

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

BINOMIAL THEOREM

Example

1. Using binomial theorem, write down the expansions of the following: $\left(2x+3y\right)^5$

Watch Video Solution

2. Expand $(3x-2y)^6$ with the help ob binomial theorm.

3. Simplify with the help of binomial theorm.

4. (iii) Find an approximate value of $(0.99)^5$ using the first three terms of its expansion.

5. Using binomial theorem, prove that $(101)^{50} > 100^{50} + 99^{50}$.

6. If number of terms in the expansion of $(x-2y+3z)^n$ are 45, then n is equal to

Watch Video Solution

7. Prove that $\sum\limits_{r=0}^{n}C_{r}.4^{r}=5^{n}$

Watch Video Solution

8. If $\left(1-x+x^2\right)^4=1+P_1x+P_2x^2+P_3x^3+...+P_8x^8,$ then prove that : $P_2+P_4+P_6+P_8=40$ and $P_1+P_3+P_5+P_7=-40.$

9. If o be the sum of odd terms and E that of even terms in the expansion of $\left(x+a\right)^n$ prove that:

$$O^2-E^2=\left(x^2-a^2
ight)^n$$
 (ii) $4OE=\left(x+a
ight)^{2n}-\left(x-a
ight)^{2n}$

(iii)
$$2ig(O^2+E^2ig)=\left(x+a
ight)^{2n}+\left(x-a
ight)^{2n}$$

- **10.** Find the 8th term in the expansion of $\left(\frac{2x}{3} \frac{3}{5x}\right)^{12}$
 - Watch Video Solution

- **11.** Find the 13^{th} term in the expansion of $\left(9x-rac{1}{3\sqrt{x}}
 ight)^{18},\,x
 eq0$
 - Watch Video Solution

12. Find the 15th term in the expansion of $(\sqrt{x}-\sqrt{y})^{17}$

13. Find the middle term in the expansion of $\left(3x-\frac{1}{2x}\right)^{16}$

14. Find the middle term in the expansion of $\left(1+2x+x^2\right)^{10}$

15. Find the 4th term from the end in the expansion of $(1-3x)^{10}$

16. Show that the middle term in the expansion of $(1+x)^{2n}is\frac{(1.\ 3.\ 5(2n-1))}{n!}2^nx^n, where n \text{ is a positive integer.}$

17. how that the coefficient of (r+1) th in the expansion of $(1+x)^{n+1}$ is equal to the sum of the coefficients of the r th and (r+1) th term in the expansion of $(1+x)^n$

18. If in any binomial expansion a, b, c and d be the 6th, 7th, 8th and 9th terms respectively, prove that $\frac{b^2-ac}{c^2-bd}=\frac{4a}{3c}$

19. Find the coefficient of x^6 in the expansion of $\left(2x^3-rac{1}{3x^3}
ight)^{10}$

20. Find the coefficient of x^7 in the expansion of $\left(2x^2-\frac{1}{x}\right)^{20}$

21. Find the coefficient of x^{-25} in the expansion of $\left(\frac{x^2}{2}-\frac{3}{x^3}\right)^{15}$

Watch Video Solution

22. Find the coefficient of x^6 . y^3 in the expansion of $(2x+y)^9$

A. 4756

B. 5476

C.5376

D.4786

Answer: C

23. Find the constant term in the expansion of
$$\left(2x^4-rac{1}{3x^7}
ight)^{11}$$

24. Find the terms independent of x in the expansion of
$$\left(\sqrt{x} + \frac{1}{3x^2}\right)^{10}$$

25. Find the term in the expansion of
$$\left(2x^2-\frac{3}{x}\right)^{11}$$
 Which contains x^6

26. If the coefficient of $x^2 \quad {
m and} \quad x^3$ are equal in the expansion of ${(3+ax)}^9$, then find the value of 'a'

27. If m and n are positive integers, then prove that the coefficients of x^m and x^n are equal in the expansion of $\left(1+x\right)^{m+n}$

28. Find the coefficient of x^5 in the product $\left(1+2x\right)^6\left(1-x\right)^7$ using binomial theorem.

29. If the coefficients of a^{r-1} , $a^r and a^{r+1}$ in the binomial expansion of $\left(1+a\right)^n$ are in A.P., prove that $n^2 - on(4r+1) + 4r^2 - 2 = 0.$

Watch Video Solution

30. Evaluate:

$$1 + ^{15} C_1 + ^{15} C_2 + ^{15} C_3 + \dots + ^{15} C_{15}$$

 $A. 2^{14}$

B. 2^{15}

 $C. 2^{16}$

D. 2^{13}

Answer: B

then

Watch Video Solution

31. If

$$(1+x)^n=C_0+C_1.\,x+C_2.\,x^2+C_3.\,x^3+.....+C_n.\,x^n,$$

prove

that

 $C_0 + 2C_1 + 4C_2 + 6C_3 + ... + 2n. \ C_n = 1 + n \cdot 2^n$

32. If $C_0, C_1, C_2..., C_n$, denote the binomial coefficients in the expansion of $(1+x)^n$, then $\frac{C_1}{2}+\frac{C_3}{4}+\frac{C_5}{6}+\ldots$ is equal to

Watch Video Solution

33. If $C_0, C_1, C_2 \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{c}}_n \hat{\mathbf{a}} \in C_n$ are the binomial coefficient in the expansion of $(1+x)^n$ then prove that:

34. if $C_0C_1C_2$, $\hat{\mathbf{a}}\in C_1$ are the binomial coefficients in the expansion of $(1+x)^n$ then prove that:

$$C_0C_2+C_1C_3+C_2C_4+\hat{\mathfrak{a}}\mathbf{f \in }|\hat{\mathfrak{a}}\mathbf{f \in }|+C_{n-2}C_n=rac{|\underline{2}n|}{|\underline{n}-2|\underline{n}+2|}$$

Watch Video Solution

35. Expand $\left(2x+y\right)^5$ with the help of binomial theorem

36. Expand $(3x-2y)^6$ with the help ob binomial theorm.

37. Simplify with the help of binomial theorm.

38. (iii) Find an approximate value of $\left(0.99\right)^5$ using the first three terms of its expansion.

39. Using binomial theorem, prove that $(101)^{50} > 100^{50} + 99^{50}$.

40. If number of terms in the expansion of $\left(x-2y+3z\right)^n$ are 45, then n is equal to

41. Prove that $\sum\limits_{r=0}^{n} C_r.4^r=5^n$

 $Ifig(1-x+x^2ig)^4 = 1 + P_1 x + P_2 x^2 + P_3 x^3 + \ldots + P_8 x^8,$

then prove that :
$$P_2+P_4+_6+P_8=40 \;\; ext{and} \;\; P_1+P_3+P_5+P_7=\; -40$$

the expansion of $(x+a)^n$ prove that: $O^2-E^2=\left(x^2-a^2\right)^n$ (ii) $4OE=(x+a)^{2n}-(x-a)^{2n}$ (iii) $2\left(O^2+E^2\right)=(x+a)^{2n}+(x-a)^{2n}$

43. If o be the sum of odd terms and E that of even terms in

44. Find the 8th term in the expansion of
$$\left(\frac{2x}{3} - \frac{3}{5x}\right)^{12}$$

45. Find the
$$13^{th}$$
term in the expansion of $\left(9x-rac{1}{3\sqrt{x}}
ight)^{18}, \, x
eq 0$

46. Find the 15th term in the expansion of $(\sqrt{x}-\sqrt{y})^{17}$

47. Find the middle term in the expansion of $\left(3x-\frac{1}{2x}\right)^{16}$

48. Find the middle term in the expansion of $\left(1+2x+x^2\right)^{10}$

49. Find the 4th term from the end in the expansion of $(1-3x)^{10}$

50. Show that the middle term in the expansion of $\left(1+x\right)^{2n}$

is $\frac{1.3.5.2n-1}{n!}2nx^n2nx^n$, where n is a positive integer.

Watch Video Solution

51. how that the coefficient of (r+1) th in the expansion of $(1+x)^{n+1}$ is equal to the sum of the coefficients of the r th and (r+1) th term in the expansion of $(1+x)^n$

Watch Video Solution

52. If in any binomial expansion a, b, c and d be the 6th, 7th,

8th and 9th terms respectively, prove that $\dfrac{b^2-ac}{c^2-bd}=\dfrac{4a}{3c}$

Watch Video Solution

53. Find the coefficient of x^6 in the expansion o $\left(2x^3-rac{1}{3x^3}
ight)^{10}$

54. Find the coefficient of x^7 in the expansion of

$$\left(2x^2-\frac{1}{x}\right)^{20}$$

Watch Video Solution

55. Find the coefficient of x^{-25} in the expansion of

$$\left(\frac{x^2}{2}-\frac{3}{x^3}\right)^{15}$$

Watch Video Solution

56. Find the coefficient of x^6y^3 in the expansion of $(x+2y)^9$.

57. Find the constant term in the expansion of

$$\left(2x^4=rac{1}{3x^7}
ight)^{11}$$

Watch Video Solution

58. Find the constant term in the expansion of $\left(\sqrt{x} + \frac{1}{3x^2}\right)^{10}$.

59. Prove that there is no term involving x^6 in the expansion of $\left(2x^2-\frac{3}{x}\right)^{11}$, where $\neq 0$.

60. If the coefficients of $x^2 and \ x^3$ in the expansion o $(3+ax)^9$ are the same, then the value of a is $-\frac{7}{9}$ b. $-\frac{9}{7}$ c. $\frac{7}{9}$ d. $\frac{9}{7}$

61. In the binomial expansion of $\left(1+a\right)^{m+n}$, prove that the coefficient of $a^m and \ a^n$ are equal.

62. Find the coefficient of x^5 in the product $\left(1+2x\right)^6\left(1-x\right)^7$ using binomial theorem.

63. If the coefficients of a^{r-1} , $a^rand\ a^{r+1}$ in the binomial expansion of $(1+a)^n$ are in A.P., prove that $n^2-on(4r+1)+4r^2-2=0.$

 $1 + {}^{15}C_1 + {}^{15}C_2 + {}^{15}C_3 + \dots + {}^{15}C_{15}$

64. Evaluate:

65.

 $ext{if} \ \ \left(1+x
ight)^n=C_0+C_1.\ x+C_2.\ x^2+C_3.\ x^3+.....+C_n.\ x^n,$ then prove that

$$C_0 + 2C_1 + 4C_2 + 6C_3 + \ldots + 2n. C_n = 1 + n.2^n$$

66. If $C_0, C_1, C_2, ... C_n$ are the binomial coefficients in the

expansion of
$$\left(1+x\right)^n$$
 then prove that:

View Text Solution

67. If $C_0, C_1, C_2 \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}} = \mathbf{a}$ are the binomial coefficient in the expansion of $(1+x)^n$ then prove that:

68. if $C_0C_1C_2$, $\hat{\mathbf{a}}\in C_1$ are the binomial coefficients in the expansion of $(1+x)^n$ then prove that:

$$C_0C_2+C_1C_3+C_2C_4+\hat{\mathfrak{a}}\mathbf{\in |\hat{\mathfrak{a}}\mathbf{\in |}}+C_{n-2}C_n=rac{|\underline{2}n}{|\underline{n}-2|\underline{n}+2}$$

Watch Video Solution

Exercise 8 A

1. Expand using binomial theorem:

$$(i)(1-2x)^4$$
 $(ii)(x+2y)^5$

$$(iii)igg(x-rac{1}{x}igg)^6 \qquad \qquad (iv)igg(rac{2x}{3}=rac{3}{2x}igg)^5$$

$$(v)igg(x^2+rac{2}{x}igg)^6 \qquad \qquad (vi)igg(1+rac{1}{x^2}igg)^4$$

Watch Video Solution

2. Evaluate using binomial theorem:

$$(i)ig(\sqrt{2}+1ig)^6+ig(\sqrt{2}-1ig)^6$$

$$(ii)ig(\sqrt{5}+\sqrt{2}ig)^4-ig(\sqrt{5}-\sqrt{2}ig)^4$$

Watch Video Solution

3. Expand $(a+b)^6 - (a-b)^6$. Hence find the value of $(\sqrt{2}+1)^6-(\sqrt{2}-1)^6.$

4. If $x=\sqrt{5}+\sqrt{3}$ and $y=\sqrt{5}-\sqrt{3}$, then x^4-y^4

5. Find the values of the following using binomial theorem:

- $(i)49^4$ $(ii)(1.1)^4$
- $(iii)101^3$ $(iv)(0.9)^5$
 - Watch Video Solution

6. By using binomial theorem find which number is greater $(1.2)^{3000}$ or 600?

Watch Video Solution

7. Prove that $\sum_{r=0}^n {}^n C_r.3^r = 4^n$

Watch Video Solution

8. If n is a positive integer then find the number of terms in the expansion of $(x+y-2z)^n$

View Text Solution

9. Find the number of terms in the expansion of $\left(1+3x+3x^2+x^3\right)^{15}$

Watch Video Solution

10. If $\left(1+x+x^2\right)^n=1+a_1x+a_2x^2+a_3x^3$

 $+\hat{\mathfrak{a}} \in \hat{\mathfrak{a}} = \hat{\mathfrak{a}}_{1} \cdot \hat{\mathfrak{a}}_{2} \cdot \hat{\mathfrak{a}}_{2} \cdot \hat{\mathfrak{a}}_{2} \cdot \hat{\mathfrak{a}}_{2} \cdot \hat{\mathfrak{a}}_{2} + \hat{\mathfrak{a}}_{2} \cdot \hat{\mathfrak{a}}_{2} \cdot \hat{\mathfrak{a}}_{2} + \hat{\mathfrak{a}}_{2} \cdot \hat{\mathfrak{a}}_{2} \cdot \hat{\mathfrak{a}}_{2} + \hat{\mathfrak{a}}_{2} + \hat{\mathfrak{a}}_{2} + \hat{\mathfrak{a}}_{2} + \hat{\mathfrak{a}}_{2} + \hat{\mathfrak{a}}$

$$(i)a_1+a_3+a_5+\hat{\mathfrak{a}}
otin : +a_{2n-1}=rac{3^n-1}{2}$$

$$(ii)a_2+a_4+a_6+\hat{\mathtt{a}} \mathbf{\in} \hat{\mathtt{l}} \hat{\mathtt{a}} \mathbf{\in} ^{\scriptscriptstyle{\mathsf{l}}} +a_{2n}=rac{3^n-1}{2}$$

11. By using binomial theorem prove that

 $(i)ig(2^{3n}-7n-1ig)$ is divisible by 49 where n is a positive integer.

(ii) $\left(3^{3n}-26n-1\right)$ is divisible by 26^2 Where n is a positive integer.

(iii) $(6^n - 5n)$ when divided by 25 leaves a remainder 1.

(iv) $\left(x^{2n}-y^{2n}
ight)$ is divisible (x-y) , $n\in N$

12. Expand using binomial theorem:

$$(i)(1-2x)^4$$
 $(ii)(x+2y)^5$

$$(iii) \left(x - \frac{1}{x}\right)^6 \qquad (iv) \left(\frac{2x}{3} = \frac{3}{2x}\right)^5$$

$$(v)igg(x^2+rac{2}{x}igg)^6 \qquad \qquad (vi)igg(1+rac{1}{x^2}igg)^4$$

13. Evaluate using binomial theorem:

$$egin{split} (i)ig(\sqrt{2}+1ig)^6 + ig(\sqrt{2}-1ig)^6 \ (ii)ig(\sqrt{5}+\sqrt{2}ig)^4 - ig(\sqrt{5}-\sqrt{2}ig)^4 \end{split}$$

14. Using binomial theorem, expand $\left\{\left(x+y\right)^5+\left(x-y\right)^5\right\}$ and hence find the value of $\left\{\left(\sqrt{2}+1\right)^5+\left(\sqrt{2}-1\right)^5\right\}$.

15. Expand $(x+y)^4-(x-y)^4$. Hence find the value of $\left(3+\sqrt{5}\right)^4-\left(3-\sqrt{5}\right)^4$.

16. Find the values of the following using binomial theorem:

$$(i)49^4$$
 $(ii)(1.1)^4$

$$(iii)101^3$$
 $(iv)(0.9)^5$

- 17. By using binomial theorem find which number is greater $(1.2)^{3000}$ or 600?
 - Watch Video Solution

18. Prove that $\Sigma_{r=})^{nn}C_r.3^r=4^n$

watch video Solution

19. If n is a positive integer then find the number of terms in the expansion of $(x+y-2z)^n$

20. Find the number of terms in the expansion of $\left(1+3x+3x^2+x^3\right)^{15}$

21. If $\left(1-x+x^2\right)^n=a_0+a_1x+a_2x^2++a_{2n}x^{2n},$ find the value of $a_0+a_2+a_4++a_{2n}.$

22. By using binomial theorem prove that

 $(i)ig(2^{3n}-7n-1ig)$ is divisible by 49 where n is a positive integer.

(ii) $\left(3^{3n}-26n-1\right)$ is divisible by 26^2 Where n is a positive integer.

(iii) (6^n-5n) when divided by 25 leaves a remainder 1.

(iv)
$$\left(x^{2n}-y^{2n}
ight)$$
 is divisible (x-y) , $n\in N$

Exercise 8 B

1. Find the 4^{th} term in the expansion of $(x-2y)^{12}$.

- **2.** Find the 7th term in the expansion of $\left(\frac{4x}{5} \frac{5}{2x}\right)^9$.
 - Watch Video Solution

- **3.** Find the 15th term in the expansion of $\left(2y-\frac{x}{2}\right)^{18}$
 - **Watch Video Solution**

- **4.** Find the 10th term in the binomial expansion of $\left(2x^2+rac{1}{x}
 ight)^{12}$.
 - Watch Video Solution

5. Find the (r+1)th term in the expansion of $\left(\frac{x}{a}-\frac{a}{x}\right)^{2n}$

6. Find the 7th term from the end in the expansion of $\left(x+\frac{1}{x}\right)^{11}$

7. Find the 3rd term the end in the expansion of $\left(2-3x
ight)^8$

8. Find the 4th term from the end in the expansion of

$$\left(rac{x}{2}-rac{4}{x}
ight)^{15}$$

Watch Video Solution

9. Find the middle term in the following expansion:

$$(i)igg(x^2-rac{1}{x^2}igg)^{10} \qquad (ii)igg(rac{x}{a}+rac{a}{x}igg)^{12} \qquad (iii)igg(rac{a}{x}+bxigg)^{2n}$$

$$(iv)igg(x-rac{1}{x}igg)^9 \quad (v)ig(1-3x+3x^2-x^3ig)^6 \quad (vi)ig(x^2-aig)^{11} \ (vii)ig(2x-rac{3}{x^2}ig)^{15}$$

View Text Solution

10. If the coefficients of (p+1)th and (P+3)th terms in the expansion of $\left(1+x\right)^{2n}$ are equal then prove that n=p+1

11. If the coefficients of the (2r+4)th, (r+2)th term in the expansion of $(1+x)^{18}$ are equal, then the value of r is.

12. If the coefficients of (2r+1)th term and (r+2)th term in the expansion of $(1+x)^{48}$ are equal,find r.

13. Find a if 17th and 18th terms in the expansion of $\left(2+a\right)^{50}$ are equal.

watch video Solution

14. 17. If the coefficients of 2nd, 3rd and 4th terms in the expansion of $(1+x)^{2n}$ are in A.P.. Show that $2n^2-9n+7=0$

15. In n is a positive integer then prove that the coefficient of the middle term in the expansion of

16. If 3rd, 4th, 5th terms in the expansion of $\left(a+x\right)^n$ be 84, 280 and 560, Find x, a and n.

17. Find a, b and n in the expansion of $(a+b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

18. If a. b, c and d are the coefficients of 2nd, 3rd, 4th and 5th terms respectively in the binomial expansion of $(1+x)^n$, then prove that $\frac{a}{a+b}+\frac{c}{c+d}=2\frac{b}{b+c}$

19. If the coefficients of three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 1:7:42, then find the value of n.

Watch Video Solution

20. Find the 4^{th} term in the expansion of $(x-2y)^{12}$.

Watch Video Solution

21. Find the 7th term in the expansion of $\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$.

22. Find the 15th term in the expansion of $\left(2y-\frac{x}{2}\right)^{18}$

23. (i) Find the 9th term in the expansion of $\left(\frac{x}{a}-\frac{2a}{x^2}\right)^{12}$ (ii) Find the 8th term in the expansion of $\left(2x^2+\frac{1}{x}\right)^{12}$

24. Find the (r+1)th term in the expansion of $\left(\frac{x}{a}-\frac{a}{x}\right)^{2n}$

25. Find the 7th term from the end in the expansion of

$$\left(x+\frac{1}{x}\right)^{11}$$

26. Find the 3rd term the end in the expansion of $\left(2-3x\right)^8$

27. Find the 4th term from the end in the expansion of

$$\left(rac{x}{2}-rac{4}{x}
ight)^{15}$$

28. Find the middle term in the following expansion:

$$(i)igg(x^2-rac{1}{x^2}igg)^{10}(ii)igg(rac{x}{a}+rac{a}{x}igg)^{12}$$

$$(iii) \left(rac{a}{x} + bx
ight)^{2n} \qquad (iv) \left(x - rac{1}{x}
ight)^9$$

$$(v)ig(1-3x+3x^2-x^3ig)^6$$

$$(vi)ig(x^2-aig)^{11} \qquad (vii)igg(2x-rac{3}{x^2}igg)^{15}$$

29. If the coefficients of (p+1)th and (P+3)th terms in the expansion of $(1+x)^{2n}$ are equal then prove that n=p+1

30. If the coefficients of the (2r+4)th, (r+2)th term in the expansion of $(1+x)^{18}$ are equal, then the value of r is.

Watch Video Solution

31. if the coefficient of (2r+1)th term and (r+2)th term in the expansion of $(1+x)^{43}$ are equal then r=?

Watch Video Solution

32. Find a if 17th and 18th terms in the expansion of $\left(2+a\right)^{50}$ are equal.

33. 17. If the coefficients of 2nd, 3rd and 4th terms in the expansion of $(1+x)^{2n}$ are in A.P.. Show that $2n^2-9n+7=0$

34. In n is a positive integer then prove that the coefficient of the middle term in the expansion of

35. If 3rd, 4th, 5th terms in the expansion of $(a+x)^n$ be 84, 280 and 560, Find x, a and n.

36. Find a, b and n in the expansion of $(a+b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

Watch Video Solution

37. If a. b, c and d are the coefficients of 2nd, 3rd, 4th and 5th terms respectively in the binomial expansion of $(1+x)^n$, then prove that $\frac{a}{a+b} + \frac{c}{c+d} = 2\frac{b}{b+c}$

Watch Video Solution

38. If the coefficients of three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 1:7:42, then find the value of n.

Exercise 8 C

1. Find the coefficient of x^9 in the expansion of $\left(x^2-\frac{1}{3x}\right)^9$.

2. Find the coefficient of x^{10} in the expansion of $\left(1-x^2\right)^{10}$

3. The coefficient of x^{-17} in the expansion of $\left(x^4-\frac{1}{x^3}\right)^{15}$ is

4. Find the coefficient of x^{40} in the expansion $(1+2x+x^2)^{27}$

Watch Video Solution

5. If 'n' is a positive integer then prove that the coefficient fo x^m in the expansion of $\left(x^2+rac{1}{x}
ight)^{2n}$ is :

$$\begin{array}{|c|c|c|c|c|}
\hline
2n \\
\hline
4n - m & 2n + m \\
\hline
3 & 3
\end{array}$$

View Text Solution

6. Find the term independent of x (constant term) in the following expansion:

$$(i)\left(x^2 - \frac{1}{3x}\right)^9$$
 $(ii)\left(x - \frac{1}{x}\right)^{10}$ $(iii)\left(3x - \frac{2}{x^2}\right)^{18}$ $(iv)\frac{1}{x^n}(1+x)^{2n}$

$$(V) \left(3\sqrt{x} + rac{1}{2ig(3\sqrt{x}ig)}
ight)^{18} \qquad (vi) igg(rac{3x^2}{2} - rac{1}{3x}igg)^6$$

7. Prove that the constant term in the expansion of $\left(x+\frac{1}{x}\right)^{2n}$ is $\frac{1.3.5 \hat{\mathbf{a}} \in [1.1, 1.0] \cdot (2n-1)}{|n|}.2^n$

9. Find the coefficient of x^2 . y^7 in the expansion of $\left(x+2y\right)^9$

10. Prove that the ratio of the coefficient of x^{10} in $\left(1-x^2\right)^{10}$ & the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is 1: 32

11. Prove that the greatest coefficient in the expansion of $\left(1+x\right)^{2n}$ is double the greatest coefficient in expansion $\left(1+x\right)^{2n-1}$.

12. Find a positive value of m for which the coefficient of x^2 in the expansion of $\left(1+x\right)^m$ is 6.

13. The sum of the coefficients of x^{32} and x^{-17} in $\left(x^4-\frac{1}{x^3}\right)^{15}$ is

14. If the coefficient of x^7 in $\left(ax^2+\frac{1}{bx}\right)^{11}$ is equal to the coefficient of x^7 in $\left(ax-\frac{1}{bx^2}\right)^{11}$ then

15. Find the coefficient of
$$x^9$$
 in the expansion of $\left(x^2-\frac{1}{3x}\right)^9$.

16. Find the coefficient of x^{10} in the expansion of $\left(1-x^2\right)^{10}$

17. The coefficient of x^{-17} in the expansion of $\left(x^4-\frac{1}{x^3}\right)^{15}$ is

18. Find the coefficient of x^{40} in the expansion of $\left(1+2x+x^2\right)^{27}$.

Watch Video Solution

19. If 'n' is a positive integer then prove that the coefficient fo $x^m \text{ in the expansion of } \left(x^2+\frac{1}{x}\right)^{2n} \text{ is :}$

View Text Solution

20. Find the term independent of x (constant term) in the following expansion:

$$(i)igg(x^2-rac{1}{3x}igg)^9 \qquad (ii)igg(x-rac{1}{x}igg)^{10} \ (iii)igg(3x-rac{2}{x^2}igg)^{18} \qquad (iv)rac{1}{x^n}(1+x)^{2n} \ (2x^2-1)^{18} \qquad (2x^2-1)^{18} \ (2x^2-1)^{18} \qquad (3x^2-1)^{18} \ (3x^2-1)^{18} (3x^2-$$

$$(V) \Biggl(3\sqrt{x} + rac{1}{2ig(3\sqrt{x}ig)} \Biggr)^{18} \qquad (vi) \Biggl(rac{3x^2}{2} - rac{1}{3x} \Biggr)^6$$

21. Prove that the term independent of x in the expansion of

$$\left(x+rac{1}{x}
ight)^{2n}$$
 is $rac{1.\ 3.\ 5....\ (2n-1)}{n!}.2^n$

23. Find the coefficient of x^2 . y^7 in the expansion of $(x+2y)^9$

24. Prove that the ratio of the coefficient of x^{10} in $\left(1-x^2\right)^{10}$ & the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is 1:32

25. prove that the coefficient of x^n in the expansion of $\left(1+x\right)^{2n}$ is twice the coefficient of x^n in the expansion of

$$(1+x)^{2n-1}$$

26. Find a positive value of m for which the coefficient of x^2 in the expansion of $\left(1+x\right)^m$ is 6.

27. The sum of the coefficients of x^{32} and x^{-17} ir $\left(x^4-\frac{1}{x^3}\right)^{15}$ is

28. Find the coefficients of x^7 in

$$\left(ax^2+rac{1}{bx}
ight)^{11}andx^{-7}\in \left(arac{x^{-1}}{bx^2}
ight)^{11}$$
 and find the relation

between aandb so that coefficients are equal.

Watch Video Solution

Exercise 8 D

1. Evaluate the following:

$$(i)1 + .^{20} C_1 + ^{20} C_2 + ^{20} C_3 + + ^{20} C_{19} + ^{20} C_{20}$$

$$(ii)^{10}C_1 + ^{10}C_2 + ^{10}C_3 + \dots + ^{10}C_9$$

$$(iii)^{25}C_1 +^{25}C_3 +^{25}C_5 + \dots +^{25}C_{25}$$

$$\left(iv
ight)^{18}C_{2}+^{18}C_{4}+^{18}C_{4}+^{18}C_{6}+....+^{18}C_{18}$$

2. If $(1+x)^n=C_0+C_1$. $x+C_2$. $x^2+\hat{\mathfrak{a}} \mathfrak{E}_{\mathfrak{l}}^{\mathfrak{l}}.\ +C_n$. x^n . then prove that

$$(i)C_0 + 2C_1 + 3C_2 + \mathbf{\hat{a}} \mathbf{\in C_1} + (n-1)C_n = (n+2).2^{n-1}$$

$$(ii)C_0+3C_1+5C_2+...+(2n+1)C_n=(n+1).2^n$$

$$(iii)C_0+rac{C_2}{3}+rac{C_4}{5}+....+rac{2^n}{n+1}$$

$$egin{align} (iv)2C_0 + rac{2^2.\,C_1}{2} + rac{2^3.\,C_2}{3} + ... + rac{2^{n+1}.\,C_n}{n+1} \ &= rac{3^{n+1}-1}{n+1} \end{split}$$

$$egin{aligned} &(v)(C_0+C_1)(C_1+C_2)(C_2+C_3).....(C_{n-1}+C_n) \ &C_1C_2C_3.......C_n(n+1)^n \end{aligned}$$

View Text Solution

3. In C_0, C_1C_2 â \in ! C_n are the binomial coefficients in the expansion of $(1+x)^n$ then prove that :

$$(i)C_0^2-C_1^2+C_2^2-C_3^2+\hat{\mathfrak{a}}$$
 \in . $+(-1)^n$. C_n^2

$$= \begin{cases} \frac{(-1)^{n/2} \cdot \lfloor \underline{n} \rfloor}{\left(\lfloor \frac{n}{2} \rfloor^2 \right)^2}, & \text{if } n \text{ is even} \\ \left(\lfloor \frac{n}{2} \rfloor^2 \right) \end{cases}$$

$$(ii)C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1}C_n$$

4. Prove that:

$$C_1 \cdot ^2 C_2 + ^3 C_2 + ^4 C_2 + \mathbf{\hat{a}} \in \ \cdot \cdot \cdot \cdot +^{n+1} C_2 = rac{1}{6} n(n+1)(n+2)$$

, if n is odd

5. Evaluate the following:

$$(i)1 + .^{20} C_1 + ^{20} C_2 + ^{20} C_3 + + ^{20} C_{19} + ^{20} C_{20}$$

$$(ii)^{10}C_1 + ^{10}C_2 + ^{10}C_3 + \dots + ^{10}C_9$$

$$(iii)^{25}C_1 +^{25}C_3 +^{25}C_5 + \dots +^{25}C_{25}$$

$$(iv)^{18}C_2 + ^{18}C_4 + ^{18}C_4 + ^{18}C_6 + \dots + ^{18}C_{18}$$

Watch Video Solution

6. If $(1+x)^n=C_0+C_1$. $x+C_2$. $x^2+\ldots +C_n$. x^n . then prove that

$$(i)C_0 + 2C_1 + 3C_2 + \ldots + (n-1)C_n = (n+2).2^{n-1}$$

$$(ii)C_0+3C_1+5C_2+...+(2n+1)C_n=(n+1).2^n$$

$$(iii)C_0 + \frac{C_2}{3} + \frac{C_4}{5} + \dots + \frac{2^n}{n+1}$$

$$(iv)2C_0+rac{2^2.\,C_1}{2}+rac{2^3.\,C_2}{3}+...+rac{2^{n+1}.\,C_n}{n+1}$$

$$=rac{3^{n+1}-1}{n+1}$$

$$egin{split} &(v)(C_0+C_1)(C_1+C_2)(C_2+C_3).....(C_{n-1}+C_n) \ &=rac{C_1C_2C_3......\,C_n(n+1)^n}{|n|} \end{split}$$

View Text Solution

7. In $C_0, C_1 C_2 \ldots C_n$ are the binomial coefficients in the

expansion of $(1+x)^n$ then prove that :

$$(i)C_0^2-C_1^2+C_2^2-C_3^2+\ldots + (-1)^n. \ C_n^2$$

$$= \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{(-1)^{n/2} \cdot |\underline{n}|}{\left(\left|\frac{n}{2}\right|^2\right)} & \text{if } n \text{ is even} \end{cases}$$

$$(ii)C_0C_1+C_1C_2+C_2C_3+....\ +C_{n-1}C_n$$

$$=\frac{|2n|}{|n-1|n+1|}$$

8. Prove that:

$$C_1 \cdot ^2 C_2 + ^3 C_2 + ^4 C_2 + \ldots \cdot +^{n+1} C_2 = rac{1}{6} n(n+1)(n+2)$$

Exercise 8 E

1. No. of terms in the expansion of $\left(1+3x+3x^2+x^3\right)^{10}$ is:

 $(x+1)^6 + (x-1)^6$ evaluate

A. 31

B. 32

C. 10

D. 11

Answer: A

2.

 $\left(\sqrt{2}+1
ight)^6+\left(\sqrt{2}-1
ight)^6.$

Using

A. 184

- B. 192
- C. 198
- D. 202

Answer: C

- **3.** 15th term in the expansion of $\left(\sqrt{2}-\sqrt{y}^{17} ext{ is :} \right)$
 - A. $860x^{3/2}y^7$
 - B. $680x^7y^{3/2}$
 - C. $680x^{3\,/\,2}y^7$
 - D. $860x^3y^{7/2}$

Answer: C

Watch Video Solution

- **4.** If the coefficients of the $(n+1)^{th}$ term and the $(n+3)^{th}$ term in the expansion of $(1+x)^{20}$ are equal , then the value of n is 10 b. 8 c. 9 d. none of these
 - A.P
 - B. P + 1
 - $\mathsf{C}.\,P+2$
 - D.P+3

Answer: B

5. In the expansion of $\left(2+a\right)^{50}$ the 17th and 18th terms are aqual . The value of a is :

A.
$$1/3$$

D. None of these

Answer: C

Watch Video Solution

6. Find the coefficient of x^{-25} in the expansion of $\left(x^2-3\right)^{15}$

A.
$$\dfrac{-1365}{16} imes 3^{11}$$

 $\text{B.}~\frac{1365}{16}\times3^{11}$ C. $\frac{-16}{1365}\times 3^{11}$

D. None of these

Answer: A

- **7.** The remainder left out when $8^{2n}-\left(62\right)^{2n+1}$ is divided by 9 is
 - **A.** 0
 - B. 2
 - C. 4

D. none of these

Answer: B

Watch Video Solution

8. No. of terms in the expansion of $\left(1+2x\right)^9+\left(1-2x\right)^9$ is :

A. 10

B. 9

C. 7

D. 20

Answer: D

9. Find the middle term in the expansion of : $\left(x-\frac{1}{x}\right)^{10}$

A. 126

B. - 126

C. -252

D. 252

Answer: C

Watch Video Solution

10. if the coefficient of (2r+1)th term and (r+2)th term in the expansion of $(1+x)^{43}$ are equal then r=?

A. 14

- B. 30
- C. 41
- D. 42

Answer: A

- 11. Find the middle term in the expansion of : $(1+3x+3x^2+x^3)^{2n}$
 - A. 31
 - B. 32
 - C. 10
 - D. 11

Answer: A

Watch Video Solution

12. Show that $\left(\sqrt{2}+1\right)^6+\left(\sqrt{2}-1\right)^6=198$

A. 184

B. 192

C. 198

D. 202

Answer: C

13. 15th term in the expansion of $\left(\sqrt{2}-\sqrt{y}^{17}
ight)$ is :

A.
$$860x^{3/2}y^7$$

B.
$$680x^7y^{3/2}$$

C.
$$680x^{3/2}y^7$$

D.
$$860x^3y^{7/2}$$

Answer: C

Watch Video Solution

14. If the coefficients of the $(n+1)^{th}$ term and the $(n+3)^{th}$ term in the expansion of $(1+x)^{20}$ are equal , then the value of n is 10 b. 8 c. 9 d. none of these

- A.P
- B. P + 1
- $\mathsf{C}.P+2$
- D.P+3

Answer: B

- **15.** Find a if 17th and 18th terms in the expansion of $\left(2+a\right)^{50}$ are equal.
 - A. 1/3
 - $\mathsf{B.}\,1/2$
 - **C**. 1

D. None of these

Answer: C

Watch Video Solution

16. Find the coefficient of x^{-25} in the expansion of

$$\left(\frac{x^2}{2}-\frac{3}{x^3}\right)^{15}$$

A.
$$\frac{-1365}{16} imes 3^{11}$$

B.
$$\frac{1365}{16} imes 3^{11}$$

C.
$$rac{-16}{1365} imes 3^{11}$$

D. None of these

Answer: A

Mately Video Colution

watch video Solution

17. The remainder left out when $8^{2n}(62)^{2n+1}$ is divided by 9 is

(1) 0 (2) 2 (3) 7 (4) 8

A. 0

B. 2

C. 4

D. none of these

Answer: B

18. No. of terms in the expansion of $\left(1+2x\right)^9+\left(1-2x\right)^9$ is

19. Find the middle term in the expansion of : $\left(x-\frac{1}{x}\right)^{10}$

:

A. 10

B. 9

C. 7

D. 5

Answer: D

Watch Video Solution

A. 126

- B. -126
- C. -252
- D. 252

Watch Video Solution

20. if the coefficient of (2r+1)th term and (r+2)th term in the expansion of $(1+x)^{43}$ are equal then r=?

- A. 14
- B. 30
- C. 41
- D. 42

Answer: A

Watch Video Solution

Exercise 8 F

- **1.** The coefficient x^5 in the expansion of $\left(2-x+3x^2
 ight)^6$ is
 - $\mathsf{A.}-5051$
 - B. 4632
 - $\mathsf{C.}-4631$
 - D. none of these

Answer: A

2. If the sum of the coefficients in the expansion of $(a+b)^n$ is 4096, then the greatest coefficient in the expansion is 924 b. 792 c. 1594 d. none of these

- $\mathsf{A.}\ 792$
- $\mathsf{B.}\,924$
- C. 1048
- D.2096

Answer: B

3. If the second, third and fourth in the expansion of $(x+y)^n$ are $135,\,30$ and $\frac{10}{3}$ respectively, then

A. 5

B. 6

C. 7

D. 9

Answer: A

Watch Video Solution

4. Find the coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3\right)^{11}$.

- A. 900
- B. 909
- C. 990
- D. 999

- **5.** If a. b, c and d are the coefficients of 2nd, 3rd, 4th and 5th terms respectively in the binomial expansion of $(1+x)^n$, then prove that $\frac{a}{a+b}+\frac{c}{c+d}=2\frac{b}{b+c}$
 - A. $\frac{b}{b+c}$
 - B. $\frac{b}{2(b+c)}$

C.
$$\frac{2b}{b+c}$$

$$\operatorname{D.}\frac{2c}{b+c}$$

- **6.** If the coefficients of x^7 and x^8 in the expansion of
- $\left[2+rac{x}{3}
 ight]^n$ are equal, then the value of n is : (A) 15 (B) 45 (C)
- 55 (D) 56
 - A. 15
 - B. 45
 - C. 55
 - D. 60

Watch Video Solution

7. If A and B are the coefficients of x^n in the expansion $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then

A.
$$A=B$$

$$B.2A = B$$

$$C.A = 2B$$

D. None of these

Answer: C

8. Find the greatest term in the expansion of

$$\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}.$$

- A. $\frac{25840}{9}$
- B. $\frac{24840}{9}$
- c. $\frac{26840}{9}$

D. None of these

Answer: A

Watch Video Solution

9. if the coefficient of rth (r+1) th and (r+2)th terms in the expansion of $(1+x)^n$ are in A.P. then correct statements is :

A.
$$n^2 - n(4r+1) + 4r^2 - 2 = 0$$

B.
$$n^2 + n(4r+1) + 4r^2 - 2 = 0$$

$$\mathsf{C.}\, n^2 + n(4r+1) + 4r^2 + 2 = 0$$

D.
$$n^2 + n(4r+1) + 4r^2 + 2 = 0$$

Answer: A

View Text Solution

10. if the coefficients of x^5 and x^{15} in the expansion of $\left(x^2+rac{a}{x^3}
ight)^{10}$ are equal then then the positive value of 'a' is:

A.
$$2\sqrt{3}$$

$$\mathsf{C.} \; \frac{1}{\sqrt{3}}$$

D.
$$\frac{1}{2\sqrt{3}}$$

Answer: D

Watch Video Solution

11. The coefficient x^5 in the expansion of $\left(2-x+3x^2
ight)^6$ is

 $\mathsf{A.}-5051$

B. 4632

 $\mathsf{C.}-4631$

D. none of these

Answer: A

12. If the sum of the coefficients in the expansion of $\left(a+b\right)^n$ is 4096, then the greatest coefficient in the expansion is

- A. 792
- B. 924
- C.1048
- D. 2096

Answer: B

Watch Video Solution

13. If the second, third and fourth in the expansion of $(x+y)^n$ are $135,\,30$ and $\frac{10}{3}$ respectively, then

- A. 5
- B. 6
- C. 7
- D. 9

Answer: A

- **14.** Find the coefficient of x^4 in the expansion of $(1+x+x^2+x^3)^{11}$.
 - A. 900
 - B. 909
 - C. 990

Watch Video Solution

15. if a,b,c and d are the coefficient of four consecutive terms

in the expansion of
$$\left(1+x\right)^n$$
 then $\dfrac{a}{a+b}+\dfrac{C}{c+d}=$?

A.
$$\dfrac{b}{b+c}$$

$$\mathsf{B.}\,\frac{b}{2(b+c)}$$

C.
$$\frac{2b}{b+c}$$

D.
$$\frac{2c}{b+c}$$

Answer: C

16. If the coefficients of x^7 and x^8 in the expansion of

$$\left[2+rac{x}{3}
ight]^n$$
 are equal, then the value of n is : (A) 15 (B) 45 (C)

55 (D) 56

A. 15

B. 45

C. 55

D. 60

Answer: C

17. If A and B are the coefficients of x^n in the expansion $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then

A.
$$A=B$$

$$B.2A = B$$

$$\mathsf{C}.\,A=2B$$

D. None of these

Answer: C

Watch Video Solution

18. Find the greatest term in the expansion of $\sqrt{3} \left(1 + \frac{1}{\sqrt{3}} \right)^{20}.$

A.
$$\frac{25840}{9}$$

B.
$$\frac{24840}{9}$$

c.
$$\frac{26840}{9}$$

D. None of these

Answer: A

Watch Video Solution

19. If the coefficients of the rth, $(r+1)th,\,(r-2)th$ terms is the expansion of $\left(1+x\right)^{14}$ are in A.P, then the largest value of r is.

A.
$$n^2 - n(4r+1) + 4r^2 - 2 = 0$$

B.
$$n^2 + n(4r+1) + 4r^2 - 2 = 0$$

C.
$$n^2 + n(4r+1) + 4r^2 + 2 = 0$$

D.
$$n^2 + n(4r+1) + 4r^2 + 2 = 0$$

Answer: A

- **20.** if the coefficients of x^5 and x^{15} in the expansion of $\left(x^2+\frac{a}{x^3}\right)^{10}$ are equal then the positive value of 'a' is:
 - A. $2\sqrt{3}$
 - B. 1
 - $\mathsf{C.} \frac{1}{\sqrt{3}}$
 - $\text{D.}\ \frac{1}{2\sqrt{3}}$

Answer: D

Watch Video Solution

Exericse 8 1

- **1.** Expand of the expression $: (1-2x)^5$
 - Watch Video Solution

- $2.\left(\frac{2}{x}-\frac{x}{2}\right)^5$
 - **Watch Video Solution**

3. Expand $(2x - 3)^6$

Watch Video Solution

4. Expand of the expression : $\left(\frac{x}{3} + \frac{1}{x}\right)^5$

Watch Video Solution

5. $\left(x+\frac{1}{x}\right)^6$

Watch Video Solution

6. Using binomial theorem, evaluate : $(96)^3$

B. 88456
C. 883546
D. 884736
Answer: D
Watch Video Solution
7. Using binomial theorem, evaluate : $(102)^5$
Watch Video Solution
8. Using binomial theorem, evaluate $:\left(101\right)^{4}$
Watch Video Solution

A.887965

9. Using binomial theorem, evaluate : $(99)^5$

Watch Video Solution

10. Using binomial theorem, indicate which number is larger $\left(1.\ 1\right)^{10000}$ or 1000.

Watch Video Solution

11. Find $(a+b)^4-(a-b)^4$. Hence evaluate $\left(\sqrt{3}+\sqrt{2}\right)^4-\left(\sqrt{3}-\sqrt{2}\right)^4$

12. Find $(x+1)^6+(x-1)^6$ hence, or otherwise evaluate $(\sqrt{2}+1)^6+(\sqrt{2}-1)^6$

13. Show that $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is a positive integer.

14. Prove that $\Sigma_{r=0}^n 3^{rn} C_r = 4^n$

15. Expand of the expression : $(1-2x)^5$

16.
$$\left(\frac{2}{x} - \frac{x}{2}\right)^5$$

17. Expand
$$\left(2x-3\right)^6$$

18. Expand of the expression : $\left(\frac{x}{3} + \frac{1}{x}\right)^5$

$$19. \left(x + \frac{1}{x}\right)^6$$

22. Using binomial theorem, evaluate : $\left(101\right)^4$

21. Using binomial theorem, evaluate : $\left(102\right)^{5}$

23. Using binomial theorem, evaluate : $(99)^5$

Watch Video Solution

24. Using binomial theorem, indicate which number is larger $\left(1.\ 1\right)^{10000}$ or 1000.

Watch Video Solution

25. Find $\left(a+b\right)^4-\left(a-b\right)^4$. Hence evaluate $\left(\sqrt{3}+\sqrt{2}\right)^4-\left(\sqrt{3}-\sqrt{2}\right)^4$

26. Find ${(x+1)}^6+{(x-1)}^6\cdot$ hence, or otherwise evaluate ${(\sqrt{2}+1)}^6+{(\sqrt{2}-1)}^6$

27. Show that $9^{n+1}-8n-9$ is divisible by 64, whenever n is a positive integer.

28. Prove that $\Sigma_{r=0}^n 3^{rn} C_r = 4^n$

1. Find the coefficient of $x^5 \in (x+3)^8$

- **2.** Find the coefficient of $a^5b^7 \in \left(a-2b\right)^{12}$
 - Watch Video Solution

- **3.** Write the general term in the expansion of $\left(x^2-y
 ight)^6$
 - Watch Video Solution

4. Write the general term in the expansion of $\left(x^2-yx
ight)^{12}, \, x
eq 0$

5. Find the 4^{th} term in the expansion of $(x-2y)^{12}$.

Watch Video Solution

Find the 13^{th} term in the expansion of $\left(9x-rac{1}{3\sqrt{x}}
ight)^{18}, x
eq 0$

- **7.** Find the middle term in the expansion of $\left(3-\frac{x^3}{6}\right)^7$

8. Find the middle term in the expansion of : $\left(\frac{x}{3}+9y\right)^{10}$

9. In the binomial expansion of $\left(1+a\right)^{m+n}$, prove that the coefficient of $a^m and \ a^n$ are equal.

10. The coefficient of the (r-1)th, rth and (r+1)th terms in the expansion of $\left(x+1\right)^n$ are in the ratio 1:3:5. Find both n and r

11. prove that the coefficient of x^n in the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$

12. Find a positive value of m for which the coefficient of x^2 in the expansion of $(1+x)^m$ is 6.

13. Find the coefficient of $x^5 \in (x+3)^8$

14. Find the coefficient of $a^5b^7 \in (a-2b)^{12}$

15. Write the general term in the expansion of $\left(x^2-y
ight)^6$.

16. Write the general term in the expansion of

 $\left(x^2-yx\right)^{12}, x\neq 0$

17. Find the 4^{th} term in the expansion of $(x-2y)^{12}$.

18. Find the
$$13^{th}$$
term in the expansion of

$$\left(9x-rac{1}{3\sqrt{x}}
ight)^{18}, x
eq 0$$

- **19.** Find the middle term in the expansion of $\left(3-\frac{x^3}{6}\right)^{\alpha}$
 - Watch Video Solution

- **20.** Find the middle term in the expansion of : $\left(\frac{x}{3} + 9y\right)^{10}$
 - Watch Video Solution

21. In the binomial expansion of $(1+a)^{m+n}$, prove that the coefficient of $a^m and \ a^n$ are equal.

Watch Video Solution

22. The coefficient of the (r-1)th, rth and (r+1)th terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find both n and r

23. prove that the coefficient of x^n in the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$

24. Find a positive value of m for which the coefficient of \boldsymbol{x}^2 in the expansion of $(1+x)^m$ is 6.

Watch Video Solution

Miscellaneous Exericse

1. Find a, b and n in the expansion of $(a+b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

Watch Video Solution

2. If the coefficients of x^2 and x^3 in the expansion o $(3+ax)^9$ are the same, then the value of a is $-rac{7}{9}$ b. $-rac{9}{7}$ c.

 $\frac{7}{9}$ d. $\frac{9}{7}$

3. Find the coefficient of x^5 in the product $(1+2x)^6(1-x)^7$ using binomial theorem.

4. If and b are distinct integers, prove that a-b is a factor of a^n-b^n , whenever n is a positive integer.

5. Evaluate $\left(\sqrt{3}+\sqrt{2}\right)^6-\left(\sqrt{3}-\sqrt{2}\right)^6$

6. Find the value of
$$\left(a^2+\sqrt{a^2-1}\right)^4+\left(a^2-\sqrt{a^2-1}\right)^4$$
.

7. Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

8. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(24+\frac{1}{34}\right)^n$ is $\sqrt{6}$: 1 .

9. Expand using Binomial Theorem $\left(1+\frac{x}{2}-\frac{2}{x}\right)^4, x \neq 0.$

10. Find the expansion of $\left(3x^2-2ax+3a^2\right)^3$ using binomial theorem.

11. Find a, b and n in the expansion of $(a+b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

12. If the coefficients of x^2 and x^3 in the expansion o $(3+ax)^9$ are the same, then the value of a is $-rac{7}{6}$ b. $-rac{9}{7}$ c. $\frac{7}{9}$ d. $\frac{9}{7}$

Watch Video Solution

13. Find the coefficient of x^5 in the product $\left(1+2x\right)^6\left(1-x\right)^7$ using binomial theorem.

Watch Video Solution

14. If and b are distinct integers, prove that a-b is a factor of $a^n - b^n$, whenever n is a positive integer.

15. Evaluate $\left(\sqrt{3}+\sqrt{2}\right)^6-\left(\sqrt{3}-\sqrt{2}\right)^6$

Watch Video Solution

16. Find the value of $\left(a^2+\sqrt{a^2-1}\right)^4+\left(a^2-\sqrt{a^2-1}\right)^4$.

17. Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

18. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(24+\frac{1}{34}\right)^n$ is $\sqrt{6}$: 1 .

19. Expand using Binomial Theorem $\left(1+rac{x}{2}-rac{2}{x}
ight)^4, x
eq 0.$

20. Find the expansion of $\left(3x^2-2ax+3a^2\right)^3$ using binomial theorem.

