac{1}{2} \Delta H_{2}-\frac{3}{2} \Delta H_{3}$
C. $\Delta H_{f}=\Delta H_{1}-\frac{1}{2} \Delta H_{2}-\frac{3}{2} \Delta H_{3}$
D. none of the above

Answer: A

- Watch Video Solution

110. The word 'standard' in standard molar enthalpy change implies
A. temperature 298 K
B. pressure 1 atm
C. temperature 298 K and pressure 1 atm
D. all temperature and all pressure

Answer: B

111. The heat of formation $\left(\Delta H_{f}^{\circ}\right)$ of $H_{2} O(I)$ is equal to :
A. zero
B. molar heat of combustion of $\mathrm{H}_{2}(\mathrm{l})$
C. Molar heat of combustion of $\mathrm{H}_{2}(\mathrm{~g})$
D. sum of heat of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{O}_{2}(\mathrm{~g})$

Answer: C

- Watch Video Solution

112. The value of ΔH and ΔS for a reaction are respectively 30 kJ mol^{-1} and $100 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Then temperature above which the reaction will become spontaneous is:

A. 300 K

B. 30 K
C. 100 K
D. $300^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

113. The value of ΔH° for the reaction $\mathrm{Cu}^{+}(g)+I^{-}(g) \rightarrow \mathrm{CuI}(g)$ is -446 kJ mol^{-1}. If the ionisation energy of $\mathrm{Cu}(\mathrm{g})$ is $745 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the electron affinity of $\mathrm{I}(\mathrm{g})$ is $-295 \mathrm{~kJ} \mathrm{~mol}^{-1}$, then the value of ΔH° for the formation of one mole of $\mathrm{Cul}(\mathrm{g})$ from $\mathrm{Cu}(\mathrm{g})$ and $\mathrm{I}(\mathrm{g})$ is:
A. $-446 k J$
B. 450 kJ
C. 594 kJ
D. 4 kJ

Answer: D

114. If the enthalpy change for the reaction,
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}=-25 \mathrm{kcal}$, bond energy of $\mathrm{C}-\mathrm{H}$ is $20 \mathrm{kcal} \mathrm{mol}^{-1}$ greater than the bond energy of $\mathrm{C}-\mathrm{Cl}$ and bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{H}-\mathrm{Cl}$ are same in magnitude, then for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}=$?
A. $-22.5 \mathrm{kcal} / \mathrm{mol}$
B. $-20.5 \mathrm{kcal} / \mathrm{mol}$
C. $-32.5 \mathrm{kcal} / \mathrm{mol}$
D. $-12.5 \mathrm{kcal} / \mathrm{mol}$

Answer: A

- Watch Video Solution

115. The standard heat of formation of sodium ions in aqueous solution from the following data:
heat of foramtion of NaOH (aq.) at $25^{\circ} \mathrm{C}=-470.7 \mathrm{~kJ}$
heat of formation of OH^{-}(aq.) at $25^{\circ} \mathrm{C}=-228.8 \mathrm{~kJ}$ is:
A. $-251.9 k J$
B. 241.9 kJ
C. $-241.9 k J$
D. 251.9 kJ

Answer: C

- Watch Video Solution

116. $A B, A_{2}$ and B_{2} are diatomic molecules. If the bond enthalpies of $A_{2}, A B$ and B_{2} are in the ratio 1:1:0.5 and the enthalpy of formation of $A B$ from A_{2} and B_{2} is $-100 \mathrm{kJmol}^{-1}$, what is the bond enthalpy of A_{2} ?
A. $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

117. The lattice energy of solid NaCI is $180 \mathrm{kcalmol}^{-1}$. The dissolution of the solid in $\mathrm{H}_{2} \mathrm{O}$ is endothermic to the extent of $1.0 \mathrm{kcalmol}^{-1}$. If the hydration energies of $N a{ }^{\oplus}$ and $C I^{\Theta}$ ions are in the ratio of $6: 5$ what is the enthalpy of hydration of sodium ion?
A. $-85.6 \mathrm{kcal} / \mathrm{mol}$
B. $-97.5 \mathrm{kcal} / \mathrm{mol}$
C. $82.6 \mathrm{kcal} / \mathrm{mol}$
D. $+100 \mathrm{kcal} / \mathrm{mol}$

Answer: B

- Watch Video Solution

118. Which one of the following statement is false?
A. Work is a state function
B. Temperature is a state function
C. Work appears at the boundary of the system
D. Change in the state is completely when the initial and final state are specified

Answer: A

D Watch Video Solution

119. ΔG^{\ominus} for the reaction $X+Y \Leftrightarrow C$ is -4.606 kcalat 1000 K. The equilibrium constant for the reverse mode of the reaction will be:
A. 100
B. 10
C. 2
D. 0.01

Answer: A

- Watch Video Solution

120. The enthalpy of dissolution of $\mathrm{BaCl}_{2}(\mathrm{~s})$ and $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are -20.6 and $8.8 \mathrm{KJ} \mathrm{mol}^{-1}$ respectively. Calculate enthalpy of hydration forgiven reaction:
$\mathrm{BaCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
A. 29.8 kJ
B. -11.8 kJ
C. -20.6 kJ
D. $-29.4 k J$

D Watch Video Solution

121. For the reaction
$A(g)+2 B(g) \rightarrow 2 C(g)+3 D(g)$,
the value of ΔH at $27^{\circ} \mathrm{C}$ is 19.0 kcal . The value of ΔE for the reaction would be
$\left(R=2.0 \mathrm{calH}^{-1} \mathrm{~mol}^{-1}\right)$
A. 20.8 kcal
B. 19.8 kcal
C. 18.8 kcal
D. 17.8 kcal

Answer: D

122. In thermodynamics, a process is called reversible when
A. surroundings and system change into each other
B. there is no boundary between system and surroundings
C. the sorroundings are always in equilibrium with the system
D. the system changes into the surroundings spontaneously

Answer: C

- Watch Video Solution

123. The heat liberated when 1.89 g of benzoic acid is burnt in a bomb calorimeter at $25^{\circ} \mathrm{C}$ increases the temperture of 18.94 kg of water by $0.632^{\circ} \mathrm{C}$. If the specific heat of water at $25^{\circ} \mathrm{C}$ is $0.998 \mathrm{cal} / \mathrm{gdeg}$, the value of the heat of combustion of benzoic acid is
A. 88.1 kcal
B. 771.4 kcal
C. 981.1 kcal
D. 871.2 kcal

Answer: B

- Watch Video Solution

124. One mole of a non-ideal gas undergoes a change of state (2.0atm, 3.0L, 95K) \rightarrow (4.0atm, 5.0L, 245K)

With a change in internal energy $\Delta E=30 \mathrm{~L}$ atm. The change in enthalpy (ΔH) in the process in L-atm is
A. 40
B. 42.4
C. 44
D. not defined, because pressure is not constant.

Answer: C

125. Which of the reaction defines molar ΔH_{f}° ?
A. $C_{\text {(diamond) }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
B. $\frac{1}{2} H_{2}(g)+\frac{1}{2} F_{2}(g) \rightarrow H F(g)$
C. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

Answer: B

- Watch Video Solution

126. The enthalpies of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ are -1596 KJ and
-1134KJ respectively. ΔH for the reaction
$2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}$ is
A. $-462 k J$
B. -1365 kJ
C. -2530 kJ
D. +2530 kJ

Answer: A

- Watch Video Solution

127. Which of the following is true for spontaneous process?
A. $\Delta G>0$
B. $\Delta G<0$
C. $\Delta G=0$
D. $\Delta G=T \Delta S$

Answer: B

128. Considering entropy (S) as a thermodynamics parameter, the criterion for the spontaneity of any process is
A. $\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}>0$
B. $\Delta S_{\text {system }}-\Delta S_{\text {surroundings }}>0$
C. $\Delta S_{\text {system }}>0$ only
D. $\Delta S_{\text {surroudings }}>0$ only

Answer: A

- Watch Video Solution

129. An ideal gas expands from $1 \times 10^{-3} \mathrm{~m}^{3}$ to $1 \times 10^{-2} \mathrm{~m}^{3}$ at 300 K againts a constant pressure of $1 \times 10^{5} \mathrm{Nm}^{-2}$. The work done is :
A. -900 J
B. - 900 kJ
C. 270 kJ
D. $+900 k J$

Answer: A

- Watch Video Solution

130. What is the value of internal energy change (ΔU) at $27^{\circ} \mathrm{C}$ a gaseous reaction $2 A_{2}(g)+5 B_{2}(g) \rightarrow 2 A_{2} B_{5}(g)$ (whose heat chhange at constant pressure is $-50700 \mathrm{~J}) ?\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. -50700 J
B. -63171 J
C. -38229 J
D. +38299 J

Answer: C

131. Two moles of an ideal gas is expanded isothermally and reversibly from 1 liter to 10 liter at 300 K . The enthalpy change (in $k J$) for the process
A. 11.4 kJ
B. -11.4 kJ
C. 0 kJ
D. 4.8 kJ

Answer: B

- Watch Video Solution

132. The enthalpy of vaporisation of a liquid is $30 \mathrm{kJmol}^{-1}$ and entropy of vaporisation is $75 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. The boiling point of the liquid at 1 atm is :
A. 250 K
B. 400 K
C. 450 K
D. 600 K

Answer: B

- Watch Video Solution

133. The sublimation energy of I_{2} (solid) is $57.3 \mathrm{KJ} / \mathrm{mole}$ and enthalpy of fusion is $15.5 \mathrm{KJ} /$ mole. The enthalpy of vapourisation of I_{2} is
A. $41.8 \mathrm{~kJ} / \mathrm{mol}$
B. $-41.8 \mathrm{~kJ} / \mathrm{mol}$
C. $72.8 \mathrm{~kJ} / \mathrm{mol}$
D. $-72.8 \mathrm{kcal} / \mathrm{mol}$

Answer: A

- Watch Video Solution

134. ΔH and ΔS for a reaction are $+30.558 \mathrm{kJmol}^{-1}$ and $0.066 \mathrm{kJmol}^{-1}$ at 1 atm pressure. The temperature at which free energy is equal to zero and the nature of the reaction below this temperature are
A. 483 K , spontaneous
B. 443 K , non-spontaneous
C. 443 K , spontaneous
D. 463 K , non-spontaneous

Answer: D

- Watch Video Solution

135. What would be the heat released when an aqueous solution containing 0.5 mol if HNO_{3} is mixed with 0.3 mol of OH^{-1} (enthalpy of neutralisation is -57.1 kJ)
A. 28.5 kJ
B. 17.1 kJ
C. 45.7 kJ
D. 1.7 kJ

Answer: B

- Watch Video Solution

136. A process in which the system does not exchange heat with the surroundings is known as
A. isothermal
B. isobaric
C. isochoric
D. adiabatic

Answer: D

137. The entropy of a crystalline substance a absolute zero on the basis of the third law of thermodynamics should be taken as
A. 100
B. 50
C. zero
D. different for difference substances

Answer: C

- Watch Video Solution

138. Which of the following expressions is correct?
A. $\Delta G^{\circ}=n F E^{\circ}$
B. $\Delta G^{\circ}=-n F E^{\circ}$
C. $\Delta G^{\circ}=2.303 R T n F E_{\text {cell }}^{\circ}$
D. $\Delta G^{\circ}=n F \log K_{c}$

Answer: A

- Watch Video Solution

139. Consider the reaction: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ carried out at constant pressure and temperature. If ΔH and ΔU are change in enthalpy and change in internal energy respectively, then:
A. $\Delta H=0$
B. $\Delta H=\Delta U$
C. $\Delta H<\Delta U$
D. $\Delta H>\Delta U$

Answer: C

- Watch Video Solution

140. The absolute enthalpy of neutralization of the reaction,
$\mathrm{MgO}(s)+2 \mathrm{HCl}($ aq. $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ will be
A. $-57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. greater than $-57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. less than $-57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $57.33 \mathrm{k} \mathrm{mol}^{-1}$

Answer: C

- Watch Video Solution

141. Given the following entropy values (in $J K^{-1} \mathrm{~mol}^{-1}$) at 298 K atm : $\mathrm{H}_{2}(\mathrm{~g}): 130.6 . \mathrm{Cl}_{2}(\mathrm{~g}): 223.0$ and $\mathrm{HCl}(\mathrm{g}): 186.7$. The entropy change (in $J K^{-1} \mathrm{~mol}^{-1}$) for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$ is
A. +540.3
B. +727.3
C. -166.9
D. +19.8

Answer: D

- Watch Video Solution

142. A mixture of 2 mole $C O$ and 1 mole O_{2} in a closed vessel is ignited to convert CO into CO_{2}. Then
A. $\Delta H>\Delta U$
B. $\Delta H<\Delta U$
C. $\Delta H=\Delta U$
D. the relationship depends on the capacity of the vessel

Answer: B

143. Consider the following reaction at $1000^{\circ} \mathrm{C}$
(A) $\mathrm{Zn}_{(s)}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~s})}+\mathrm{ZnO}_{s}, \Delta G^{0}=-360 \mathrm{kJmole} \mathrm{J}^{-1}$
(B) $(B) C n_{(s)}+\frac{1}{2} O_{2(g)} \rightarrow C O_{s}, \Delta G^{0}=-460 \mathrm{kJmole}^{-1}$ choose the correct statement at $1000^{\circ} \mathrm{C}$
A. zinc can be oxidised by carbon monoxide
B. ZnO can be reduced by graphite.
C. both a and b are true.
D. both a and b are false.

Answer: B

- Watch Video Solution

144. Which of the following equations does not correctly represent the first law of thermodynamcis?
A. Isothermal process : $q=-\mathrm{w}$
B. Cyclic process: $q=-w$
C. Isochoric process : $\Delta U=q$
D. Adiabatic process : $\Delta U=-w$

Answer: D

- Watch Video Solution

145. Assuming ΔH° and S° do not change with temperature. Calculate, the boiling point of liquid A uing the thermodynamic data given below:

Thermodynamic data $\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol}) \mathrm{s}^{\circ}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)|, A(\mathrm{l})-130100$,$| \begin{tabular}{l|}$

A-100200 (g)
\end{tabular}

A. 300 K
B. 130 K
C. 150 K
D. 50 K

D Watch Video Solution

146. ($\Delta H-\Delta U)$ for the formation of carbon monoxide (CO) from its elements at 298 K is $\left(R=8.314 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
A. $-1238.78 \mathrm{~J} \mathrm{~mol}^{-1}$
B. $1238.78 \mathrm{~J} \mathrm{~mol}^{-1}$
C. $-2477.57 \mathrm{~J} \mathrm{~mol}^{-1}$
D. $2477.57 \mathrm{~J} \mathrm{~mol}^{-1}$

Answer: B

D Watch Video Solution

147. For a phase change:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
$0^{\circ} \mathrm{C}, 1 \mathrm{bar}$
A. $\Delta G=0$
B. $\Delta S=0$
C. $\Delta H=0$
D. $\Delta U=0$

Answer: A

- Watch Video Solution

148. We can drive any thermodynamically forbidden reaction in the desired direction by coupling with:
A. highly exothermic reaction
B. highly enodthermic carbon
C. highly exergonic reaction
D. highly endergonic reaction

Answer: C

- View Text Solution

149. The amount of heat released when $20 \mathrm{ml}, 0.5 \mathrm{M} \mathrm{NaOHis}$ mixed with
$100 \mathrm{ml}, 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is $\chi \mathrm{KJ}$. The heat of neutralization will be :-
A. $-100 x$
B. $-50 x$
C. $+100 x$
D. $+50 x$

Answer: A

150. In conversation of lime-stone ti lime, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) 7$ the value of ΔH° and ΔS° are $+179.1 \mathrm{KJmol}^{-1}$ and $160.2 \mathrm{~J} / \mathrm{K}$ respectively at 298 K and 1 bar. Assuming that ΔH and ΔS do not change with temperature, temperature above which coversation of lime-stone to lime will be just spontaneous is:
A. 1118 K
B. 1008 K
C. 1200 K
D. 845 K

Answer: A

- Watch Video Solution

151. Assuming that water vapour is an ideal gas, the internal energy change (ΔU) when 1 mol of water is vapourised at 1 bar pressure and
$100^{\circ} \mathrm{C}$, (Given : Molar enthalpy of vapourisation of water at 1 abr and 373 $\mathrm{K}=41 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ will be) :-
A. $41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $4.100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $3.7904 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $37.904 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: D

- Watch Video Solution

152. For the process $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})(1 \mathrm{bar}, 373 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})(1 \mathrm{bar}, 373 \mathrm{~K})$ the correct set of thermodynamic parameters is
A. $\Delta G=0, \Delta S=+v e$
B. $\Delta G=0, \Delta S=-v e$
C. $\Delta G=+v e, \Delta S=0$
D. $\Delta G=-v e, \Delta S=+v e$

Answer: A

- Watch Video Solution

153. In a closed insulated container, a liquid is stirred with a paddle to increase the temperature, which of the following is true?
A. $\Delta U=\Delta w \neq 0, q=0$
B. $\Delta U=w=0, q \neq 0$
C. $\Delta U=0, w=q \neq 0$
D. $w=0, \Delta U=q \neq 0$

Answer: A

- Watch Video Solution

154. Which of the following is correct?
A. $C_{V}=\left(\frac{\partial U}{\partial T}\right)_{P}$
B. $C_{P}=\left(\frac{\partial H}{\partial T}\right)_{V}$
C. $C_{P}-C_{V}=R$
D. $\left(\frac{\partial U}{\partial V}\right)_{t}=\frac{-a}{V^{2}}$

Answer: C

- Watch Video Solution

155. Which of the following represents total kinetic energy of one mole of gas?
A. $\frac{1}{2} R T$
B. $\frac{3}{2} R T$
C. $\left(C_{P}-C_{V}\right) R T$
D. $\frac{2}{3} R T$

Answer: B

- Watch Video Solution

156. Standard entropy of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 K J$, to be at equilibrium, the temperature will be:
A. 1000 K
B. 1250 K
C. 500 K
D. 750 K

Answer: D

157. 4.48 L of an ideal gas at $S T P$ requires 12 cal to raise its temperature by $15^{\circ} \mathrm{C}$ at constant volume. The C_{P} of the gas is
A. 3 cal
B. 4 cal
C. 7 cal
D. 6 cal

Answer: D

- Watch Video Solution

158. On the basis of the following thermochemical data : $\left(\Delta_{f} G^{\circ} H_{(a q .)}^{+}=0\right)$
$\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{(a q .)}^{+}+\mathrm{OH}_{(a q .)}^{-}, \Delta H=57.32 \mathrm{~kJ}$
$\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}, \Delta \mathrm{H}=-286.20 \mathrm{~kJ}$
The value of enthalpy of formation of OH^{-}ion at $25^{\circ} \mathrm{C}$ is :
B. $-228.88 k J$
C. $-228.88 k J$
D. -343.53 kJ

Answer: B

D Watch Video Solution

159. The Habar's process of production of ammonia involves the equilibrium:
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{2}(\mathrm{~g})$
Assuming ΔH° and ΔS° for the reaction do not change with temperature, which of the statements is true?

$$
\left(\Delta H^{\circ}=-95 k J \text { and } \Delta S^{\circ}=-198 J K^{-1}\right)
$$

A. Ammonia dissociates spontaneously below 500 K
B. Ammonia dissociates spontaneously above 500K
C. Ammonia dissociates at all temperature.
D. Ammonia does not dissociate at any temperature.

Answer: A

- Watch Video Solution

160. In which reaction there will be increase in entropy?
A. $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NaOH}(\mathrm{aq})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \uparrow$
B. $\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{AgCl}(s)$
C. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D. $\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]_{(a q)}^{2+}$

Answer: A

- Watch Video Solution

161. The species which by definition has zero standard molar enthalpy of formation at 298 K is
A. $B r_{2}(g)$
B. $\mathrm{Cl}_{2}(\mathrm{~g})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{CH}_{4}(\mathrm{~g})$

Answer: B

- Watch Video Solution

162. The standard enthalpy of formation of NH_{3} is $-46.0 \mathrm{KJmol}^{-1}$. If the enthalpy of formation of H_{2} from its atoms is $-436 \mathrm{KJmol}^{-1}$ and that of N_{2} is $-712 \mathrm{KJmol}^{-1}$, the average bond enthalpy of $\mathrm{N}-\mathrm{H}$ bond in NH_{3} is
A. $+1056 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-1102 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-964 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+352 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: D

- Watch Video Solution

163. A 1.0 g sample of substance A at $100^{\circ} \mathrm{C}$ is added to 100 mL of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. Using separate 100 mL portions of $\mathrm{H}_{2} \mathrm{O}$, the procedure is repeated with substance B and then with substance C. How will the final temperatures of the water compare?

Substance Specific heat
A
$\left.0.60 \mathrm{Jg}^{-1} \wedge(@) \mathrm{C}^{\wedge}(-1)\right),\left(\mathrm{B}, 0.40 \mathrm{~J} \mathrm{~g}^{\wedge}(-1){ }^{\circ} \mathrm{C}^{-1}\right.$
C $0.20 \mathrm{Jg}^{-1 \circ} \mathrm{C}^{-1}$
A. $T_{C}>T_{B}>T_{A}$
B. $T_{B}>T_{A}>T_{C}$
C. $T_{A}>T_{B}>T_{C}$
D. $T_{A}=T_{B}=T_{C}$

Answer: C

- Watch Video Solution

164. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of $10 \mathrm{dm}^{3}$ to a volume of $100 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ is
A. $42.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
B. $38.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
C. $35.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
D. $32.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Answer: B

- Watch Video Solution

165. The incorrect expression among the following is
A. $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T$
B. In isothermal process
$w_{\text {(reversible) }}=-n R T\left(\frac{V_{f}}{V_{i}}\right)$
C. $\ln K=\frac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}$
D. $K=e^{-\Delta G^{\circ} / R T}$

Answer: C

Watch Video Solution

166. Using the data provided, calculate the multiple bond energy $\left(\mathrm{kJmol}^{-1}\right)$ of a $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathrm{C}_{2} \mathrm{H}_{2}$. That energy is (take the bond energy of a $\mathrm{C}-\mathrm{H}$ bond as $350 \mathrm{kJmol}^{-1}$).
$2 C_{(s)}+H_{2(g)} \rightarrow C_{2} H_{2(g)}, \Delta=225 \mathrm{kJmol}^{-1}$
$\left.2 C_{(s)} \rightarrow 2 C_{g}\right), \Delta H=1410 \mathrm{kJmol}^{-1}$
$H_{2(g)} \rightarrow 2 H_{(g)}, \Delta H=330 \mathrm{kJol}^{-1}$
A. 1165
B. 837
C. 865
D. 815

Answer: D

- Watch Video Solution

167. The approxiamte standard enthalpies of formation of methanol and octane are determiend to be $-1.5 \mathrm{~kJ} / \mathrm{mol}$ and $-10.9 \mathrm{~kJ} / \mathrm{mol}$ respectively. The standard enthalpies of combustion of octane is denoted as ΔH (octane) and that fo methanol as ΔH (methanol). the correct statement is:
A. ΔH (octane) is more negative than ΔH (methanol)
B. ΔH (octane) is less negative than ΔH (methanol)
C. ΔH (octane) is equal to ΔH (methanol)
D. ΔH (octane) $+\Delta H$ (methanol) $=0$

D Watch Video Solution

168. The sysmbols $\mathrm{F}, \mathrm{H}, \mathrm{S}, V_{m}$ and E° denote Helmholtz free energy, enthalpy, entropy, molar volume and standard electrode potential, respectively. The correct classification of the properties is:
A. F,H,S ar intensive, V_{m} and E° are extensive
B. F,H,S are extensive, V_{m} and E° are intensive
C. F,H,S and V_{m} are intensive , E° is extensive
D. F,H,S and E° are extensive, V_{m} is intensive

Answer: B

- Watch Video Solution

169. A piston filled with 0.04 mole of an ideal gas expands reversible from 50.0 mL at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs $208 J$ of heat. The value of q and W for the process will be $(R=8.314 \mathrm{~J} / \mathrm{molK}, 1 \mathrm{n} 7.5=2.01)$
A. $q=-208 \mathrm{~J}, w=+208 \mathrm{~J}$
B. $q=+208 \mathrm{~J}, w=+208 \mathrm{~J}$
C. $q=+208 \mathrm{~J}, w=-208 \mathrm{~J}$
D. $q=-208 \mathrm{~J}, w=-208 \mathrm{~J}$

Answer: C

- Watch Video Solution

170. For the complete combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ the amount of heat produced as measured in bomb calorimeter is $1364.47 \mathrm{KJmol}^{-1}$ at $25^{\circ} \mathrm{C}$. Assuming
ideality, the enthalpy of combustion, ΔH_{C}, for the reaction will be $\left[R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
A. $-1460.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-1350.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-1366.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-1361.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

171. The standed free energy of fromation of $\mathrm{NO}(\mathrm{g})$ is $86.6 \mathrm{kj} / \mathrm{mol}$ at 298 K what is the standed free energy of fromation of $\mathrm{NO}_{2} g$ at 298 k ? $K_{p}=1.6 \times 10^{12}$
A. $0.5\left[2 \times 86.600-R(298) \ln \left(1.6 \times 10^{12}\right)\right.$
B. $R(298) \ln \left(1.6 \times 10^{12}\right)-86.600$
C. $86.600+r(298) \ln \left(1.6 \times 10^{12}\right)$
D. $86.600-\frac{\ln \left(1.6 \times 10^{12}\right)}{R(298)}$

Answer: A

- Watch Video Solution

172. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and $-283 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthaly of formation of carbon monoxide per mole is :
A. 110.5
B. 676.5
C. -676.5
D. -110.5

Answer: D

173. δU is equal to
A. Isochoric work
B. Isobaric work
C. Adiabatic work
D. isothermal work

Answer: C

- Watch Video Solution

174. Given $C_{(\text {graphite })}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$,
$\Delta_{r} H^{0}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$H_{2}(g)=+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(1)$,
$\Delta_{r} H^{0}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(1) \rightarrow \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g)$,
$\Delta_{r} H^{0}=+890.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Based on the above thermochemical equations, the value of $\Delta_{r} H^{0}$ at at

298 K for the reaction
$C_{\text {(graphite) }}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ will be:
A. $+74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $+144.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-144.8 \mathrm{~kJ}: ~_{\mathrm{mol}^{-1}}$

Answer: C

- Watch Video Solution

175. Which of the following lines correctly show the temperatrue dependence equilibrium constant,K, for an exotehrmic reaction?

A. B and C
B. C and D
C. A and D
D. A and B

Answer: D
176. The combustion of benzene (I) gives $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$. Given that heat of combustion of benzene at constant volume is $-3263.9 \mathrm{kJmol}^{-1}$ at $25^{\circ} \mathrm{C}$, heat of combustion (in kJmol^{-1}) of benzene at constant pressure will be
$(\mathrm{R}=8.314 \mathrm{JK}-1 \mathrm{~mol}-1)$
A. -452.46
B. 3260
C. - 3267.6
D. 4152.6

Answer: C

- Watch Video Solution

177. If 1.5 L of an ideal gas at a apressure of 20 atm expands isothermally and reversibly to a final volume of 15 L , the work done by the gas in L atm is:
A. 69.09
B. 34.55
C. -34.55
D. -69.09

Answer: D

- Watch Video Solution

Set 2

1. Which is intensive property?
A. mass
B. Mass/volume
C. Volume
D. volume/mass

D Watch Video Solution

2. Which is an irreversible process?
A. Mixing of two gases by diffusion
B. Evaporation of water at 373 K and 1 atm pressure
C. Dissolution of NaCl in water
D. All of the above

Answer: A::C

- Watch Video Solution

3. One mole of anahydrous MgCl_{2} dissolves in water and liberates $25 \mathrm{cal} /$ mol. Heat of dissolution of $\mathrm{MgCl}_{2} . \mathrm{H}_{2} \mathrm{O}$ is :
A. $+5 \mathrm{cal} / \mathrm{mol}$
B. $-5 \mathrm{cal} / \mathrm{mol}$
C. $55 \mathrm{cal} / \mathrm{mol}$
D. $-55 \mathrm{cal} / \mathrm{mol}$

Answer: A

- Watch Video Solution

4. Following enthalpy changes are given:
$\alpha-\operatorname{Dglucose}(s) \rightarrow \alpha-\operatorname{Dglucoes}(a q), \Delta H=10.72 \mathrm{~kJ}$
β-Dglucose(s) $\rightarrow \beta$-Dglucose $(a q), \Delta H=4.68 k J$
$\alpha-\operatorname{Dglucose}(a q) \rightarrow \beta-\operatorname{Dglucose}(a q), \Delta H=1.16 k J$

Calculate enthalpy change in
$\alpha-\operatorname{Dglucose}(s) \rightarrow \beta-$ Dglucose(s)
A. $14.24 k J$
B. 16.56 kJ
C. $-7.2 k J$
D. 4.88 kJ

Answer: D

- Watch Video Solution

5. If x and y are arbitrary extensive variables, then
A. $(x+y)$ is an extensive variable
B. x / y is an intensive variable
C. $d x / d y$ is ann intensive variable
D. both b and c

Answer: A::B::C

- Watch Video Solution

6. If x and y are arbitrary intensive variables, then
A. $x y$ is an intensive variable
B. x / y is an intesive variable
C. ($x+y$) is an extensive property
D. $d x / d y$ is an intensive property.

Answer: A::B::D

- Watch Video Solution

7. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \quad \Delta \mathrm{H}=\mathrm{x}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \quad \Delta \mathrm{H}=y$
heat of vaporization of water is:
A. $x+y$
B. $x-y$
C. $y-x$
D. $-(x+y)$

Answer: B

- Watch Video Solution

8. Which is correct about ΔG ?
A. $\Delta G=\Delta H-T \Delta S$

$$
\begin{aligned}
& =49.4-\left(300 \times 336 \times 10^{-3}\right) \\
& =-51.4 \mathrm{~kJ}
\end{aligned}
$$

Since, the free energy change is negative, the given reaction is
spontaneous.
B. At equilibrium $\Delta G^{\circ}=0$
C. At eq. $\Delta G=-R T \log K$
D. $\Delta G=\Delta G^{\circ}+R T \log K$

- Watch Video Solution

9. Dissociation of sodium azide is given below:
$\mathrm{NaN}_{3} \rightarrow \mathrm{Na}+3 / 2 \mathrm{~N}_{2}$,
ΔH for this is:
A. $3 / 2 \Delta H_{f\left(N_{2}\right)}^{\circ}-\Delta H_{f\left(N a N_{3}\right)}^{\circ}$
B. $\Delta H_{f}^{\circ}\left(\mathrm{NaN}_{3}\right)$
C. $\Delta H_{f\left(\mathrm{NaN}_{3}\right)}^{\circ}-\left[\Delta H_{f(\mathrm{Na})}^{\circ}+3 / 2 \Delta H_{f\left(N_{2}\right)}^{\circ}\right]$
D. $\Delta H_{f(N a)}^{\circ}+3 / 2 \Delta H_{f\left(N_{2}\right)}^{\circ}-\Delta H_{f\left(N a N_{3}\right)}^{\circ}$

Answer: B

- Watch Video Solution

10. The lattice energy of KCl is $202 \mathrm{kcal} / \mathrm{mo}$. When KCl is dissolved in water $2 \mathrm{kcal} / \mathrm{mol}$ is absorbed. If the sol energies of K^{+}and Cl^{-}are in the ratio 2:3 then $\Delta H_{\text {hydration }}$ of K^{+}is:
A. $-80 \mathrm{~kJ} / \mathrm{mol}$
B. $-120 \mathrm{~kJ} / \mathrm{mol}$
C. $-150 \mathrm{~kJ} / \mathrm{mol}$
D. $133.3 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

11. Which is a correct relationship?
A. $\left[\frac{d H}{d T}\right]_{p}-\left[\frac{d U}{d T}\right]_{v}=(+v e)$
B. $\left[\frac{d U}{d T}\right]_{T}=0$ (for ideal gas)
C. $\left[\frac{d V}{d T}\right]_{p}=\frac{n R}{P}$ (for ideal gas)
D. All of the above

Answer: D

12. The standard Gibb's free energy change, ΔG° is related to equilibrium constant, kp as
A. $K_{P}=-R T \log \Delta G^{\circ}$
B. $K_{P}=[e / R T]^{\Delta G^{\circ}}$
C. $K_{P}=-\Delta G^{\circ} / R T$
D. $K_{P}=e^{-\Delta G^{\circ} / R T}$

Answer: D

- Watch Video Solution

13. For the two equations given below:

$$
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+x_{1} k J
$$

$$
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)+x_{2} k J
$$

Select the correct answer:
A. $x_{1}>x_{2}$
B. $x_{2}>x_{1}$
C. $x_{1}=x_{2}$
D. $x_{1}+x_{2}=0$

Answer: A

- Watch Video Solution

14. $\Delta E=0$, for which process :-
A. Cyclic process
B. Isothermal expansion
C. Isochoric process : $\Delta U=q$
D. Adiabatic process

Answer: A::B

15. For a reaction to be spontaneous in neither direction, which of the following is/are correct regarding the closed system?
(1). $(\Delta G)_{T, P}=0$
(2) $(\Delta G)_{T, P}<0$
(3) $(\Delta S)_{U, V}=0$
(4). $(\Delta S)_{U, V}>0$
A. 1,2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer: D

- Watch Video Solution

16. Enthalpy of neutralization of a strong acid by strong base:
(1) has a contant value of -57.32 kJ
(2) is independent of the nature of strong acid and strong base
(3) result in heat change accompanied by the reaction
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}$
A. 1 and 2
B. 1 and 3
C. 1 only
D. 1,2 and 3

Answer: D

- Watch Video Solution

17. The reversible expansion of an ideal gas under adiabatic and isothermal conditions is shown in the figure. Which of the following
statement(s) is (are) correct?

A. $T_{1}=T_{2}$
B. $T_{3}>T_{1}$
C. $w_{\text {isothermal }}>w_{\text {adiabatic }}$
D. $\Delta U_{\text {isothermal }}>\Delta U_{\text {Adibatic }}$

Answer: A::C::D
18. For an ideal gas, consider only P - V work in going from an initial state X to the final state Z. The final state Z can be reached by either of the two paths shown in the figure. Which of the following choice(s) is (are) correct? [Take ΔS as change in entropy and w as work done]

A. $\Delta S_{x \rightarrow z}=\Delta S_{x \rightarrow y}+\Delta_{y \rightarrow z}$
B. $w_{x \rightarrow z}=w_{x \rightarrow y}+w_{y \rightarrow z}$
C. $w_{x \rightarrow y \rightarrow z}=w_{x \rightarrow y}$
D. $\Delta S_{x \rightarrow y \rightarrow z}=\Delta S(x \rightarrow y)$

- Watch Video Solution

Objective Question Level B

1. In which of the following pairs, both proeperties are intensive?
A. pressure, temperature
B. Density, Volume
C. Temperature, density
D. Pressure, volume

Answer: C

- Watch Video Solution

2. Although the dissociation of ammonium chloride $\left(\mathrm{CH}_{4} \mathrm{Cl}\right)$ in water is an endothermic reaction, even then it is spontaneous because:
A. $\Delta S=-v e$
B. $\Delta S=$ zero
C. $T \Delta S<\Delta H$
D. $\Delta S=+v e$ and $\Delta H<T \Delta S$

Answer: D

- Watch Video Solution

> 3. The S-S bond $\Delta H_{f}^{\circ}\left(E_{t}-S-E_{t}\right)=$ $-147 \mathrm{~kJ} / \mathrm{mol}, \Delta H_{f}^{\circ}\left(E_{t}-S-S-E_{t}\right)$
A. 168 kJ
B. 126 kJ
C. 278 kJ
D. 572 kJ

Answer: C

- Watch Video Solution

4. Standard enthalpies of formation of $\mathrm{O}_{3}, \mathrm{CO}_{3}, \mathrm{NH}_{3}$ and HI are $142.2,-383.2,-46.2$ and $+25.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The order of their increasing stabilities will be:
A. $\mathrm{O}_{3}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{HI}$
B. $\mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{HI}, \mathrm{O}_{3}$
C. $\mathrm{O}_{3}, \mathrm{HI}, \mathrm{NH}_{3}, \mathrm{CO}_{2}$
D. $\mathrm{NH}_{2}, \mathrm{HI}, \mathrm{CO}_{2}, \mathrm{O}_{3}$

Answer: C

- Watch Video Solution

5. Consider the following reaction.

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

signs of $\Delta H, \Delta S$ and ΔG for the above reaction will be
A. $+v e,-v e,+v e$
B. $-v e,+v e,-v e$
C. $-v e,+v e,+v e$
D. $+v e,+v e,-v e$

Answer: B

- Watch Video Solution

6. Which among the following represents the reaction of formation of the product?
A. $C_{(\text {diamond })}+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
B. $S_{(\text {monoclinic })}+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)$
C. $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$
D. None of these

Answer: D

- Watch Video Solution

7. How much energy must be supplied to change 36 g of ice at $0^{\circ} \mathrm{C}$ to Data for water
water at room temperature $25^{\circ} \mathrm{C}$? $\Delta H_{\text {fusion }}^{\circ}$
$6.01 \mathrm{~kJ} / \mathrm{mol}$
$C_{P \text { liquid }}$
$4.18 J K^{-1} g^{-1}$
A. 12 kJ
B. 16 kJ
C. 19 kJ
D. 22 kJ

Answer: B

8. A large positive value of ΔG^{\ominus} corresponds to which of these?
A. Small positive K
B. Small negative K
C. Large positive K
D. Large negative K

Answer: A

- Watch Video Solution

9. Consider the values of $\Delta H\left(\right.$ inkJmol $\left.^{-}\right)$and for $\Delta S\left(\right.$ inmol $\left.^{-} K^{-1}\right)$ given for four different reactions. For which reaction will ΔG increases the most (becoming more positive) when the temperature is increased form $0^{\circ} \mathrm{Cto} 25^{\circ} \mathrm{C}$?
A. $\Delta H^{\circ}=50, \Delta S^{\circ}=50$
B. $\Delta H^{\circ}=90, \Delta S^{\circ}=20$
C. $\Delta H^{\circ}=-20, \Delta S^{\circ}=-50$
D. $\Delta H^{\circ}=-90, \Delta S^{\circ}=-20$

Answer: C

- Watch Video Solution

10. $\mathrm{Fe}_{2} \mathrm{O}_{2}(\mathrm{~s})+\frac{3}{2} \mathrm{C}(\mathrm{s}) \rightarrow \frac{3}{2} \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Fe}(\mathrm{s})$
$\Delta H^{\circ}=+234.12 K J$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-393.5 \mathrm{KJ}$
Use these equations and ΔH° value to calculate ΔH° for this reaction :
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
A. -1648.7 kJ
B. $-1255.3 k J$
C. -1021.2 kJ
D. -129.4 kJ

D Watch Video Solution

11. Consider this equation and the associated value for ΔH°.
$2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}=-92.3 \mathrm{Kj}$
which statement abount this information is incorrect?
A. If the equation is reversed, the ΔH° value equals +92.3 kJ
B. The four HCl bonds are stronger than four bonds in H_{2} and Cl_{2}
C. The ΔH° value will be -92.3 kJ if HCl is produced as a liquid.
D. 23.1 kJ of heat will be evolved when 1 mole of $\mathrm{HCl}(\mathrm{g})$ is produced.

Answer: C

- Watch Video Solution

12. The internal energy (U) of an ideal gas decreases by the same amount as the work done by the system:
A. cyclic
B. isothermal
C. adiabatic
D. isolated.

Answer: C

- Watch Video Solution

13. The enthalpy of neutralisation of a strong acid by a string base is $-57.32 \mathrm{kJmol}^{-1}$. The enthalpy of formation of water is $-285.84 \mathrm{kJmol}^{-1}$. The enthalpy of formation of hydroxyl ion is
A. $+228.52 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-114.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-228.52 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+114.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

14. For which process will ΔH and ΔG° be expected to be most similar?
A. $2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
B. $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}($ aq. $)+\mathrm{H}_{2}(\mathrm{~g})$
C. $2 \mathrm{NO}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(g)$
D. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Answer: A

15. For a particular reaction, $\Delta H=-38.3 \mathrm{~kJ}$ and $\Delta S^{\circ}=-113 \mathrm{~J} \times \mathrm{K}^{-1}$. This reaction is:
A. spontaneous at all temperature
B. non-spontaneous at all temperature
C. spontaneous at temperature below $66^{\circ} \mathrm{C}$
D. spontaneous at temperature above $66^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

16. Which halogen in its standard state has the greatest absolute entropy per mole?
A. $F_{2}(g)$
B. $\mathrm{Cl}_{2}(g)$
C. $B r_{2}(I)$

D. $I_{2}(s)$

Answer: B

- Watch Video Solution

17. For which of these processes is the value of ΔS negative?
i. Sugar is dissolved in water.
ii. Steam condenses on a surface.
iii. CaCO_{3} is decomposed into CaO and CO_{2}.
A. I only
B. II only
C. I and III only
D. II and III only

Answer: B

18. When solid $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is dissolved in water at $25^{\circ} \mathrm{C}$, the temperature of the solution decreases. What is true about the signs of ΔH and ΔS for this process?
$\Delta H \quad \Delta S$
A.

- +

$\Delta H \quad \Delta S$
B.
$\Delta H \quad \Delta S$
C.
$\Delta H \quad \Delta S$
D.

Answer: C

- Watch Video Solution

19. The diagram below shows the heat of reaction between $\mathrm{N}_{2}, \mathrm{O}_{2} \mathrm{NO}$ and NO_{2} :

Which of the following statements pertaining to the formation of NO and NO_{2} are correct?

1. The standard heat of formation of NO_{2} is $68 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. NO_{2} is formed faster than NO at higher temperature.
3. The oxidation reaction of nitrogen to NO_{2} is endothermic.
4. These two reactions often take place in troposphere and causes green house effect.
5. These two reactions often take place and are responsible for city smog.
A. 1 and 2
B. 1 and 3
C. 1 and 4
D. 3 and 5

View Text Solution

20. The enthalpy changes for two reactions are given by the equations:
$2 \mathrm{Cr}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta H^{\Theta}=-1130 \mathrm{~kJ}$
$C(s)+\frac{1}{2} O_{2}(g) \rightarrow C O(g), \Delta H^{\Theta}=-110 k J$
What is the enthalpy change in $k J$ for the following reactions?
$3 C(s)+\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{CO}(\mathrm{g})$
A. -1460 kJ
B. - 800 kJ
C. +800 kJ
D. +1020 kJ

Answer: C

21. The enthalpy changes at 298 K in successive breaking of $O-H$ bonds of water, are
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{OH}(\mathrm{g}), \Delta \mathrm{H}=498 \mathrm{kJmol}^{-1}$
$\mathrm{OH}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g}), \Delta H=428 \mathrm{kJmol}^{-1}$
The bond energy of the $\mathrm{O}-\mathrm{H}$ bond is
A. $498 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $463 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $428 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

22. Consider the following two reactions:
i. Propene $+H_{2} \rightarrow$ Propane, ΔH_{1}
ii. Cyclopropane $+H_{2} \rightarrow$ Propane, ΔH_{2} Then, $\Delta H_{2}-\Delta H_{1}$ will be:
A. 0
B. $2 B E_{C-C}-B E_{C=C}$
C. $B E_{C=C}$
D. $2 B E_{C=C}-B E_{C-C}$

Answer: B

- Watch Video Solution

23. Under which circumstances would the free energy change for a reaction be relatively temperature independent?
A. ΔH° is negative.
B. ΔH° is positive
C. ΔS° has a large positive value
D. ΔS° has a small magnitude.

Answer: D

24. Using the Gibbs energy change, $\Delta G^{\circ}=+63.3 \mathrm{~kJ}$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \Leftrightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}^{2-}$
the $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(s)$ in water at $25^{\circ} \mathrm{C}$ is
$\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. 3.2×10^{-26}
B. 8×10^{-12}
C. 2.9×10^{-3}
D. 7.9×10^{-2}

Answer: B

- Watch Video Solution

25. Which statement (s) is/are true?
26. S^{Θ} values for all elements in their states are positive.
27. S^{Θ} values for all aqueous ions are positive.
28. ΔS^{Θ} values for all spontaneous reactions are positive.
A. 1 only
B. 1 and 2 only
C. 2 and 3 only
D. all of these

Answer: A

- Watch Video Solution

26. The enthalpy of reaction does not depend upon:
A. the intermediate reaction steps
B. the temperature of initial and final states of the reaction
C. the physical states of reactants and products.
D. use of different reactants for the formation of the same products.

Answer: A

- Watch Video Solution

27. A solution of 200 mL of 1 MKOH is added to 200 mL of 1 MHCl and the mixture is well shaken. The rise in temperature T_{1} is noted. The experiment is repeated by using 100 mL of each solution and increase in temperature T_{2} is again noted. Which of the following is correct?
A. $T_{1}=T_{2}$
B. $T_{1}=2 T_{2}$
C. $T_{2}=2 T_{1}$
D. $T_{1}=4 T_{2}$

Answer: A

28. The heat of combustion of solid benzoic acid at constant volume is
-321.30 kJ at $27^{\circ} \mathrm{C}$. The heat of combustion at constant pressure is
A. $-321.30-300 R$
B. $-321.30+300 R$
C. $-321.30-150 R$
D. $-321.30+900 R$

Answer: C

- Watch Video Solution

29. $A \rightarrow B, \quad \Delta U=40 \mathrm{~kJ} \mathrm{~mol}^{-1}$

If the system goes from A to B by a reversible path and returns to state A by an irreversible path, what would be the net change in internal energy?
A. More than 40 kJ
B. zero
C. Less than 40 kJ
D. 40 kJ

Answer: B

- Watch Video Solution

30. For the process
$\mathrm{NH}_{3}(g)+\mathrm{HCI}(g) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(\mathrm{s})$
A. $\Delta H=+v e, \Delta S=+v e$
B. $\Delta H=-v e, \Delta S=+v e$
C. $\Delta H=+v e, \Delta U=-v e$
D. $\Delta H=-v e, \Delta S=-v e$

Answer: D

31. A gas is allowed to expand reversibly under adiabatic conditions. What is zero for such a process ?
A. ΔT
B. ΔS
C. ΔG is negative for the negative
D. none of these

Answer: D

- Watch Video Solution

32. Given the following data :

Substance	$\Delta \boldsymbol{H}^{\circ}$ $(\mathbf{k J / m o l})$	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l} \mathbf{~ K})$	$\Delta \boldsymbol{G}^{\circ}$ $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{FeO}(s)$	-266.3	57.49	-245.12
$\mathrm{C}($ Graphite $)$	0	5.74	0
$\mathrm{Fe}(s)$	0	27.28	0
$\mathrm{CO}(\mathrm{g})$	-110.5	197.6	-137.15

Determine at what temperature the following reaction is spontanous?
$\mathrm{FeO}(\mathrm{s})+\mathrm{C}_{\text {graphite }} \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}(\mathrm{g})$
A. 298 K
B. 668 K
C. 966 K
D. ΔG° is +ve , hence the reaction will never be spontaneous.

Answer: C

- Watch Video Solution

33. Which of the following equations has/have enthalpy changes equal to
$\Delta H_{\text {comb }} C$?
I. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
II. $\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
III. $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
A. I and II
B. I,II and III
C. I and III
D. I only

Answer: D

- Watch Video Solution

34. The enthalpy change of which reaction corresponds to ΔH_{f}° for $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) 298 \mathrm{~K}$?

$$
\text { A. } 2 \mathrm{Na}(\mathrm{~s})+\mathrm{C}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

B. $\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$
C. $2 \mathrm{Na}^{+}$(aq. $)+\mathrm{CO}_{3}^{2-}($ aq. $) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$
D. $2 \mathrm{Na}^{+}$(aq.) $+2 \mathrm{OH}^{-}($aq. $)+\mathrm{CO}_{2}$ (aq.) $\rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

35. Enthalpy is equal to
A. $T^{\circ}\left[\frac{\partial(G / T)}{\partial T}\right]_{P}$
B. $-T^{2}\left[\frac{\partial(G / T)}{\partial T}\right]_{P}$
C. $T^{2}\left[\frac{\partial(G / T)}{\partial T}\right]_{V}$
D. $-T^{2}\left[\frac{\partial(G / T)}{\partial T}\right]_{V}$

Answer: B

36. When a bomb calorimeter is sued to determine the heat of reaction, which proper
37. For the reaction shown, which which is closest to the value o $\mathrm{f} \Delta H$?

$$
\begin{array}{ll}
\Delta H_{f}^{\circ} & \left(\mathrm{KJ.mol}^{-1}\right) \\
\mathrm{Cr}^{3+}(a q) & -143 \\
\mathrm{Ni}^{2+}(a q) & -54 \\
2 \mathrm{Cr}^{3+}(a q)+3 \mathrm{Ni}(s) \rightarrow 2 \mathrm{Cr}(\mathrm{~s})+3 \mathrm{Ni}^{2+}(a q)
\end{array}
$$

A. 124 kJ
B. 89 kJ
C. $-89 k J$
D. $-124 k J$

Answer: A

38. An ice cube at $0.00^{\circ} \mathrm{C}$ is placed is 200 g of distilled water at $25^{\circ} \mathrm{C}$. The final temperature after ithe ice is completely metled is $5.00^{\circ} \mathrm{C}$. What is the mass of the ice cube?
$\delta H_{f u s}=340 \mathrm{~J} . \mathrm{g}^{-1}, C_{p}=4.18 \mathrm{~J} . \mathrm{g}^{-1} . .{ }^{\circ} \mathrm{C}^{-1}$
A. 23.6 g
B. 46.3 g
C. 50.0 g
D. 800 g

Answer: B

- Watch Video Solution

39. Which reaction occurs with the greatest increase in entropy?
A. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
B. $2 \mathrm{NO}\left(g 0 \rightarrow \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\right.$
C. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrCl}(\mathrm{g})$.

Answer: A

- Watch Video Solution

40. The table given below lists the bond dissociation energy ($E_{\text {diss }}$) for single covalent bonds formed between C and atoms A, B, D, E.

Bond $\quad E_{\text {diss }}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
C - A 240
C-B 382
$C-D \quad 276$
$C-E \quad 486$
Which of the atoms has smallest size ?
A. A
B. B
C. C

D. E

Answer: D

- Watch Video Solution

41. An ideal gas is taken around the cycle $A B C A$ as shown in $P-V$ diagram.

The net work done by the gas during the cycle is equal to :

A. $12 P_{1} V_{1}$
B. $6 P_{1} V_{1}$
C. $3 P_{1} V_{1}$
D. $P_{1} V_{1}$

Answer: C

- Watch Video Solution

42. One gram mole of graphite and diamond were burnt to form CO_{2} gas:
$C_{(\text {graphite })}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{\circ}=-399.5 \mathrm{~kJ}$
$C_{(\text {diamond) }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \quad \Delta H^{\circ}=-395.4 \mathrm{~kJ}$
A. graphite is more stable than diamond
B. diamond is more stable than graphite
C. graphite has greater affinity with oxygen
D. diamond has greater affinity with oxygen.

- Watch Video Solution

43. Which among the following is not an exact differential?
A. $Q(d Q=$ heat abosorbed)
B. U ($\mathrm{dU}=$ change in internal energy)
C. S (dS=entropy change)
D. G (dG=Gibbs free energy change)

Answer: A

- Watch Video Solution

44. A gas expands adiabatically at constant pressure such that:
$T \propto \frac{1}{\sqrt{V}}$
The value of γ i.e., $\left(C_{P} / C_{V}\right)$ of the gas will be:
A. 1.3
B. 1.5
C. 1.7
D. 2

Answer: B

- Watch Video Solution

45. $2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}, \quad \Delta G^{\circ}=-606 \mathrm{~J} \ldots$ (i)
$2 Z n+2 S \rightarrow 2 Z n S, \quad \Delta G^{\circ}=-293 J \ldots$. (ii)
$2 \mathrm{~S}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g}), \quad \Delta G^{\circ}=-408 \mathrm{~J} \ldots(\mathrm{iii})$
ΔG° for the following reaction
$2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
would be:
A. -731 J
B. $-1317 J$
C. +731 J
D. +1317 J

Answer: A

- Watch Video Solution

46. The efficiency of the reversible cycle shown in the given figure is

A. 0.3333
B. 0.56
C. 0.66
D. 0.25

Answer: B

- Watch Video Solution

47. IN Haber's process of manufacturing of ammonia :
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \mathrm{H}_{25^{\circ}{ }^{\circ} \mathrm{C}}=-92.2 \mathrm{~kJ}$
Molecule $\mathrm{N}_{2}(\mathrm{~g}) \mathrm{H}_{2}(\mathrm{~g}) \mathrm{NH}_{3}(\mathrm{~g})$
$C_{p} J K^{-1} 29.128 .835 .1$
If C_{p} is independent of temperature, then reaction at $100^{\circ} \mathrm{C}$ as compared to that of $25^{\circ} \mathrm{C}$ will be :
A. More endothermic
B. less endothermic
C. more exothermic
D. less exothermic

Answer: C

- Watch Video Solution

48. Consider the following statements:
I. Change in enthalpy is always smaller than change in internal energy.
II. The variation in enthalpy of a reaction with temperature is given by

Kirchhoff's equation.
III. The entropy change in reversible adiabatic process is equal to zero.

Select the correct answer.
A. I and III
B. II and III
C. III and I
D. all are correct

Answer: A

49. In $C_{2} H_{4}$ energies of formation of $(C=C)$ and $(C-C)$ are $-145 \mathrm{~kJ} / \mathrm{mol}$ and $-80 \mathrm{~kJ} / \mathrm{mol}$ respectively. What is the enthalpy change w hen ethylene polymerises to form polythene?
A. $+650 \mathrm{~kJ} / \mathrm{mol}$
B. $+65 \mathrm{~kJ} / \mathrm{mol}$
C. $-650 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-65 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

50. If 150 kJ of energy is needed for muscular work to walk a distance of one km, than how much of gulcose one has to consume to walk a distance of five km, provided only 30% energy is available for muscular work.The enthalpy of combustion of glucose is $3000 \mathrm{kJmol}^{-1}$
A. 75 g
B. 30 g
C. 180 g
D. 150 g

Answer: D

- Watch Video Solution

51. The value of $\log _{10} \mathrm{~K}$ for a reaction $A \Leftrightarrow B$ is:
(Given,
$\Delta_{r} H_{298 K}^{\circ}=-54.07 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{r} S_{298 K}^{\circ}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $R=8.314 \mathrm{JK}^{-1}$
)
A. 5
B. 10
C. 95
D. 100

D Watch Video Solution

52. The lattice enthalpy and hydration enthalpy of four compounds are given below:

Compound	Lattice enthalpy $(\mathrm{kJ} / \mathrm{mol})$	Hydration enthalpy $(\mathrm{kJ} / \mathrm{mol})$
P	+780	-920
Q	+1012	-812
R	+828	-878
S	+632	-600

the pair of compounds which is soluble in water is:
A. P and Q
B. Q and R
C. R and S
D. P and R

Answer: D

53. The standard enthalpies fo formation of $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(1)$, and glucose (s) at $25^{\circ} \mathrm{C}^{2}$ are $-400 \mathrm{kJmol}^{-1},-300 \mathrm{kJmol}^{-}$, and $-1300 \mathrm{kJmol}^{-1}$, respectively. The standard enthalply of combustion per gram of glucose at $25^{\circ} \mathrm{C}$ is
A. +2900 kJ
B. -2900 kJ
C. -16.11 kJ
D. +16.11 kJ

Answer: C

- Watch Video Solution

54. For the process $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $t=100^{\circ} \mathrm{C}$ and 1 atmosphere pressure, the correct choice is:
A. $\Delta S_{\text {system }}>0, \Delta S_{\text {surroundings }}>0$
B. $\Delta S_{\text {system }}>0, \Delta S_{\text {surroundings }}<0$
C. $\Delta S_{\text {system }}<0$ and $\Delta S_{\text {surroundings }}>0$
D. $\Delta S_{\text {System }}<0$ and $\Delta S_{\text {surroundings }}<0$

Answer: B

- Watch Video Solution

55. one mole of an ideal gas at 300 k in thermal contact with surroundings expands isothermally from 1.0 L to 2.0 L against a constant presses of 3.0 atm. In this process. The change in entropy of surrroundings (ΔS) in J^{-1} is ($1 \mathrm{Latm}=101.3 \mathrm{~J})$
A. 5.763
B. 1.013
C. -1.013
D. -5.763

D Watch Video Solution

56. The standard state Gibbs free energies of formation of) C(graphite and C (diamond) at $\mathrm{T}=298 \mathrm{~K}$ are
$\Delta_{f} G^{\circ}[\mathrm{C}($ graphite $)]=0 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{\circ}[\mathrm{C}($ diamond $)]=2.9 \mathrm{kJmol}^{-1}$
The standard state means that the pressure should be 1 bar, and substance should be pure at a given temperature. The conversion of graphite [) C(graphite] to diamond [C(diamond)] reduces its volume by $2 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$. If) C(graphite is converted to C(diamond) isothermally at $\mathrm{T}=298 \mathrm{~K}$, the pressure at which) C (graphite is in equilibrium with
C (diamond), is
[Useful information: $1 \mathrm{~J}=1 \mathrm{kgm}^{2} \mathrm{~s}^{-2}, 1 \mathrm{~Pa}=1 \mathrm{kgm}^{-1} \mathrm{~S}^{-2}, 1 \mathrm{bar}=10^{5} \mathrm{~Pa}$]
A. 14501 bar
B. 29001 bar
C. 58001 bar
D. 1405 bar

Answer: A

- Watch Video Solution

Objective Question Level B Set II

1. Which of the following are correct about irreversible isothermal expansion of ideal gas?
A. $w=-q$
B. $\Delta U=0$
C. $\Delta T=0$
D. $w=-n R T \ln \frac{P_{1}}{P_{2}}$
2. In adiabatic process, the work involved during expansion or compression of an ideal gas is given by :
A. $n C_{V} \Delta T$
B. $\frac{n R}{(\gamma-1)}\left(T_{2}-T_{1}\right)$
C. $-n R \quad P_{e x t}\left[\frac{T_{2} P_{1}-T_{1} P_{2}}{P_{1} P_{2}}\right]$
D. $-2.303 R T \log \frac{V_{2}}{V_{1}}$

Answer: A::B::C

- Watch Video Solution

3. For an ideal gas $\frac{C_{p, m}}{C_{v, m}}=\gamma$. The molecular mass of the gas is M, its specific heat capacity at constant volume is :
A. $\frac{\gamma R}{(\gamma-1) M}$
B. $\frac{\gamma}{M(\gamma-1)}$
C. $\frac{M}{R(\gamma-1)}$
D. $\frac{\gamma R M}{\gamma-1}$

Answer: B

- Watch Video Solution

4. An ideal gas in thermally insulated vessel at internal (pressure $)=P_{1},($ volume $)=V_{1}$ and absolute temperature $=T_{1}$ expands irreversiby against zero external, pressure , as shown in the diagram, The final internal pressure, volume and absolute temperature of the gas
are p_{2}, V_{2} and T_{2}, respectively. For this expansion

A. $q=0$
B. $T_{2}=T_{1}$
C. $P_{2} V_{2}=P_{1} V_{1}$
D. $P_{1} V_{2}^{V}=P_{1} V_{1}^{V}$

Answer: A::B::C

- Watch Video Solution

5. For a reaction taking place in a container in equilibrium with its surroundings, the effect of temperature on its equilibrium constant Kin
terms of change in entropy is described by
A. With increase in temperature, the value of K for exothermic reaction decreases because the entropy change of the system is positive.
B. With increase in temperature, the value of K for endothemic reaction increases because unfavourable change in entropy of the surrounding decreases
C. With increases in temperature, the value of K for exothermic reaction decreases because because favourable change in entropy
of the surroundings decreases
D. With increases in temperature, the value of K for endothemic reaction increases because the entropy change of the system negative.

Answer: B::C

6. An ideal gas is expanded from $\left(p_{1}, V_{1}, T_{1}\right)$ to $\left(p_{2}, V_{2}, T_{2}\right)$ under different conditions. The correct statement(s) among the following is (are).
A. The work done on the gas is maximum when it is compressed irreversibly from $\left(p_{2} V_{2}\right)$ to $\left(p_{1}, V_{1}\right)$ against constant pressure p_{1}
B. The work done on the gs is less when it is expanded reversibly from
V_{1} to V_{2} under isothermal conditions.
C. The change in internal energy of the gas (i) zero, if it is expanded reversibly with $T_{1}=T_{2}$, and (ii) positive, if it is expanded reversible under adiabatic conditions with $T_{1} \neq T_{2}$
D. If the expansion is carried out freely, it is simultaneously both isothermal as well as adiabatic.

Answer: A::B::D

7. A reversible cyclic process for an ideal gas is shown below. Here, P, V, and T are pressure, volume and temperature, respectively. The thermodynamic parameters $\mathrm{q}, \mathrm{w}, \mathrm{H}$ and U are heat, work, enthalpy and internal energy, respectively.

The correct option (s) is (are)
A. $q_{A C}=\Delta U_{B C}$ and $w_{A B}=P_{2}\left(V_{2}-V_{1}\right)$
B. $w_{B C}=P_{2}\left(V_{2}-V_{1}\right)$ and $q_{B C}=\Delta H_{A C}$
C. $\Delta H_{C A}<\Delta U_{C A}$ and $q_{A C}=\Delta U_{B C}$
D. $q_{B C}=\Delta H_{A C}$ and $\Delta H_{C A}>\Delta U_{C A}$.

Answer: B::C

- Watch Video Solution

8. For a reaction, $A \Leftrightarrow P$, the plots of [$\mathrm{A}[$ and $[\mathrm{P}]$ with time at temperature T_{1} and T_{2} are given ahead:

If $T_{1}>T_{1}$, the correct statement(s) is (are):
(Assume ΔH° and ΔS° are independent of temperature and ratio of $\ln \mathrm{K}$ at T_{1} to $\ln \mathrm{K}$ at T_{2} as greater than $\frac{T_{2}}{T_{1}}$. Here, $\mathrm{H}, \mathrm{S}, \mathrm{G}$ and K are enthalpy, entropy, Gibbs energy and equilibrium constant, respectively.
A. $\Delta H^{\circ}<0, \Delta S^{\circ}<0$
B. $\Delta G^{\circ}<0, \Delta H^{\circ}>0$
C. $\Delta G^{\circ}<0, \Delta S^{\circ}<0$
D. $\Delta G^{\circ}<0, \Delta S^{\circ}>0$

Answer: A::C

- View Text Solution

Assertion Reason Type Question

1. Assertion (A): The endothermic reactions are favoured at lower temperature and the exothermic reactions are favoured at higher temperature.

Reason (R) : when a system in equilibrium is disturbed by changing the temperature, it will tend to adjust itself so as to overcome the effect of the change.
A. If both (A) and (R) are correct and (R) is the correct explanation for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct.

Answer: D

- Watch Video Solution

2. Assertion: $C_{P}-C_{V}=R$ for an ideal gas.

Reason: $\left(\frac{\partial E}{\partial V}\right)_{T}=0$ for an ideal gas.
A. If both (A) and (R) are correct and (R) is the correct explanation for
(A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct.

Answer: B

- Watch Video Solution

3. Assertion (A): When hydrogen gas at high pressure and room temperature expands adiabatically into a region of low pressure, there is a decrease in temperature.

Reason (R): Hydrogen gas at room temperature is above its inversion temperature.
A. If both (A) and (R) are correct and (R) is the correct explanation for
(A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct.

Answer: D

- Watch Video Solution

4. Statement: The thermodynamics functions which determines the spontaneity of a process is the free energy. For a process to be spontaneous, the change in free energy must be negative.

Explanation:The change in free energy is related to the change in enthalpy and change in entropy. the change in entropy for a process must be always positive if it is spontaneous.
A. If both (A) and (R) are correct and (R) is the correct explanation for
(A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct.

Answer: C

- Watch Video Solution

5. Assertion (A): The Joules -Thomon coefficient for an ideal gas is zero. Reason (R) : There are no intermlecular attactive forces in an ideal gas.
A. If both (A) and (R) are correct and (R) is the correct explanation for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct.

Answer: A

- Watch Video Solution

6. (A) As temperature increases, heat of reaction also increases for exothermic as well as endothermic reactions. ItBrgt (R) $\Delta H_{\text {reaction }}$ varies according to the relation:
$\frac{\Delta H_{2}-\Delta H_{1}}{T_{2}-T_{1}}=\Delta C_{P}$.
A. If both (A) and (R) are correct and (R) is the correct explanation for

(A).

B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct.

Answer: D

- Watch Video Solution

7. (A) All exothermic reactions are spontaneous at room temperature. ItBrgt (R) $\Delta G=-v e$ for above reactions and for spontaneous reactions $\Delta G=-v e$.
A. If both (A) and (R) are correct and (R) is the correct explanation for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct.

Answer: A

8. Assertion (A): Enthalpy of graphite is lower than that of diamond.

Reason (R) : Entropy of graphite is lower than that of diamond.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: B

- Watch Video Solution

9. Assertion: The enthalpy of formation of gaseous oxygen molecules at 298 K and under1 atm is zero.

Reason: The entropy of formation of gaseous oxygen molecules under the same condition is zero.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: C

- Watch Video Solution

10. Assertion (A): Heat of neutralisation for both HNO_{3} and HCI with NaOH is $53.7 \mathrm{kJpermol}^{-1}$.

Reason (R) : NaOH is a strong electrolyte/base.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: B

- Watch Video Solution

11. Assertion (A): Decrease in free energy causes spontaneous reaction Reason (R) : Spontaneous reactions are invariably exothermic.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: C

- Watch Video Solution

12. Assertion (A): May endothermic reactions that are not spontaneous at room temperature become spontaneous at high temperature.

Reason (R) : Entropy of the system increases with increase in temperature.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: B

- Watch Video Solution

13. Assertion (A): The enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(I)$ is greater than that of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

Reason (R): Enthalpy change is negative for the condensation reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: A

- Watch Video Solution

14. Assertion (A): For a particular reaction, heat of combustion at constant pressure $\left(q_{P}\right)$ is always greater than that at constant volume $\left(q_{V}\right)$.

Reason (R) : Combustion reactions are invariably accomplished by increase in number of moles.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: D

- Watch Video Solution

15. Assertion (A): The enthalpy of both graphite and diamond is taken to be zero, being elementary substances

Reason (R) : The enthalpy of formation of an elementary substance in any state is taken as zero.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: D

- Watch Video Solution

16. Statement -1: heat of neutralistion of perchoric acid, HClO_{4} with NaOH is same as that of Hcl with NaOH .

Statement -2: Both HCl and HClO_{4} are strong acid

A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: A

17. Assertion (A): The Heat of ionisation of water is equal to the heat of neutralistion of a strong acid with a strong base.

Reason (R) : Water ionises to a very small extent while H^{\oplus} ions from Θ from an acid combine very rapidly with OH from a base to form $\mathrm{H}_{2} \mathrm{O}$.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: B

- Watch Video Solution

18. Assertion (A): The enthalpy of formation of $H C I$ is equal to the bond energy of HCI.

Reason (R) : The enthalpy of formation and the bond enegry both involve formation of one mole of HCI from the elements.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: D

- Watch Video Solution

19. Assertion (A): Pressure, volume, and temperature are all extensive properties.

Reason (R) : Extensive properties depend upon the amount and nature of the substance.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: D

- Watch Video Solution

20. Assertion (A): When a gas at high pressure expands against vacuum, the work done is maximum.

Reason (R) : Work done in expansion depends upon the pressure inside the gas and increase in volume.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: D

- Watch Video Solution

21. Assertion: When a real gas is allowed to expand adiabatically through a fine hole from a region of high presssure to a region of low pressure, the temperature of gas falls in a completely insulated container.

Reason: Work is done at the cost of internal energy of the gas.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: A

- Watch Video Solution

22. Assertion (A): Internal energy change in a cyclic process is zero.

Reason (R) : Internal energy is a state funciton.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: A

23. Assertion (A): An exothermic process, non-spontaneous at high temperature, may become spontaneous at low temperature.

Reason (R) : With decrease in temperature, randomness (entropy) decreases.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: B

- Watch Video Solution

24. Assertion (A): There is no reaction known for which ΔG is positive, yet it is spontaneous.

Reason (R) : For photochemical reaction, ΔG is negative.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: D

- Watch Video Solution

25. Assertion (A): A reaction which is spontaneous and accompained by decreases of randomness must be exothermic.

Reason (R) : All exothermic reactions are accompained by decrease of randomness.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: C

- Watch Video Solution

26. Assertion: Molar entropy of vaporization of water is different from ethanol.

Reason: Water is more polar than ethanol.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: B

27. Assertion (A): Heat of neutralisation for both HNO_{3} and HCI with NaOH is $53.7 \mathrm{kJpermol}^{-1}$.

Reason (R) : NaOH is a strong electrolyte/base.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: A

- Watch Video Solution

28. Statement -1 in the following reaction :
$C(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=\Delta U-R T$

Statement -2: ΔH Is related to ΔU by the equation,
$\Delta H=\Delta+\Delta n_{g} R T$
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: D

(D) Watch Video Solution

29. (A) For reaction ItBrgt $2 \mathrm{NH}_{3}(g) \rightarrow N_{2}(g)+3 \mathrm{H}_{2}(g), \quad \Delta H>\Delta E$
(R) Enthalpy change is always greater than internal energy change.
A. If both (A) and (R) are correct and (R) is the correct reason for (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is true but (R) is false
D. If both (A) and (R) are false.

Answer: C

- Watch Video Solution

Assertion Reason Type Question Set-2

1. (A) Efficiency of a reversible ingine is 100% (maximum) when the temperature of sink is $-273^{\circ} \mathrm{C}$.
(R) Efficiency of engine $\eta=\frac{T_{2}-T_{1}}{T_{2}}$
A. If both (A) and (R) are correct and (R) is the correct explanation for
(A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is incorrect
D. If (A) is incorrect but (R) is correct.

Answer: A

- Watch Video Solution

Matric Matching Type Questions

1. Matrix-Matching problems:
[A] Match the List-I with List-II:

List-I

(a) $\Delta S_{\text {ssxem }}>0$
(Isolated system)
(b) $\Delta G<0$
(c) $\Delta S_{\text {Total }}=0$
(d) $(\Delta G)_{T P}>0$

List-II
(p) Spontaneos
(q) Nor-sporaneas
photochemià teacton
(r) Equilibrim.
(s) Non-spontanesus
(a) Isothermal process (reversible)
(b) Adiabatic process
(c) $W=\frac{n R}{r-1}\left(T_{2}-T_{1}\right)$
(d) Irreversible isothermal process

L-1
 (Qumutry)

(a) AG
(b) $\Delta G^{\prime \prime}$
(c) W or $W_{\text {max }}$
(d) AS ${ }^{\circ}$

Column-I
(Gas)
(a) O_{2}
(p) $\gamma=1.4$
(b) N_{2}
(q) $C_{P}=\frac{7}{2} R$
(c) $\mathrm{CO}_{2}, \mathrm{CH}_{4}$
(r) $\frac{23}{6} R$
(d) $1 \mathrm{~mol} \mathrm{O}+2 \mathrm{~mol} \mathrm{O}_{3}$
(s) $\gamma=1.33$
(Thermodynamic property)

Column-I
(Reaction)

Column-II
(Relation)
(a) $\mathrm{H}_{2}\left(\underline{(g)}+\mathrm{Cl}_{2}(\underline{g}) \rightarrow 2 \mathrm{HCl}(g) \quad\right.$ (p) $\Delta H=\Delta U+R T$
(b) $\mathrm{N}_{2}(\underline{g})+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)$
(q) $\Delta H=\Delta U$
(c) $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$
(r) $\Delta H=\Delta U-2 R T$
(d) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$
(s) Forward shift by
increasing pressure
(a) $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(\underline{g}) \rightarrow 2 \mathrm{~N}(\underline{g}(g)$ (p) . 1.50
(b) $2 \mathrm{KI}($ aq. $)+\mathrm{HgI}_{2}($ aq. $) \rightarrow$ (q) $1.5 \cdot 0$ $\mathrm{K}_{2}\left[\mathrm{Hgl}_{4}\right]\left(\mathrm{ay}_{4}\right)$
(c) $\mathrm{PC}_{3}(g)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{PCl}_{5}(g) \quad$ (r) $\Delta \boldsymbol{H}>\mathbf{0}$
(d) $\mathrm{NH}_{3}(g)+\mathrm{HCl}(g) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(s)$
(s) $\mathbf{\Delta H}<\mathbf{0}$

$$
\begin{gathered}
\text { List-I } \\
\text { (Reaction) }
\end{gathered}
$$

List-II

(Process)
(a) $\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g)$
(p) Combustion
(b) $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
(q) Neutralization
(c) $\mathrm{NaOH}($ aq. $)+\mathrm{HCl}($ aq. $) \rightarrow$
(r) Process of $\mathrm{NaCl}($ aq. $)+\mathrm{H}_{2} \mathrm{O}$ formation
(d) $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
(s) Reaction of apollo fuel cell

Column-I

Column-II
(a) $\frac{\Delta H_{2}-\Delta H_{1}}{T_{2}-T_{1}}=\Delta C_{P}$
(p) Trouton equation
(b) $\frac{\Delta U_{2}-\Delta U_{1}}{T_{2}-T_{1}}=\Delta C_{V}$
(q) Effect of temperature on the heat of reaction
(c) $\frac{\Delta H_{\text {fusion }}}{T_{\mathrm{mp}}}=\Delta S_{\text {fusion }}$
(r) Kirchhoff's equation
(d) $\lim _{T \rightarrow 0 K} S \rightarrow 0$
(s) Third law of thermodynamics
(a) Amount of heat required (p) Specitic heat * mold to raise the temperature mass of 1 mol substance by
$1{ }^{\circ} \mathrm{C}$
(b) $\frac{\Delta H}{\Delta T}$ or $\frac{\Delta U}{\Delta T}$
(q) ${ }_{C}$ Heat capacity $=C, C_{p}$ or C_{V}
(c) Heat evolved in the combustion of 1 g of a substance
(d) Heat evolved when an extra electron is added to valence shell of an isolated gaseous atom
(r) Electron gain enthalpy

> Column-I

Column-II

(i.) $1 / \%+$ e. $1.5+v e$ (p) Spontaneous at all
(h) $1.1 /=-10.15=+$ ve
(c) $\Delta H=+\mathrm{ve}, \Delta S=-\mathrm{ve}$
(q) Non-spontaneous at all temperature
(r) Non-spontaneous at high temperature
(d) $\Delta H=-$ ve, $\Delta S=-$ ve
(s) Spontaneous at high temperature
[k] Match the thermodynamic prikeise glem ande: Column-I with the expression glen under folumr-II

Column-I

Column-II
(a) Freezing of water at z^{-}? k in and 1 atm
(b) Expansion of 1 mol of at ideal gas into a sacuum under molated condition.
(c) Mixing of equal whomen a: tho ideal gases at convtant temperature and presure in an isolated container
(d) Reversible heating of $\mathrm{H}_{2}(g)$ (s) $\Delta l=0$ at 1 atm from 300 K to 600 K . followed by reversible cooling to 300 K at 1 atm
(t) $\Delta G=0$

- View Text Solution

2. Match the thermodynamic properties (List-I) with their relation (List-II):
Lbed
A. Free energy change $\left(\Delta G^{\circ}\right)$
B. Entropy change A5*
(i) $R T \log , x$
(ii) $-\triangle F E$
C. AKO emphalpy change of a reaction in sementred sure
(iii) $R T^{2}\left(\frac{d \ln K}{d T}\right)_{P}$
D. Standind froe cmand dinge (iv) $-\left\{\frac{d \Delta G}{d T}\right\}_{p}, ~$

Select the correct answer.
$A \quad B \quad C \quad D$
A.
i ii iii iv
$A \quad B \quad C \quad D$
B.
iv iv iii i
$A \quad B \quad C \quad D$
C. ${ }_{\text {iv }}$ ii iii i
D. $\begin{array}{cccc}A & B & C & D \\ \mathrm{i} & \mathrm{ii} & \mathrm{iv} & \mathrm{iii}\end{array}$

Answer: B

View Text Solution

List-I

A. ΔG

(i) $\Delta U+P \Delta V$
B. ΔH
(ii) $-n F E$
C. ΔS°
D. ΔG°
3.
(iii) $-R T \log _{e} K$
(iv) $n R \log _{e}\left(\frac{V_{2}}{V_{1}}\right)$

Match the physical changes in List-I with their relations given in List-II:

A B C D
A. ii i iv iii

A B C D
B.
i ii iii iv
A $\quad B \quad C \quad D$
C. ${ }_{\text {iv }}$ iii ii i

A B C D
D. ${ }_{i}$ ii iv iii

Answer: A

- Watch Video Solution

Integer Type

1. A bubble of 8 moles of helium is submerged at certain depth n water. The temperature of water increases by $30^{\circ} \mathrm{C}$. How much heat is added approximately to helium (in kJ) during expansion?

- View Text Solution

2. For liquid enthalpy of fusion is $1.435 \mathrm{kcalmol}^{-1}$ and molar entropy change is $5.26 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$. The melting point of the liquid is

- Watch Video Solution

3. For the reaction, $\mathrm{Ag}_{2} \mathrm{O}(s) \Leftrightarrow 2 \mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g)$
$\Delta H, \Delta S$ and $T \quad$ are $\quad 40.63 \quad \mathrm{~kJ} \quad \mathrm{~mol}^{-1}, \quad 108.8$
$\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and 373.4Krespectively. Freee \neq rgychan \geq DeltaG ${ }^{\wedge}$ of the reaction will be:
4. Standard Gibbs free enegry change ΔG^{Θ} for a reaction is zero. The value of the equilibrium constant will be:

- Watch Video Solution

5. ΔG^{\ominus} for the reaction $X+Y \Leftrightarrow C$ is -4.606 kcalat1000 K. The equilibrium constant for the reverse mode of the reaction will be:

- Watch Video Solution

6. 4.48L of an ideal gas at STP requires 12 cal to raise its temperature by $15^{\circ} \mathrm{C}$ at constant volume. The C_{P} of the gas is

- Watch Video Solution

7.

In the present graph, the areas of circles A and B are 25 unit and 20 unit respectively. Work done will be . . .unit.

- View Text Solution

8. For the reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Heat of reaction at constant volume exceeds the heat reaction at constant pressure by the value of xRT . The va lue x is:
9. Gas $\left(A_{\chi}\right)$ has the ratio of cpecific heat, equal to 1.66 . The value of x will be:

- View Text Solution

10. For a liquid the vapour pressure is given by:
$\log _{10} P=\frac{-400}{T}+10$
Vapour pressure of the lqiuid is $10^{x} \mathrm{~mm} \mathrm{Hg}$. The value of x will be:

- View Text Solution

11. One mole of an ideal gas is taken from a to b along two paths denoted by the solid and the dashed lines as shown In the graph below. If the work done along the solid line path is W_{s} and that along the the dotted line
path is w_{d}, then the integer closest to the ratio w_{d} / w_{s} is

- Watch Video Solution

Linked Comprehension Type Questions

1. Chemical reactions are invariable associated with the transfer of enery either in the form of heat or light. In the laboratory, heat energy I physical and chemical processes are measured with an instrument called caloriemter. Heat change in the process is calcualted as:
$q-m s \Delta T, \quad s=$ specific heat
$=c \Delta T, \quad c=$ Heat capacity.
Heat of reaction at constant pressure is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change
heat of reaction at constant pressure is measrued using simple or water calorimeter.
$q_{P}=\Delta H$
$q_{P}=q_{V}+P \Delta V$
$\Delta H=\Delta U+\Delta n R T$
The amount of energy released during a chemical change depends on the physical state of reactants and products, te conditions of pressure, temperatrue and volume at which the reaction is carried out. the variation of heat of reaction with temperature and pressure is given by kirchhoff's equation:
$\frac{\Delta H_{2}-\Delta H_{1}}{T_{2}-T_{1}}=\Delta C_{P}, \quad \frac{\Delta U_{2}-\Delta U_{1}}{T_{2}-T_{1}}=\Delta C_{V}$.
Q. Matht eh List-I and List-II and select the answer from the given codes:

Iist
I.ist-II
A. $\mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \quad$ 1. $\Delta H=\Delta U+R T$
B. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) \quad$ 2. $\Delta H=\Delta U$
C. $\mathrm{NH}_{4} \mathrm{HS}(s) \longrightarrow \mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{~S}(g)$
3. $\Delta H=\Delta U-2 R T$
D. $\mathrm{PCl}_{5}(g) \longrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
4. $\Delta H=\Delta U+2 R T$
E. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{SO}_{3}(g)$
5. $\Delta H=\Delta U-R T$

Codes: A
(a) 1
(b) 5 B

C
D
45
$4 \quad 1$
(c)
(d)

2
3
4
$\begin{array}{ll}2 & 5 \\ 1 & 5\end{array}$
$A \quad B \quad C \quad D \quad E$
A. $\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{lllll}A & B & C & D & E\end{array}$
B.
$\begin{array}{lllll}5 & 2 & 3 & 4 & 1\end{array}$
$A \quad B \quad C \quad D \quad E$
C.
$\begin{array}{lllll}1 & 3 & 4 & 2 & 5\end{array}$
$A \quad B \quad C \quad D \quad E$
D. $2 \quad 3 \quad 4 \quad 1 \quad 5$

Answer: D

2. Chemical reactions are invariable associated with the transfer of enery either in the form of heat or light. In the laboratory, heat energy I physical and chemical processes are measured with an instrument called caloriemter. Heat change in the process is calcualted as:
$q-m s \Delta T, \quad s=$ specific heat
$=c \Delta T, \quad c=$ Heat capacity.
Heat of reaction at constant pressure is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change
heat of reaction at constant pressure is measrued using simple or water calorimeter.

$$
\begin{aligned}
& q_{P}=\Delta H \\
& q_{P}=q_{V}+P \Delta V \\
& \Delta H=\Delta U+\Delta n R T
\end{aligned}
$$

The amount of energy released during a chemical change depends on the physical state of reactants and products, te conditions of pressure, temperatrue and volume at which the reaction is carried out. the variation of heat of reaction with temperature and pressure is given by
kirchhoff's equation:
$\frac{\Delta H_{2}-\Delta H_{1}}{T_{2}-T_{1}}=\Delta C_{P}, \quad \frac{\Delta U_{2}-\Delta U_{1}}{T_{2}-T_{1}}=\Delta C_{V}$.
Q. The heat capacity of a bomb calorimeter is $500 \mathrm{~J} / \mathrm{K}$. When 0.1 g of methane was burnt in this calorimeter, the temperature rose by $2{ }^{\circ} \mathrm{C}$. the value of ΔU per mole will be:
A. +1 kJ
B. $-1 k J$
C. +160 kJ
D. -160 kJ

Answer: D

- View Text Solution

3. Chemical reactions are invariably associated with the transfter of energy either in the form of heat or light. In the laboratory, heat changes in physical and chemical processes are measured with an instrument
called calorimeter. Heat change in the process is calculated as

$$
q=m s \Delta T \quad s=\text { Specific heat }
$$

$$
=c \Delta T \quad c=\text { Heat capacity }
$$

Heat of reaction at constant volume is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change
Heat of reaction at constant pressure is measured using simple or water calorimeter.
$q_{p}=\Delta H$
$q_{p}=q_{V}+P \Delta V$
$\Delta H=\Delta U+\Delta n R T$
. For which reaction will $\Delta H=\Delta U$? Assume each reaction is carried out in an open container.
A. $2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
C. $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Answer: B

4. Chemical reactions are invariable associated with the transfer of enery either in the form of heat or light. In the laboratory, heat energy I physical and chemical processes are measured with an instrument called caloriemter. Heat change in the process is calcualted as:
$q-m s \Delta T, \quad s=$ specific heat
$=c \Delta T, \quad c=$ Heat capacity.
Heat of reaction at constant pressure is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change
heat of reaction at constant pressure is measrued using simple or water calorimeter.
$q_{P}=\Delta H$
$q_{P}=q_{V}+P \Delta V$
$\Delta H=\Delta U+\Delta n R T$
The amount of energy released during a chemical change depends on the physical state of reactants and products, te conditions of pressure, temperatrue and volume at which the reaction is carried out. the
variation of heat of reaction with temperature and pressure is given by kirchhoff's equation:

Q.

What value of ΔT should be used for the calorimetry experiment that gives the following graphical result?
A. $10^{\circ} \mathrm{C}$
B. $25^{\circ} \mathrm{C}$
C. $20^{\circ} \mathrm{C}$
D. $35^{\circ} \mathrm{C}$

Answer: C

5. Chemical reactions are invariable associated with the transfer of enery either in the form of heat or light. In the laboratory, heat energy I physical and chemical processes are measured with an instrument called caloriemter. Heat change in the process is calcualted as:
$q-m s \Delta T, \quad s=$ specific heat
$=c \Delta T, \quad c=$ Heat capacity.
Heat of reaction at constant pressure is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change
heat of reaction at constant pressure is measrued using simple or water calorimeter.
$q_{P}=\Delta H$
$q_{P}=q_{V}+P \Delta V$
$\Delta H=\Delta U+\Delta n R T$

The amount of energy released during a chemical change depends on the physical state of reactants and products, te conditions of pressure,
temperatrue and volume at which the reaction is carried out. the variation of heat of reaction with temperature and pressure is given by kirchhoff's equation:
$\frac{\Delta H_{2}-\Delta H_{1}}{T_{2}-T_{1}}=\Delta C_{P}, \quad \frac{\Delta U_{2}-\Delta U_{1}}{T_{2}-T_{1}}=\Delta C_{V}$.
Q. The enthalpy of fusion of ice is $6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The heat capacity of water is $4.18 \mathrm{Jg}^{-1} .{ }^{\circ} \mathrm{C}^{-1}$. What is the smallest number of ice cubes at $0^{\circ} \mathrm{C}$, each containing one mole of water, that are needed to cool 500 g of liquid water from 20^{C} to $0^{\circ} \mathrm{C}$?
A. 1
B. 7
C. 14
D. 125

Answer: B

6. Chemical reactions are invariable associated with the transfer of enery either in the form of heat or light. In the laboratory, heat energy I physical and chemical processes are measured with an instrument called caloriemter. Heat change in the process is calcualted as:
$q-m s \Delta T, \quad s=$ specific heat
$=c \Delta T, \quad c=$ Heat capacity.
Heat of reaction at constant pressure is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change
heat of reaction at constant pressure is measrued using simple or water calorimeter.

$$
\begin{aligned}
& q_{P}=\Delta H \\
& q_{P}=q_{V}+P \Delta V \\
& \Delta H=\Delta U+\Delta n R T
\end{aligned}
$$

The amount of energy released during a chemical change depends on the physical state of reactants and products, te conditions of pressure, temperatrue and volume at which the reaction is carried out. the variation of heat of reaction with temperature and pressure is given by
kirchhoff's equation:
$\frac{\Delta H_{2}-\Delta H_{1}}{T_{2}-T_{1}}=\Delta C_{P}, \quad \frac{\Delta U_{2}-\Delta U_{1}}{T_{2}-T_{1}}=\Delta C_{V}$.
Q . The enthalpy change (ΔH) for the reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{2}(\mathrm{~g})$
is -91.38 kJ at 298 K . The nternal energy change ΔU at 298 K is:
A. -92.38 kJ
B. -87.42 kJ
C. $-97.34 k J$
D. -89.9 kJ

Answer: B

- View Text Solution

7. Chemical reactions are invariable associated with the transfer of enery either in the form of heat or light. In the laboratory, heat energy I physical and chemical processes are measured with an instrument called
caloriemter. Heat change in the process is calcualted as:
$q-m s \Delta T, \quad s=$ specific heat
$=c \Delta T, \quad c=$ Heat capacity.
Heat of reaction at constant pressure is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change
heat of reaction at constant pressure is measrued using simple or water calorimeter.
$q_{P}=\Delta H$
$q_{P}=q_{V}+P \Delta V$
$\Delta H=\Delta U+\Delta n R T$
The amount of energy released during a chemical change depends on the physical state of reactants and products, te conditions of pressure, temperatrue and volume at which the reaction is carried out. the variation of heat of reaction with temperature and pressure is given by kirchhoff's equation:
$\frac{\Delta H_{2}-\Delta H_{1}}{T_{2}-T_{1}}=\Delta C_{P}, \quad \frac{\Delta U_{2}-\Delta U_{1}}{T_{2}-T_{1}}=\Delta C_{V}$.
Q. The specific heats of I_{2} in vapour and solid states are 0.031 and 0.055
$\mathrm{cal} / \mathrm{g}$ respectively. The heat of sublimation of iodine at $200^{\circ} \mathrm{C}$ is 6.096 kcal mol^{-1}. the heat of sublimation of iodine at $250^{\circ} \mathrm{C}$ will be:
A. $3.8 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
B. $4.8 \mathrm{kcal} \mathrm{mol}^{-1}$
C. $2.28 \mathrm{kcal} \mathrm{mol}^{-1}$
D. $5.8 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$

Answer: D

- View Text Solution

8. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products

Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the
bonding atoms.

Arrange $N-H, O-H$, and $F-H$ bonds in teh decreasing order of bond enegry.
A. $F-H>O-H>N-H$
B. $O-H>N-H>F-H$
C. $N-H>O-H>F-H$
D. $\mathrm{F}-\mathrm{H}>\mathrm{N}-\mathrm{H}>\mathrm{O}-\mathrm{H}$

Answer: A

D Watch Video Solution

9. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

Bond enegry of differene halogen molecules will lie in the sequences
A. $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
B. $\mathrm{Cl}_{2}>\mathrm{Br}_{2} \mathrm{~F}_{2}>\mathrm{I}_{2}$
C. $\mathrm{I}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}$
D. $B r_{2}>F_{2}>I_{2}>\mathrm{Cl}_{2}$.

Answer: B

- Watch Video Solution

10. Bond energies can be obtained by using the following relation:
$\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products

Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

Which among the following sequences is correct about the bond enegry of $C-C, C=C$ and $C \equiv C$ bonds?
A. $C \equiv C>C=C>C-C$
B. $C \equiv C<C=C<C-C$
C. $C=C>C \equiv C>C-C$
D. $C \equiv C>C-C>C=C$

Answer: A

D Watch Video Solution

11. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products

Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

In CH_{4} molecule, which of the following statement is correct about the $C-H$ bond enegry?
A. All C-H bonds of methane have same energy
B. Average of all C-H bond energies is considered
C. Fourth C-H bond requires highest energy to break
D. none of the above

Answer: B

- Watch Video Solution

12. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products

Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

Use the bond enegries to estimate ΔH for this reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
Bond Bond energy
H-H $\quad 436 \mathrm{kJmol}^{-1}$
O-O $142 \mathrm{kJmol}^{-1}$
$O=O \quad 499 \mathrm{kJmol}^{-1}$
H-O $460 \mathrm{kJmol}^{-1}$
A. $-127 k J$
B. - 209 kJ
C. -487 kJ
D. -841 kJ

Answer: A

- Watch Video Solution

13. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products

Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

The heat of formation of $N O$ from its elements is $+90 \mathrm{kJmol}^{-1}$, What is the approximate bond dissociation enegry of the bond in NO?
$B E_{N=N}=941 \mathrm{kJmol}^{-1} B E_{O=O}=499 \mathrm{kJmol}^{-1}$
A. $630 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $720 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $760 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $810 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

14. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta_{\text {sys }} G=\Delta_{\text {sys }} H-T \Delta_{\text {sys }} S$
At constant temperature and pressure
$\Delta_{\text {sys }} G<0$ (spontaneous)
$\Delta_{\text {sys }} G=0$ (equilibrium)
$\Delta_{\text {sys }} G>0$ (non-spontaneous)
The free enegry for a reaction having
$\Delta H=31400 \mathrm{cal}, \Delta S=32 \mathrm{calK}^{-1} \mathrm{~mol}^{-1} \mathrm{at} 1000^{\circ} \mathrm{C}$ is
A. - 9336 cal
B. -7386 cal
C. -1936 cal
D. +9336 cal

Answer: A

15. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta_{\text {sys }} G=\Delta_{\text {sys }} H-T \Delta_{\text {sys }} S$
At constant temperature and pressure
$\Delta_{\text {sys }} G<0$ (spontaneous)
$\Delta_{\text {sys }} G=0$ (equilibrium)
$\Delta_{\text {sys }} G>0$ (non-spontaneous)
For a spontaneous reaction ΔG, equilibrium K and $E_{\text {cell }}^{\Theta}$ will be, respectively
A. $-v e,>1,+v e$
B. $+v e,>1,-v e$
C. -ve, < 1, - ve
D. $-v e,>1,-v e$

Answer: A

16. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta_{\text {sys }} G=\Delta_{\text {sys }} H-T \Delta_{\text {sys }} S$
At constant temperature and pressure
$\Delta_{\text {sys }} G<0$ (spontaneous)
$\Delta_{\text {sys }} G=0$ (equilibrium)
$\Delta_{\text {sys }} G>0$ (non-spontaneous)
For a system in equilibrium, $\Delta G=0$, under conditions of constant
A. Temperature and pressure
B. temperature and volume
C. pressure and volume
D. energy and volume.

Answer: A

17. The change in Gibbs free energy (ΔG) of the system along provides a criterion for the spontaneity of a process at constant temperature and pressure. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta G_{\text {system }}=\Delta H_{\text {system }}-T \Delta S_{\text {system }}$
At constant temperature and pressure:
$\Delta G_{\text {system }}<0$ (Spontaneous)
$\Delta G_{\text {system }}=0$ (equilibrium)
$\Delta G_{\text {system }}>0$ (non-spontaneous)
Free energy is related to the equilibrium constant as:
$\Delta G^{\circ}=2.303 R T \log _{10} K_{e}$.
Q. If b oth ΔH and ΔS are negative, the reaction will be spontaneous:
A. at high temperature
B. at low temperature
C. at all temperature
D. at absolute zero

Answer: C

(D) View Text Solution

18. The change in Gibbs free energy (ΔG) of the system along provides a criterion for the spontaneity of a process at constant temperature and pressure. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta G_{\text {system }}=\Delta H_{\text {system }}-T \Delta S_{\text {system }}$
At constant temperature and pressure:
$\Delta G_{\text {system }}<0$ (Spontaneous)
$\Delta G_{\text {system }}=0$ (equilibrium)
$\Delta G_{\text {system }}>0$ (non-spontaneous)
Free energy is related to the equilibrium constant as:
$\Delta G^{\circ}=2.303 R T \log _{10} K_{e}$.
Q. A reaction has positive values of ΔH and ΔS. From this you can deduce that the reaction:
A. must be spontaneous at any temperature.
B. cannot be spontaneous at any temperature.
C. Will be spontaneous only at low temperature
D. will be spontaneous only at high temperature.

Answer: D

- View Text Solution

19. The change in Gibbs free energy (ΔG) of the system along provides a criterion for the spontaneity of a process at constant temperature and pressure. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta G_{\text {system }}=\Delta H_{\text {system }}-T \Delta S_{\text {system }}$
At constant temperature and pressure:
$\Delta G_{\text {system }}<0$ (Spontaneous)
$\Delta G_{\text {system }}=0$ (equilibrium)
$\Delta G_{\text {system }}>0$ (non-spontaneous)
Free energy is related to the equilibrium constant as:
$\Delta G^{\circ}=2.303 R T \log _{10} K_{e}$.
Q. For a reaction to be spontaneous at all temperature.
A. $\Delta G-v e, \Delta H+v e$ and $\Delta S+v e$
B. $\Delta G+v e, \Delta H-v e$ and $\Delta S+v e$
C. $\Delta G-v e, \Delta H-v e$ and $\Delta S-v e$
D. $\Delta G-v e, \Delta H-v e$ and $\Delta S+v e$.

Answer: D

- View Text Solution

20. 3 moles of CO_{2} gas expands isothermally against external pressure of 1 bar. Volume increases from 10 L to 30 L respectively. The system is in thermal contact of surroundings at temperature $15^{\circ} \mathrm{C}$. Entropy change in isotehrmal process is:
$\Delta S=2.303 n R \log \left(\frac{V_{2}}{V_{1}}\right)$.
Q. If CO_{2} behaves like an ideal gas, then entropy change of system ($\left.\Delta S_{\text {system }}\right)$ will be:
A. $+27.4 \mathrm{JK}^{-1}$
B. $9.1 \mathrm{JK}^{-1}$
C. $-27.4 J K^{-1}$
D. $-9.1 J^{-1}$

Answer: A

- View Text Solution

21.3 moles of CO_{2} gas expands isothermally against external pressure of 1 bar. Volume increases from 10 L to 30 L respectively. The system is in thermal contact of surroundings at temperature $15^{\circ} \mathrm{C}$. Entropy change in isotehrmal process is:
$\Delta S=2.303 n R \log \left(\frac{V_{2}}{V_{1}}\right)$.
Q. Select the correct relation:
A. $\Delta S_{\text {system }}>0, \Delta S_{\text {surr }}=0$
B. $\Delta S_{\text {surr }}<0, \Delta S_{\text {system }}>0$
C. $\Delta S_{\text {system }}=0, \Delta S_{\text {surr }}=0$
D. $\Delta S_{\text {surr }}>0, \Delta S_{\text {system }}<0$

Answer: B

- View Text Solution

22. When 100 mL of 1.0 MHCl was mixed with 100 mL of 1.0 MNaOH in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} \mathrm{C}$ was measured for the beaker and its contents (Expt.1). Because the enthalpy of neutralisation of a strong acid with a strong base is constant $\left(-57.0 \mathrm{kJmol}^{-1}\right)$ this experiment couldbe used to measure the calorimeter constant. In a second experiment (Expt.2), 100mL of 2.0 M acetic acid $K_{a}=2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0 MNaOH (under identical conditions to Expt. 1) where a temperature rise of $5.6^{\circ} \mathrm{C}$ was measured.

Enthalpy of dissociation (in kJmol^{-1}) of acetic acid obtained from the Expt. 2 is
A. 1
B. 10
C. 24.5
D. 51.4

Answer: A

- Watch Video Solution

23. When 100 mL of 1.0 MHCl was mixed with 100 mL of 1.0 MNaOH in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} \mathrm{C}$ was measured for the beaker and its contents (Expt.1). Because the enthalpy of neutralisation of a strong acid with a strong base is constant $\left(-57.0 \mathrm{kJmol}^{-1}\right)$ this experiment couldbe used to measure the calorimeter constant. In a second experiment (Expt.2), 100mL of 2.0 M acetic acid $K_{a}=2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0 MNaOH (under
identical conditions to Expt. 1) where a temperature rise of $5.6^{\circ} \mathrm{C}$ was measured.

The pH of the solution after Expt. 2 ils
A. 2.8
B. 4.7
C. 5
D. 7

Answer: B

Temperature
24.

Graph for one mole gas

Process, $A \rightarrow B$ represent:
A. isobaric
B. isochoric
C. isothermal
D. adiabatic

Answer: B

The pressure at C is
A. 3.284 atm
B. 1.642 atm
C. 0.0821 atm
D. 0.821 atm

Answer: B

 Graph for one mol ges

26.

Q. Work doen in the process $C \rightarrow A$ is:
A. zero
B. 8.21 L atm
C. 16.2 L atm
D. unpredictable

Answer: B

27.
Q. The process which occurs in going from $B \rightarrow C$ is:
A. isothermal
B. adiabatic
C. isobaric
D. isochoric

Answer: C

28.

The pressures at A and B in the atmosphere are, respectively,
A. 0.821 and 1.642
B. 1.642 and 0.821
C. 1 and 2
D. 0.082 and 0.164

Answer: A

29. The thermodynamic property that measures the extent of molecular disorder is called entropy. Entropy change of phase transformation can be calculated using Trouton's formula ($\Delta S=\Delta H / T$). In the reversible adiabatic process, however, ΔS will be zero. the rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.

$$
\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)
$$

The entropy change in an adiabatic process is
A. zero
B. Always positive
C. Always negative
D. sometimes postive and sometimes negative

Answer: A

- Watch Video Solution

30. The thermodynamic property that measuers the extent of molecular disorder is called entropy. The direction of a spontaneous process for which the energy is constant is always the one that increases the molecular disorder. Entropy change of phase transformation can be calculated using Trouton's furmula $\left(\Delta S=\frac{\Delta H}{T}\right)$. In the reversible adiabatic process, however, ΔS will be zero. The rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.
Q. $\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)$
$C=C_{P}$ or C_{V}.
Q. If water in an insulated vessel at $-10^{\circ} \mathrm{C}$, suddenly freezes, the entropy change of the system will be:
A. $+10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $-10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. zero
D. equal to that of surroundings.

Answer: C

(-) View Text Solution

31. The thermodynamic property that measuers the extent of molecular disorder is called entropy. The direction of a spontaneous process for which the energy is constant is always the one that increases the molecular disorder. Entropy change of phase transformation can be calculated using Trouton's furmula $\left(\Delta S=\frac{\Delta H}{T}\right)$. In the reversible adiabatic process, however, ΔS will be zero. The rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.
Q. $\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)$
$C=C_{P}$ or C_{V}.
Q. The melting point of a solid is 300 K and its latent heat of fusion is 600 cal mol^{-1}. the entropy change for the fusion of 1 mole of the solid (in cal K^{-1}) at the same temperature would be
A. 200
B. 2
C. 0.2
D. 20

Answer: B

- View Text Solution

32. The thermodynamic property that measures the extent of molecular disorder is called entropy. Entropy change of phase transformation can be calculated using Trouton's formula $(\Delta S=\Delta H / T)$. In the reversible adiabatic process, however, ΔS will be zero. the rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.

$$
\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)
$$

For which of the following cases, $\Delta S=\frac{\Delta H}{T}$?
A. A process for which $\Delta C_{P}=0$ but $\Delta C_{V}=0$
B. An adiabatic process
C. An siobaric or isothermal process
D. An isothermal reversible phase transition process.

Answer: D

- Watch Video Solution

33. The thermodynamic property that measures the extent of molecular disorder is called entropy. Entropy change of phase transformation can be calculated using Trouton's formula $(\Delta S=\Delta H / T)$. In the reversible adiabatic process, however, ΔS will be zero. the rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.
$\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)$
When 1 mol of an ideal gas is compressed to half of its volume, its temperature becomes half. Then the change in entropy (ΔS) would be
A. $C_{V} \ln 2$
B. $C_{P} \ln 2$
C. $C_{V} R \ln 2$
D. $\left(C_{V}-R\right) \ln 2 \times C_{P}$

Answer: B

- Watch Video Solution

34. The pressure-volume of various thermodynamic process is shown in graphs:

Volume \rightarrow

Work is the mole of transference of energy. It has been observed that reversible work done by the system is the maximum obtainable work.
$w_{\text {rev }}>w_{\text {irr }}$
The works of isothermal and adiabatic processes are different from each other.
$w_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$=2.303 n R T \log _{10}\left(\frac{P_{2}}{P_{1}}\right)$
$w_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
If w_{1}, w_{2}, w_{3} and w_{4} are work done in isothermal, adiabatic, isobaric, and isochoric reversible processes, respectively then the correct sequence (for expansion) would be
A. $w_{1}>w_{2}>w_{3}>w_{4}$
B. $w_{3}>w_{2}>w_{1}>w_{4}$
C. $w_{3}>w_{2}>w_{4}>w_{1}$
D. $w_{3}>w_{2}>w_{2}>w_{4}$.

Answer: D

- Watch Video Solution

35. The pressure-volume of various thermodynamic process is shown in graphs:

Work is the mole of transference of energy. It has been observed that reversible work done by the system is the maximum obtainable work.
$w_{\text {rev }}>w_{\text {irr }}$
The works of isothermal and adiabatic processes are different from each other.
$w_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$=2.303 n R T \log _{10}\left(\frac{P_{2}}{P_{1}}\right)$
$w_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
A thermodynamic system goes in a cyclic process as represented in the following $P-V$ diagram:

The net work done during the complete cycle is given by the area
A. cycle ACBDA
B. $A A_{1}, B_{1} B D A$
C.
D. $A A_{2} B_{2} B$

- Watch Video Solution

36. The pressure-volume of various thermodynamic process is shown in graphs:

Work is the mole of transference of energy. It has been observed that reversible work done by the system is the maximum obtainable work.
$w_{\text {rev }}>w_{i r r}$
The works of isothermal and adiabatic processes are different from each other.
$w_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$=2.303 n R T \log _{10}\left(\frac{P_{2}}{P_{1}}\right)$
$w_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
$P-V$ plots for two gases during adiabatic processes are given in the given figure:

Plot D and Plot C should correspond to
A. He and O_{2}
B. He and Ar
C. O_{2} and He
D. O_{2} and F_{2}

Answer: C

- Watch Video Solution

37. The pressure-volume of varies thermodynamic process is shown in graphs:

Work is the mole of transference of energy. It has been observed that reversible work done by the system is the maximum obtainable work.

$$
w_{r e v}>w_{i r r}
$$

The works of isothermal and adiabatic processes are different from each

other.

$w_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$=2.303 n R T \log _{10}\left(\frac{P_{2}}{P_{1}}\right)$
$w_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
The q value and work done in isothermal reversible expansion of one mole of an ideal gas from initial pressure of 1 bar to final pressure of 0.1 bar at constant temperature $273 K$ are:
A. $5.22 \mathrm{~kJ},-5.22 \mathrm{~kJ}$
B. $-5.22 k J, 5.22 k J$
C. $5.22 \mathrm{~kJ}, 5.22 \mathrm{~kJ}$
D. $-5.22 k J,-5.22 k J$

Answer: A

- Watch Video Solution

38. Work is the mode of transference of energy. If the system involves gaseous substance and there is difference of pressure between system and surroundings, such a work is referred to as pressure - volume work $\left(W_{P V}=-P_{\text {ext }} \Delta V\right)$. It has been observed that reversible work done by the system is the maximum obtainable work. $w_{r e v}>w_{i r r}$

The works of isothermal and adiabatic processes are different from each other. for isothermal reversible proces,
$W_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$W_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
Calculate work done when 1 mole of an ideal gas is expanded reversibly from 20 L to 40 L at a constant temperature of 300 K .
A. 7.78 kJ
B. -1.73 kJ
C. 11.73 kJ
D. -4.78 kJ

- Watch Video Solution

39. A fixed mass m of a gas is subjected to transformation of state: K to L to M and back to K as shown in the figure.

The succeeding operations that enabel this transformation of state are

A. hating,cooling,heating,coolong
B. cooling,heating,cooling,heating
C. heating,cooling,cooling,heating
D. cooling,heating,heating,cooling

Answer: C

- Watch Video Solution

40. A fixed mass m of a gas is subjected to transfromation of states from K to L to M and back to K as shown in the figure.

The pair of isochoric processes among the transfromation of states is
A. K to L and L to M
B. L to M and N to K
C. L to M and M to N
D. M to N and N to K

Answer: B

- Watch Video Solution

Self Assessment

1. For the given reactions

$$
\begin{aligned}
& \mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-10.17 \mathrm{kcal} \\
& \mathrm{SiO}_{2}+4 \mathrm{HCI} \rightarrow \mathrm{SiCI}_{4}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=36.7 \mathrm{kcal}
\end{aligned}
$$

It may be concluded that
A. HF and HCl both will react with silica
B. Only Hf will react with silica
C. Only HCl will react with silica
D. Neither HF nor HCl will react with silica

Answer: B

- Watch Video Solution

2. In Mayer's relation:
$C_{P}-C_{V}=R$
'R' stands for:
A. translational kinetic energy of 1 mol gas
B. rotational kinetic energy of 1 mol gas
C. vibrational kinetic energy of 1 mol gas
D. work done to increase the temperature of 1 mol gas by one degree

Answer: D

3. For an ideal gas Joule-Thomon coefficient is:
A. zero
B. positive
C. negative
D. depends on atomicity of gas

Answer: A

- Watch Video Solution

4. Entropy change in reversible adiabatic process is:
A. infinite
B. zero
C. equal to $C_{V} \Delta T$
D. equal to $\mathrm{nR} \ln \left(\frac{V_{2}}{V_{1}}\right)$

Answer: B

- Watch Video Solution

5. For a process to be in equilibrium it is necessary that:
A. $\Delta S_{\text {system }}=\Delta S_{\text {surr }}$
B. $\Delta S_{\text {system }}=-\Delta S_{\text {surr }}$
C. $\Delta S_{\text {system }}=0$
D. $\Delta S_{\text {surr }}=0$.

Answer: B

6. Predict the sign of ΔS for each of the following processes, which occur at constant temperature.
I. The volume of 2 mol of $\mathrm{O}_{2}(\mathrm{~g})$ increases from 44L to 54L
II. The pressure of 2 mol of $\mathrm{O}_{2}(\mathrm{~g})$ increases from 1 atm to 1.2 atm .
I II
A. $\Delta S=-v e$
$\Delta S=-v e$
I II
B.
$\Delta S=-v e$
$\Delta S=+v e$
C. ${ }^{\text {I }}$ II
$\Delta S=+v e \quad \Delta S=-v e$
D. ${ }^{\text {I }}$
I II
D. $\Delta S=+v e \quad \Delta S=+v e$

Answer: C

- Watch Video Solution

7. Which of the following statements must be true for the entropy o a pure solid to be zero?
I. The temperature must be zero kelvin.
II. The solid must be perfectly crystalline.
III. The solid must be an element
IV. The solid must be ionic.
A. I
B. I and II
C. I, II and III
D. All are correct

Answer: B

- Watch Video Solution

8. Which of the following statements is correct?
A. Slope of adiabatic P-V curve will be same as that in isothermal one
B. Slope of adiabatic P-V curve will be same as that in isothermal one
C. Slope of adiabatic P-V curve will be larger than in isothermal one
D. Slope of adiabatic P-V curve will be zero.

Answer: C

- Watch Video Solution

9. $\left(\frac{\partial H}{\partial P}\right)_{T}$ for an ideal gas is equal to:
A. zero
B. $\frac{\Delta V R T}{P}$
C. $\frac{P \Delta V}{T}$
D. $n R \Delta T$

Answer: A

- Watch Video Solution

10. A refrigerator is used to remove heat from enclosure at $0^{\circ} \mathrm{C}$ at the rate of 600 watt. If the surroundings temperature is $30^{\circ} \mathrm{C}$, calculate the power needed:
A. 303 watt
B. 11000 watt
C. 65.9 watt
D. 110 watt

Answer: C

- View Text Solution

Self Assessment (Multiple Choice)

1. For which process does $\Delta U=0$ holds true?
A. Cyclic process
B. Isothermal expansion
C. Isochoric process
D. Adibatic process.

- Watch Video Solution

2. If x and y are arbitrary intensive variables, then
A. $x y$ is an intensive variable
B. $\frac{x}{y}$ is an intensive variable. y
C. $(x+y)$ is an intensive variable
D. $\frac{d x}{d y}$ is an extensive property.

Answer: A::B::D

- Watch Video Solution

3. Which of the following expression is/are correct for a adiabatic process?
A. $\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}$
B. $\frac{P_{2}}{P_{1}}=\left(\frac{T_{1}}{T_{2}}\right)^{\gamma-1 / \gamma}$
C. $P_{2} V_{2}^{\gamma}=P_{1} V_{1}^{\gamma}$
D. $P_{1} V_{1}^{\gamma-1}=P_{2} V_{2}^{\gamma-1}$.

Answer: A::C

- Watch Video Solution

4. Select the state functions amont the following:
A. temperature
B. entropy
C. work
D. enthalpy

Watch Video Solution

5. Select the correct expressions among the following:
A. $\frac{\Delta G-\Delta H}{T}=\left(\frac{\partial G}{\partial T}\right)_{P}$
B. $\frac{\Delta G-\Delta H}{T}=\left[\frac{\partial(\Delta G)}{\partial T}\right]_{V}$
C. $\frac{\Delta S}{n F}=\left(\frac{\partial E_{\text {Cell }}}{\partial T}\right)_{P}$
D. $\left(\frac{\partial T}{\partial P}\right)_{H}=-\left(\frac{\partial H}{\partial P}\right)_{T / C_{P}}$.

Answer: A::C::D

- Watch Video Solution

6. Which of the following are correct for an idealg as?
A. $\left(\frac{\partial U}{\partial V}\right)_{T}=0$
B. $\left(\frac{\partial H}{\partial P}\right)_{T}=0$
C. $\left(\frac{\partial T}{\partial P}\right)_{H}=0$
D. $\left(\frac{\partial P}{\partial T}\right)_{V}=0$

Answer: A::B::C

- Watch Video Solution

7. The Clausius-Clapeyron equation may be given as:
A. $\log _{10}\left(\frac{P_{2}}{P_{1}}\right)=\frac{\Delta H_{v a p}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
B. $\frac{d P}{d T}=\frac{q}{T \Delta V}$
C. $\frac{d P}{d T}=\frac{q}{T \Delta V}$
D. $\frac{d P}{d T}=\frac{\Delta V}{\Delta S}$

Answer: A::B::C

8. Which of the following is/are not state fuction?
A. q
B. $q-w$
C. $\frac{q}{w}$
D. $q+w$

Answer: A: B::C

Watch Video Solution

Self Assessment (Assertion Reason)

1. Statement-1: Most of the combustion reacton are exothermic.

Because Statement-2: Products are more stable than reactants in exothermic process.
A. Statement-1 is true, statement-2 is true, statement-2 is a correct explanation for statement-1
B. Statement-1 is true, statement-2 is true, statement-2 is not a correct explnation for statement-1
C. Statement- 1 is true, statement- 2 is false.
D. Statement- 1 is false, statement- 2 is true.

Answer: A

- Watch Video Solution

2. Statement-1: There is no exchange in internal energy in a cyclic process.

Statement-2: In a cyclic process, the system returns to original state in a number of steps.
A. Statement-1 is true, statement-2 is true, statement-2 is a correct
B. Statement-1 is true, statement-2 is true, statement-2 is not a correct explnation for statement-1
C. Statement- 1 is true, statement-2 is false.
D. Statement- 1 is false, statement- 2 is true.

Answer: A

D Watch Video Solution

3. Assertion(A) : The value of enthalpy of neutralization of a weak acid by strong base is numerically less than 57.1 kJ .

Reason(R) : All OH^{-}ions of strong base are not completely neutralized by H^{+}ions obtained from acid.
A. Statement-1 is true, statement-2 is true, statement-2 is a correct explanation for statement-1
B. Statement-1 is true, statement-2 is true, statement-2 is not a correct
C. Statement- 1 is true, statement-2 is false.
D. Statement- 1 is false, statement- 2 is true.

Answer: C

- Watch Video Solution

4. Statement-1: Heat of solution is positive when $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ is dissolved in water bu it is negative when anhydrous CuSO_{4} is dissolved in water.

Statement-2: Molar masses of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and CuSO_{4} are different.
A. Statement-1 is true, statement-2 is true, statement-2 is a correct explanation for statement-1
B. Statement-1 is true, statement-2 is true, statement-2 is not a correct explnation for statement-1
C. Statement- 1 is true, statement- 2 is false.
D. Statement- 1 is false, statement-2 is true.

Answer: C

- View Text Solution

5. Statement-1: Mass, volume and pressure are extensive properties.

Statement-2: Extensive properties depent upon the amount of the substance.
A. Statement- 1 is true, statement- 2 is true, statement-2 is a correct
explanation for statement-1
B. Statement- 1 is true, statement- 2 is true, statement- 2 is not a correct explnation for statement-1
C. Statement- 1 is true, statement- 2 is false.
D. Statement-1 is false, statement-2 is true.

Answer: A

1. Match the List-I with List-II :
List-I
List-II
(a) $\left(\frac{\partial T}{\partial P}\right)_{H}$
(p) V
(b) $\left(\frac{\partial G}{\partial P}\right)_{T}$
(q) T
(c) $\left(\frac{\partial H}{\partial S}\right)_{P}$
(r) $-S$
(d) $\left(\frac{\partial G}{\partial T}\right)_{P}$
(s) $\mu_{j T}$

- View Text Solution

2. Match the list-I with list-II and select the correct answer from the given codes:

List-I
(Thermodynamic properties)
(I) ΔG
(II) ΔH°
(III) ΔS
(IV) ΔG°

List-II

(Expression)
(A) $-R T \log _{e} K$
(B) $R T^{2}\left(\frac{d \ln K}{d T}\right)_{P}$
(C) $n F E$
(D) $-\left[\frac{\partial \Delta G}{\partial T}\right]_{P}$
A. I-C,II-B,III-D,IV-A
B. I-B,II-CltIII-D,IV-A
C. I-A,II-B,III-C,IV-D
D. I-D,II-A,III-B,IV-C

Answer: A
3. Matcht he List-I with List-II :

List-I

(a) Perfectly crystalline solid
(b) Reversible reaction at equilibrium
(c) Isothermal process
(d) $\left(\frac{\partial G}{\partial P}\right)=-S$
(r) $\operatorname{Lim}_{T \rightarrow 0 \mathrm{~K}} S \rightarrow 0$
(s) $\Delta S_{\text {universe }}=0$

- View Text Solution

Self Assessment (Integer type).

1. heat of neutralisation of HCl against NaOH is $13.7 \mathrm{kcal} \mathrm{eq}^{-1}$ what will be the ionisation energy of $\mathrm{CH}_{3} \mathrm{COOH}$ in $\mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ if its heat of neutralisation is $11.7 \mathrm{kcal} \mathrm{eq}^{-1}$.

- Watch Video Solution

2. Free energy change for the process $A(s) \Leftrightarrow A(l)$ will be:

- Watch Video Solution

3. A gas X_{n} has the value of y equal to 1.40 : what will be the value of ' n ' ?
