©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

TRIANGLES

Solved Example

1. In the adjoining figure $D E|\mid B E$ and D divides $A B$ in the ratio 2:3 find.
(i) $\frac{A E}{E C}$ (ii) $\frac{A E}{A C}$

Watch Video Solution

2. In the figure PQ is parallel to MN if $\frac{K P}{P M}=\frac{4}{13}$ and $K N=2.4$.

Find KQ.

- Watch Video Solution

3. if D and E are points on the sides AB and AC of a $\triangle A B C$. Such that $A B=12 \mathrm{~cm}, A D=8 \mathrm{~cm}, A E=12 \mathrm{~cm}, A C=18 \mathrm{~cm}$. show that $D E \| B C$.

- Watch Video Solution

4. In the given figure, in $\triangle A B C, D E| | B C$ so that $A D=(4 x-3) c m, A E=(8 x-7) c m, B D=(3 x-1) c m$ and $C E=(5 x$
. Find the value of x.

- Watch Video Solution

5. In $\triangle A B C, D$ and E are points on the sides AB and AC respectively. Find whether $D E|\mid B C$ if
(i) $\mathrm{AD}=3 \mathrm{~cm}, \mathrm{BD}=4.5 \mathrm{~cm}, \mathrm{AE}=4 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}$
(ii) $\mathrm{AB}=7 \mathrm{~cm}, \mathrm{BD}=4.5 \mathrm{~cm}, \mathrm{AE}=3.5 \mathrm{~cm}, \mathrm{CE}=5.6 \mathrm{~cm}$.

6. In the following figure $\mathrm{AB} \| \mathrm{CD}| | \mathrm{EF} \mid \mathrm{GH}$ and $\mathrm{BH}=100 \mathrm{~cm}$. find x and y .

- Watch Video Solution

7. Prove using similar triangles, that a line drawn through the mid-point of one side of a triangle parallel to another side, bisects the third side.

- Watch Video Solution

8. Prove that the line joining the mid-points of the two sides of a triangle is parallel to the third side.

- Watch Video Solution

9. The external angle bisector of an angle of a triangle divides the opposite side externally in the ratio of the sides containing the angle.

Watch Video Solution

10. $A B C D$ is a trapezium such that $A B \| C D$. Its diagonals $A C$ and $B C$ intersect each other at O. Prove that $\frac{A O}{O C}=\frac{B O}{O D}$

- Watch Video Solution

11. Any line parallel to the parallel sides of a trapezium divides the nonparallel sides proportionally.

- Watch Video Solution

12. The side $B C$ of a triangle $A B C$ is bisected at $D ; o$ is any point in $A D, B O a n d C O$ produced meet $A C a n d A B$ in EandF respectively and $A D$ is produced to X so that D is the mid-point of $O X$. Prove that $A O: A X=A F: A B$ and show that $F E B C$.

- Watch Video Solution

13. Let $A B C$ be a triangle and $\operatorname{Dand} E$ be two points on side $A B$ such that $A D=B E$. If $D P|\mid B C$ and $E Q| \mid A C$, THEN PROVE THAT
$P Q|\mid A B$

- Watch Video Solution

14. In figure, $D E \| A B$ and $B D \| B E F$. Prove that $D C^{2}=C F \times A C$

- Watch Video Solution

15. In the given figure $\triangle A C B \sim \triangle A P Q$. If $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm} B A=6.5$ $\mathrm{cm}, \mathrm{AP}=2.8 \mathrm{~cm}$, find CA and AQ .
16. The triangles shown in adjoining figures are similar. Find the values of a and b.

17. In the given figure if $A D \| B C$, find the value of x.

- Watch Video Solution

18. Find $\angle P$ in the figure below.

19. In the figure $A C|\mid B D$, prove that:
(i) $\triangle A C E \sim \triangle B D E(i i) \frac{A E}{C E}=\frac{B E}{D E}$

- Watch Video Solution

20. S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$ then

$$
\text { A. } R P=R T
$$

B. $P Q=T S$
C. $\triangle R P Q \sim \triangle R T S$
D. $Q R=R S$

Answer: C

- Watch Video Solution

21. $A B C$ is an isosceles triangle with $A B=A C$ and D is a point on $A C$ such that $B C^{2}=A C \times C D$. Prove that $B D=B C$

22. In the given figure if $\angle B=90^{\circ}$ and BD is perpendicular to AC then prove that:
(i) $\triangle A D B \sim \triangle B D C(i i) \triangle A D B \sim \triangle A B C$
(iii) $\triangle B D C \sim \triangle A B C(i v) B D^{2}=A D \times D C$
(v) $A B^{2}=A D \times A C(v i) B C^{2}=C D \times A C$
(vii) $A B^{2}+B C^{2}=A C^{2}$

- Watch Video Solution

23. In the given figure, DEFG is a square and $\angle B A C=90^{\circ}$ prove that (i) $\triangle A G F \sim \triangle D B G(i i) \triangle A G F \sim \triangle E F C$

- View Text Solution

24. In the adjoining figure if $a=18, b=12, c=14$ and $d=8$, what is the measure of x ?

25. In the adjoining frigure, $\triangle P Q R$ is a right angled triangle in which $\angle P Q R=90^{\circ}$, squre $A B C D$ is a square of side 4 units and squreGHIJ is a square of side 7 units. EC and CG are the length and breadth of rectangle CEFG. Find the length EC.

- Watch Video Solution

26. Dr. Bansal needs to determine the distance $P Q$ across a river in and east-west direction as shown in the adjoining figure. He can't measure this distance directly over the water. So, he selects the point S from where a straight line to point Q stays on land so he can mesure distance. he then moves eastward a distance of 400 m from point S to T , so that the
line of sight from point T to P cuts the previous line SQ at R. finally with a long measuring tape. he determines that.
$S R=250 \mathrm{~m}, \mathrm{QR}=1250 \mathrm{~m}$
Determine if this is enough information to calculate the distance PQ and if so, find $P Q$ and hence find the time taken by a swimmer to cross the river $P Q$ with a uniform speed of $800 \mathrm{~m} / \mathrm{hr}$.

- Watch Video Solution

27. In the adjoining figure, $\mathrm{AB} \| \mathrm{CD}| | \mathrm{EF}$.
prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.

Watch Video Solution
28. In trapezium $A B C D$. $A B \| D C$ and $D C=2 A B$. A line segment $E F$ drawn parallel to $A B$ cuts $A D$ in F and $B C$ in E such that $\frac{B E}{E C}=\frac{3}{4}$.

Diagonal DB intersects EF at G. prove that \&EF=10AB.

29. Through the mid-point M of the side $C D$ of a parallelogram $A B C D$, the line $B M$ is drawn, intersecting $A C$ in L and $A D$ produced in El. Prove that $E L=2 B L$

- Watch Video Solution

30. If two sides and a median bisecting one of these sides of a triangle are respectively proportional to the two sides and corresponding median of another triangle; then triangle are similar.

- Watch Video Solution

31. If two sides and a median bisecting the third side of a triangle ar respectively proportional to the corresponding sides and median of the other triangle; then the two triangles are similar.

- Watch Video Solution

32. The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of first triangle is 9 cm , what is the corresponding side of the other triangle?
A. $\frac{15}{7}$
B. $\frac{17}{7}$
C. $\frac{27}{5}$
D. $\frac{17}{5}$

Answer: C

- Watch Video Solution

33. A lamp is 3.3 m be the lamp post and $C D=110 \mathrm{~cm}$ tall walks away from the base of this lamp post at a speed of $0.8 \mathrm{~m} / \mathrm{s}$. find the length of the shadow of boy after 4 seconds.

- Watch Video Solution

34. In figures $\triangle A B C$ and $\triangle D E F$ ar similar, the areas of $\triangle A B C$ is $9 \mathrm{sq} . \mathrm{m}$ and that of $\triangle D E F$ is $16 \mathrm{sq} . \mathrm{cm}$. if $\mathrm{EF}=4.2 \mathrm{~cm}$, find BC .

- Watch Video Solution

35. If D, E, F are the mid-points of the sides $B C, C a$ and $A B$ respectively of a triangle $A B C$, prove by vector method that Area of $\triangle D E F=1 / 4$ Area of $\triangle A B C$

- Watch Video Solution

36. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

- Watch Video Solution

37. In Fig. 4.170, $A B C D$ is a trapezium in which $A B D C$ and $A B=2 D C$. Determine the ratio of the areas of $A O B$ and $C O D$. (FIGURE)

- Watch Video Solution

38. In a trapezium $A B C D, O$ is the point of intesection of $A C$ and $B D, A B \| C D$ and $A B=2 \times C D$. If the area of $\triangle A O B=84 \mathrm{~cm}^{2}$. Find the area of $\triangle C O D$.
A. $42 \mathrm{~cm}^{2}$
B. $21 \mathrm{~cm}^{2}$
C. $25 \mathrm{~cm}^{2}$
D. $40 \mathrm{~cm}^{2}$

Answer: B

- Watch Video Solution

39. In figure, $\mathrm{DE}|\mid \mathrm{BC}$ and the ratio of the areas of $\triangle A D E$ and trapezium $B D E C$ is $4: 5$. Find the ratio of $D E: B C$. If $B D=2 \mathrm{~cm}$. Then find $A D$.
40. X and Y are points on the sides AB and BC respectively of $\triangle A B C$ such that $\mathrm{XY} \| \mathrm{AC}$ and XY divides $\triangle A B C$ into two parts in area, find $\frac{A X}{A B}$

- Watch Video Solution

41. CE and DE are equal chords of a cricule with centre O . if $\angle A O B=90^{\circ}$ find $\operatorname{ar}(\triangle C E D) \operatorname{ar}(\triangle A O B)$

- Watch Video Solution

42. In the given figure $D E|\mid B C$ and $A D: D B=5: 4$

Find the ratio $\operatorname{ar}(\triangle D E F): \operatorname{ar}(\triangle C F B)$

- Watch Video Solution

43. If two triangles are similar; prove that the ratio of corresponding sides is equal to the ratio of corresponding altitudes.

- Watch Video Solution

44. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Watch Video Solution

45. If two triangles are similar; prove that the ratio of the corresponding
sides is same as the corresponding angle bisector segments.

(Watch Video Solution

46. In the adjoining figure $A D E$ and $A B C$ are two similar triangles, point D divides $A B$ in the raito $2: 1$ and point E divides $A C$ in the ratio 1:2. If the
area of $\triangle A D E$ is 23 square units, then find the ar($\square D E C B)$.

- Watch Video Solution

47. The sides of a triangle are $5 \mathrm{~cm}, 8 \mathrm{~cm}$ and 11 cm respectively. Demtermine whether it is a right angled triangle or not.

- Watch Video Solution

48. A ladder, 25 m long reaches a window of building 20 m , above the ground. The distance of the foot of the ladder from the building.
A. 45 m
B. 5 m
C. 10 m
D. 15 m

Answer: D

- Watch Video Solution

49. Two poles of height 6 meters and 11 meteras stand vertically on a plane ground. If the distance between their feet is 12 meters. Find the distance between their tops.
50. P and Q are the mid-points of the sides $C A$ and $C B$ respectively of a
$\triangle A B C$, right angled at C, prove that. (i) $4 A Q^{2}=4 A C^{2}+B C^{2}$ $4 B P^{2}=4 B C^{2}+A C^{2}$

- Watch Video Solution

51. The perpendicular AD on the base BC of a $\triangle A B C$ intersects BC at D , so that $\mathrm{DB}=3 \mathrm{CD}$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$

- Watch Video Solution

52. In the given figure $A D$ is perpendicular to $B C$ produced, prove that :
$c^{2}=a^{2}+b^{2}=2 a x$

- Watch Video Solution

53. $A B C$ is a right traingle, right angled at C. if P is the length of perpendicular from C to $A B$ and $A B=c, B C=a$ and $C A=b$, then prove that (i)

$$
\mathrm{pc}=\mathrm{ab} \text { (ii) } \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}
$$

54. Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals.

Watch Video Solution

55. In an equilateral triangle $A B C$ the side $B C$ is trisected at D. Prove that $9 A D^{2}=7 A B^{2}$

- Watch Video Solution

56. O is any point inside a rectangle $A B C D$. then which of the following is correct:
A. $O B^{2}+O D^{2}=O A^{2}+O C^{2}$
B. $O B^{2}-O D^{2}=O A^{2}+O C^{2}$
C. $O B^{2}-O D^{2}=O A^{2}-O C^{2}$
D. None

- Watch Video Solution

57. In a triangle $A B C, A C>A B, D$ is the mid-point of $B C$ and $A E \perp B C$. Prove that: (i) $A B^{2}=A D^{2}-B C D E+\frac{1}{4} B C^{2}$
$A B^{2}+A C^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

- Watch Video Solution

58. In $P Q R, Q M \perp P R$ and $P R^{2}-P Q^{2}=Q R^{2}$. Prove that $Q M^{2}=P M \times M R$

- Watch Video Solution

59. prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
60. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

- Watch Video Solution

61. In Figure, $A B C$ is a right triangle right angled at B and points Dand E trisect $B C$. Prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$.

- Watch Video Solution

62. In a $\triangle A B C$ the angles at B and C are acute. If BE and CF be drawn perpendiculars on $A C$ and $A B$ respectivel, prove that

$$
B C^{2}=A b \times B F+A C \times E C
$$

63. Nazinia is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that h

- Watch Video Solution

Problems From Ncert Exemplar

1. In figure, if $\angle 1=\angle 2$ and $\triangle N S Q \cong \triangle M T R$, then prove that $\triangle P T S \sim \Delta P R Q$.

2. In figure $D E \| O Q$ and $D F \|$ $|\mid$

- Watch Video Solution

3. In figure A, B and C are points on $O P, O Q$ and $O R$ respectively such that AB || PQ and AC || PR. Show that $B C$ || QR.
4. In Figure altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P. Show that: (i) $\triangle A E P \sim \Delta C D P$
(ii) $\triangle A B D \sim \triangle C B E$
$\triangle A E P \sim \triangle A D B$ (iv) $\triangle P D C \sim \triangle B E C$

- Watch Video Solution

5. $A B C D$ is a trapezium in which $A B \| D C$ and P, Q are points on $A D$ and $B C$ respectively, such that $P Q|\mid D C$, if $P D=18 \mathrm{~cm}, \mathrm{BQ}=35 \mathrm{~cm}$ and $\mathrm{QC=}=15 \mathrm{~cm}$. Find AD.
6. In Fig. 6.44, $A B C$ and $D B C$ are two triangles on the same base $B C$. If $A D$ intersects BC at O , show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar(DBC)}}=\frac{A O}{D O}$

- Watch Video Solution

7. li $\Delta P Q R, \mathrm{PD} \perp \mathrm{QR}$ such that D lies on QR , if $\mathrm{PQ}=\mathrm{a}, \mathrm{PR}=\mathrm{b}, \mathrm{Q}=\mathrm{c}$ and $\mathrm{DR}=\mathrm{d}$, then prove that $(a+b)(a-b)=(c+d)(c-d)$.

- Watch Video Solution

8. In a $\triangle P Q R, \mathrm{~N}$ is a point on PR , such that $\mathrm{QN} \perp \mathrm{PR}$. If $\mathrm{PN} \cdot \mathrm{NR}=Q N^{2}$, then prove that $\angle P Q R=90^{\circ}$.

- Watch Video Solution

9. In figure $B D$ and $C E$ intersect each other at the point P. Is $\triangle P B C \sim \triangle P D E$? Why?

10. If in two right triangles, one of the acute angles of one triangle is equal to an acute angle of the other triangle. Can you say that two triangles will be similar? Why?

- Watch Video Solution

11. In $P Q R, Q M \perp P R$ and $P R^{2}-P Q^{2}=Q R^{2}$. Prove that $Q M^{2}=P M \times M R$

- Watch Video Solution

12. Diagonals of a trapezium $P Q R S$ intersect each other at the point $0, P Q$ ||RS and $\mathrm{PQ}=3 \mathrm{RS}$. Find the ratio of the areas of $\triangle P O Q$ and $\triangle R O S$.

- Watch Video Solution

13. A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on teh wall.

- Watch Video Solution

14.14 In Fig. 6.21, PA, QB Rc and SD are all perpendiculars to a line I, AB 6 $\mathrm{cm}, \mathrm{Bc} 9 \mathrm{~cm}, \mathrm{CD} \mathrm{g} \mathrm{cm}$ and SP 36 om Find PO, QR an RS. Fig. 6.21

- Watch Video Solution

1. In the adjoining figure $D E|\mid B E$ and D divides $A B$ in the ratio $2: 3$ find.
(i) $\frac{A E}{E C}$ (ii) $\frac{A E}{A C}$

2. In the figure DE is parallel to BC and $\frac{A D}{D B}=\frac{2}{3}$ if $\mathrm{AE}=3.7 \mathrm{~cm}$ find EC .

- Watch Video Solution

3. In the figure if $D E|\mid A B$, find the value of x. Given $A D=(x-4)$. $D C=4 \mathrm{~cm}, E B=(3 x-19) \mathrm{cm}$ and $E C=(x-3) \mathrm{cm}$.

- Watch Video Solution

4. In the given figure if $\mathrm{PQ}|\mid \mathrm{YZ}$. Find XQ .

(D) Watch Video Solution

5. Dand E are respectively the points on the side $A B a n d A C$ of a $A B C$ such that $\quad A B=5.6 \mathrm{~cm}, A D=1.4 \mathrm{~cm}, A C=7.2 \mathrm{~cm} \quad$ and $A E=1.8 \mathrm{~cm}$, show that $D E B C$.

- Watch Video Solution

6. In a $A B C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E B C$ If $A D=6 \mathrm{~cm}, D B=9 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$, find $A C$. (ii) If $\frac{A D}{D B}=\frac{3}{4}$ and $A C=15 \mathrm{~cm}$, find $A E$. (iii) If $\frac{A D}{D B}=\frac{2}{3}$ and $A C=18 \mathrm{~cm}$, find $A E$.

- Watch Video Solution

7. In Fig. 4.20, if $P Q B C$ and $P R C D$. Prove that (i) $\frac{A R}{A D}=\frac{A Q}{A B}$ $\frac{Q B}{A Q}=\frac{D R}{A R}$. (FIGURE)
8. In a $A B C, D$ and E are points on sides $A B a n d A C$ respectively such that $B D=C E$. If $\angle B=\angle C$, show that $D E B C$.
A.
B.
C.
D.

Answer: N/A

Watch Video Solution
9. In $A B C, D$ and E are points on sides $A B$ and $A C$ respectively such that $A D \times E C=A E \times D B$. Prove that $D E B C$.
10. In the given figure, if $D E|\mid A Q$ and $D F| \mid A R$. Prove that $E F|\mid Q R$.

- Watch Video Solution

11. In the given figure A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $B C \| Q R$. Show that $A C \| P R$.

- Watch Video Solution

12. Prove that the diagonals of a trapezium divide each other proportionally.

- Watch Video Solution

13. In $\triangle A B C$ the bisector of $\angle B$ meets AC at D . A line $\mathrm{PQ} \| \mathrm{AC}$ meets $A B, B C$ and $B D$ at P, Q and R respectively.
show that $P R \times B Q=Q R \times B P$.

- Watch Video Solution

14. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that ABCD is a trapezium.

- Watch Video Solution

15. In the given figure AD is the bisector of $\angle A$. If $\mathrm{BD}=4 \mathrm{~cm}, \mathrm{DC}=3 \mathrm{~cm}$ and $A B=6 \mathrm{~cm}$. Find $A C$.

- Watch Video Solution

16. The bisector of interior $\angle A$ of $A B C$ meets $B C$ in D, and the bisector of exterior $\angle A$ meets $B C$ produced in E. Prove that $\frac{B D}{B E}=\frac{C D}{C E}$.
17. $A D$ is a median of $A B C$. The bisector of $\angle A D B$ and $\angle A D C$ meet $A B a n d A C$ in $E a n d F$ respectively. Prove that $E F B C$.

Watch Video Solution

18. If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles.

- Watch Video Solution

19. D, E and F are the points on sides $B C, C A$ and $A B$ respectively, of
$\triangle A B C$ such that AD bisects $\angle A, \mathrm{BE}$ bisects $\angle B$ and CF bisects $\angle C$. If $A B=5 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $C A=4 \mathrm{~cm}$. find $A F, C E$ and $B D$.

- Watch Video Solution

20. If the diagonal BD of a quadrillateral ABCD bisects both $\angle B$ and $\angle D$. Prove that $\frac{A B}{B C}=\frac{A D}{C D}$.

- Watch Video Solution

21. Prove that the line segments joints joining the mid-points of the adjacent sides of a quadrilateral from a parallelogram.

- Watch Video Solution

22. In figure, P is the mid-point of $B C, Q$ is the mid-point of $B C, Q$ is the mid-point of $A P$, such that $B Q$ produced meets $A C$ at R.

- Watch Video Solution

23. In Figure, $A B C D$ is a parallelogram in which P is the mid-point of $D C$ and Q is a point on $A C$ such that $C Q=\frac{1}{4} A C$. If $P Q$ produced
meets $B C$ at R. Prove that R is a mid-point of $B C$.

- Watch Video Solution

Eercise 6 B

1. In the given figure , $\mathrm{AB} \| \mathrm{CD}$. Prove that $\triangle A O B \sim \triangle D O C$.

-
 Watch Video Solution

1. In the given figure, if $\angle A D E=\angle B$ show that $\triangle A D E \sim \triangle A B C$.

- Watch Video Solution

2. P and Q are points on the sides AB and AC respectively of a $\triangle A B C$. If $A P=2 \mathrm{~cm}, P B=4 \mathrm{~cm} A Q=3 \mathrm{~cm}$ and $Q C=6 \mathrm{~cm}$. Show that $B C=3 P Q$.
3. In the adjoining figure, $\frac{A O}{O C}=\frac{B O}{O D}=\frac{1}{2}$ and $\mathrm{AB}=4 \mathrm{~cm}$ find the value of CD.

- Watch Video Solution

4. In the figure $\triangle A B C \sim \triangle A E D$. If $\mathrm{AD}=5 \mathrm{~cm}, \mathrm{AE}=6 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$ and $A B=15 \mathrm{~cm}$. Determine $A C$ and $D E$.

- Watch Video Solution

5. in the adjoining figure find $\angle F$.

6. A vertical stick 12 m long casts a shadow 8 m long on the ground. At the same time a tower casts the shadow 40 m long onthe ground. Determine the height of the tower.

- Watch Video Solution

7. In the given figure, if $X Y|\mid B C$, find the length of $X Y$.

8.

$\triangle E D C \sim \triangle E B A, \angle B E C=115^{\circ}$ and $\angle E D C=70^{\circ}$. Find $\angle D E C, \angle D C$

- Watch Video Solution

9. in the given figure $\angle C A B=90^{\circ}$ and $A D \perp B C$. if $\mathrm{AC}=75 \mathrm{~cm}, \mathrm{AB}=$ 1 m and $\mathrm{BD}=1.25 \mathrm{~m}$. Find AD .

- Watch Video Solution

10. the perimeters of two similar triangles are 40 cm and 30 cm respectively. If one side of the first traingle is 21 cm . Determine the corresponding side of the second triangle.

- Watch Video Solution

11. The diagonal $B D$ of a parallelogram $A B C D$ intersects the segment $A E$ at the point F, where E is any point on the Side $B C$. Prove that $D F \times E F=F B \times F A$.

- Watch Video Solution

12. Prove that the line segments joining the mid-points of the sides of a triangle from four triangles, each of which is similar to the original triangle.

- Watch Video Solution

13. In a $\triangle A B C$ P and Q are points on AB and AC respectively and $P Q|\mid B C$. Prove that the median $A D$ bisects $P Q$.

- Watch Video Solution

14. In Fig. 4.122, $A D$ and $B E$ are respectively perpendiculars to $B C$ and $A C$. Show that: (FIGURE) $A D C B E C$ (ii) $C A \times C E=C B \times C D$
$A B C D E C$ (iv) $C D \times A B=C A \times D E$

- Watch Video Solution

15. In $A B C$, if $A D \perp B C$ and $A D^{2}=B D \times D C$, prove that $\angle B A C=90 \circ$.

- Watch Video Solution

16. If one diagonal of a trapezium divides the other diagonal in the ratio

1:2, prove that one of the parallel lines is double the other.

- Watch Video Solution

17. One angle of a triangle is equal to one angle of another triangle and the bisectors of these two equal angles divide the opposite sides in the same ratio, prove that the triangles are similar.

- Watch Video Solution

18. In the adjoining figure two medians AD and BE of a $\triangle A B C$ meet each other at 0 . prove that (i) $\triangle A O B \sim \triangle D O E$

- Watch Video Solution

19. In an isosceles $A B C$, the base $A B$ is produced both the ways to P and Q such that $A P \times B Q=A C^{2}$. Prove that $A P C B C Q$.

- Watch Video Solution

20. Two poles of height 'a' metres and ' b ' meters are ' p ' meters apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{a b}{a+b}$ meters.

- Watch Video Solution

21. E si a point on side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects DC at F. prove that $\triangle A B E \sim \triangle C F B$.

- Watch Video Solution

22. In a right angled with sides a and b and hypotenuse c, the altitude drawn on the hypotenuse is x. prove that $a b=c x$.

- Watch Video Solution

23. in the given figure, if $\triangle A B E \cong \triangle A C D$ prove that $\triangle A D E \sim \triangle A B C$.

- Watch Video Solution

24. A man wishes to determine the height of a tall building . In the middle of the horizontal field next to the buliding, there is a sign post whose top measures to be 2.5 m above the ground. The man then backup from the post away from the building until the top of the post just lines up with
the top of the building and marks the spot where his feet are. the man then measures the distances shown in the adjoining figure. if the eyes of a man standing on the ground are 1.4 m a bove the ground, find the height of the building.

- View Text Solution

25. In $\triangle P Q R, \angle P=72^{\circ}, \mathrm{M}$ is the mid point of side QR , and L and N are the feet of perpendicular drawn from M to $P Q$ and $P R$ respectively. If $\mathrm{LM}=\mathrm{MN}$, then what is the measure of $\angle N M R$?

- View Text Solution

Exercise 6 C

1. The areas of two similar $\triangle A B C$ and $\triangle P Q R$ are 64 sq. cm and 121 sq. cm. repsectively. If $Q R=15.4 \mathrm{~cm}$, find $B C$.

- Watch Video Solution

2. If $A B C D E F$ such that $A B=1.2 \mathrm{~cm}$ and $D E=1.4 \mathrm{~cm}$. Find the ratio of areas of $A B C$ and $D E F$.

- Watch Video Solution

3. The areas of two similar triangle are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangle is 4.5 cm , find th corresponding altitude of the smaller triangle.
4. The areas of two similar triangle are $100 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If a median of the smaller triangle is 5.6 cm , find th corresponding median of the other.

- Watch Video Solution

5. Two isosceles triangles have equal vertical angles and their areas are in the ratio 9:16. Find the ratio of their corresponding heights.

- Watch Video Solution

6. In a trapezium PQRS, $P Q|\mid S R$ and $P Q=2 S R$. if the diagonals intersect at O and area of $\triangle P O Q=96 \mathrm{~cm}^{2}$, find th area of $\triangle S O R$.

- Watch Video Solution

7. In the adjoining figure $\mathrm{BC}\left|\mid \mathrm{DE}\right.$. Area of $\triangle A B C=25 \mathrm{~cm}^{2}$.area of trapezium $B C E D=24 \mathrm{~cm}^{2}, \mathrm{DE}=14 \mathrm{~cm}$, calculate length of BC .

- Watch Video Solution

8. If the area of two similar triangles are equal then the triangles are congruent.
9. In the given figure, $\angle 1=\angle 2$ and $\angle 3=\angle 4$. If $\mathrm{BC}=7.5 \mathrm{~cm}, \mathrm{DE}=12.5 \mathrm{~cm}$ and area of $\triangle A B C=13.5 \mathrm{~cm}^{2}$. Find the area of $\triangle A D E$.

- View Text Solution

10. $\triangle A B C$ is right angled at A and $A D \perp B C$. If $\mathrm{BC}=13 \mathrm{~cm}$ and $\mathrm{AC}=5$ cm . find the ratio of the areas of $\triangle A B C$ and $\triangle A D C$.
11. $\square A B C D$ is a rectangle. Triangle EFB has an area of $2 \mathrm{~cm}^{2}$. triangleBEC has an area of $3 \mathrm{~cm}^{2}$.

Find the area of shaded region.

- View Text Solution

Exercise 6 D

1. Find in each cash whether the sides of the triangle,as given below form a right triangle or not
(1) $9 \mathrm{~cm}, 12 \mathrm{~cm}$ and 15 cm (ii) $8 \mathrm{~cm}, 15 \mathrm{~cm}$ and 17 cm
(iii) $7 \mathrm{~cm}, 24 \mathrm{~cm}$ and 25 cm

- Watch Video Solution

2. In $\triangle A B C$ right angled at C
(i) $\mathrm{AB}=1.7 \mathrm{~cm}, \mathrm{BC}=1.5 \mathrm{~cm}$, find CA (ii) $\mathrm{CA}=2.4 \mathrm{~cm}, \mathrm{AB}=4.0 \mathrm{~cm}$, find BC

- Watch Video Solution

3. A ladder reachs a window which is 15 metres above the ground on one side of the steet. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 8 metres high. Find the width of the street, if the ladder is 13 meters.

- Watch Video Solution

4. A man goes 40 m due north and then 50 m due west. Find his distance from the starting point.

Watch Video Solution

5. The side of a rhombus is 13 cm . if one if the diagonals is 24 cm , find the length of the other diagonal.

- Watch Video Solution

6. In the adjoining figure: $\angle P S Q=90^{\circ}, \mathrm{PQ}=10 \mathrm{~cm}, \mathrm{QS}=6 \mathrm{~cm}$ and $\mathrm{RQ}=$ 9 cm . Calculate the length of PR.

- Watch Video Solution

7. $A B C$ is a isosceles right angled triangle, right angled at C. prove that $A B^{2}=2 A C^{2}$
8. $\triangle A B C$ is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$. Prove that $\triangle A B C$ is a right triangle.

- Watch Video Solution

9. In an equilateral $\triangle A B C, A D$ is the altitude drawn from A on the side $B C$. Prove that $3 A B^{2}=4 A D^{2}$
10. M and N are the points on sides QR and PQ respectively of a $\triangle P Q R$, right angled at Q. prove that $P M^{2}+R N^{2}=P R^{2}+M N^{2}$

- Watch Video Solution

11. In a square ABCD , show that $A C^{2}=2 A B^{2}$.

- Watch Video Solution

12. In a rhombus $A B C D$, prove that $A C^{2}+B D^{2}=4 A B^{2}$

- Watch Video Solution

13. In triangle $\mathrm{ABC}, \angle A=90^{\circ}, \mathrm{CA}=\mathrm{AB}$ and D is a point on AB porduced.

Prove that:

$$
D C^{2}-B D^{2}=2 A B . A D
$$

14. The following figure shows a triangle $A B C$ in which $A D$ is a median and $A E \perp B C$. Prove that $2 A B^{2}+2 A C^{2}=4 A D^{2}+B C^{2}$.

- Watch Video Solution

15. From a point O in the interior of a $A B C$, perpendiculars $O D, O E$ and $O F$ are drawn to the sides $B C, C A$ and $A B$ respectively. Prove that:
(i) $A F^{2}+B D^{2}+C E^{2}=O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$

- Watch Video Solution

16. In a right triangle $A B C$, right angled at $A, A D$ is drawn perpendicular to $B C$. Prove that:
$A B^{2}-B D^{2}=A C^{2}-C D^{2}$

- Watch Video Solution

17. In the given figure, ABC is a right triangle, right angled at B . Medians $A D$ and $C E$ are of respective length 5 cm and $2 \sqrt{5} \mathrm{~cm}$. Find the length of AC.

18. In the given figure, $\angle Q P R=90^{\circ} \mathrm{QR}=26 \mathrm{~cm} \mathrm{PM}=6 \mathrm{~cm}, \mathrm{MR}=8 \mathrm{~cm}$ and $\angle P M R=90^{\circ}$. Find the area of triangle $P Q R$.

- Watch Video Solution

19. Given a right angled $\triangle A B C$. The lengths of the sides containing the right angle are 6 cm and 8 cm . A circule is inscribed in $\triangle A B C$. Find th radius of the circle.

- Watch Video Solution

20. In an acute angled triangle, express a median in term of its sides.

- Watch Video Solution

21. In a quadrilateral $\mathrm{ABCD}, \angle B=90^{\circ}$ and $A D^{2}=A B^{2}+B C^{2}+C D^{2}$ prove that $\angle A C D=90^{\circ}$.

- Watch Video Solution

22. $A B C$ is a right triangle right angled at C and $A C=\sqrt{3} B C$. Prove that $\angle A B C=60^{\circ}$.

- Watch Video Solution

23. In $\triangle A B C, \angle A=60^{\circ}$ prove that $B C^{2}=A B^{2}+A C^{2}-A B$. $A C$

- Watch Video Solution

24. In the adjoining figure, find x, y and h.

- Watch Video Solution

Revision Exercise Very Short Questions

1. M and N are points on sides AC and BC respectively of a $\triangle A B C$. State whether $\mathrm{MN}|\mid \mathrm{BC}$ ' if $\mathrm{CM}=4.2 \mathrm{~cm}, \mathrm{MA}=2.8 \mathrm{~cm}, \mathrm{NB}=3.6 \mathrm{~cm}, \mathrm{CN}=5.7 \mathrm{~cm}$.

O
 Watch Video Solution

2. If $\mathrm{DE} \mid \mathrm{BC}$ in $\triangle A B C$ where D and E are points on AB and AC respectively. If $\frac{A D}{D B}=\frac{8}{15}$ and $\mathrm{EC}=3.5 \mathrm{~cm}$, find AE .

- Watch Video Solution

3. If in $\triangle A B C$, AD is the bisector of $\angle A$ and D lies on BC . If $\mathrm{AB}=6.4$ $\mathrm{cm}, \mathrm{AC}=8 \mathrm{~cm}, \mathrm{BD}=5.6 \mathrm{~cm}$, find DC .
4. In the given figure $\triangle A O B \sim \triangle D O C$, prove that $\mathrm{AB} \| \mathrm{CD}$.

- Watch Video Solution

5. A man goes 24 m due wes and then 10 m due north. How far is he from the staring point?

- Watch Video Solution

6. find the height of an equlateral triangle having each side 12 cm .
7. $\triangle A B C$ is an isoscles triangle with $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$ and the length of altitude from A on BC is 5 cm , find BC .

- Watch Video Solution

8.

$\triangle A B C$ if $\frac{A B}{A C}=\frac{B D}{D C}$ and if $\angle B=70^{\circ}$ and $\angle C=50^{\circ} f \in d \angle B A D$

- Watch Video Solution

9. In a rhombus of side 10 cm one of the diagonals is 12 cm long. Find the length of second diagonal.

- Watch Video Solution

1. In an equilateral triangle $A B C, D$ is the mid-point of $A B$ and E is the midpoint of AC. Find the ratio between $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)$

View Text Solution
2. In the given figure, $\mathrm{DE}\left|\mid \mathrm{BC}\right.$ and $\frac{A D}{D B}=\frac{2}{3}$ if $\mathrm{AE}=3.7 \mathrm{~cm}$, find EC .

3. If P and Q are points on the sides AB and AC respeactively of $\triangle A B C$, if $P Q|\mid B C, I A P=2 \mathrm{~cm}, A B=6 \mathrm{~cm}$ and $A C=9 \mathrm{~cm}$ find $A Q$.

Watch Video Solution

4. If the diagonal $B D$ of a quadrilateral $A B C D$ bisects both $\angle B$ and $\angle D$, show that $\frac{A B}{B C}=\frac{A D}{C D}$.

- Watch Video Solution

5. Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of trapezium and is half of their difference.

- Watch Video Solution

6. A man goes 150 m due east and then 200 m due north. How far is he from the starting point ?

- Watch Video Solution

7. In an equilateral triangle with side a, prove that the altitude is of length $\frac{a \sqrt{3}}{2}$

- Watch Video Solution

8. Two poles of heights 6 m and 11 m stand on plane ground. If the distance between their feet is 12 m , find the distance between their tops.

- Watch Video Solution

9. find the length of the diagonal of a rectangle whose sides are 8 m and 6 m .
10. the side of a triangle are $\frac{1}{2}(a+b), \frac{1}{2}(a-b)$ and $\sqrt{a b}$ state the nature of triangle.

- Watch Video Solution

Revision Exercise Long Questions

1. The bisector of interior $\angle A$ of $\triangle A B C$ meets BC in D , and the bisector of exterior angle $\angle A$ meets BC produced in E . prove that $\frac{B D}{B E}=\frac{C D}{C E}$

- Watch Video Solution

2. AD is a median of $\triangle A B C$. The bisectors of $\angle A D B$ and $\angle A D C$ meets $A B$ and $A C$ in E and F respectively prove that $E F \| B C$.
3. $\triangle A B C$ and $\triangle D B C$ are two triangles on the same base BC . A and

D lies on opposite sides of BC . Prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$

Watch Video Solution

4. Prove that three times the sum of the squares on the sides of a triangle is equal to four times the sum of the square on the medians of the triangle.
