© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

STRAIGHT LINES

Example

1. At which point should the origin be shifted so that coordinates of point $(2,5)$ become $(1,-4) ?$
2. If origin is shifted to the point $(2,3)$ then what will be the transformed equation of the straight line $2 x-y+5=0$ in the new $X Y$-axes ?

D Watch Video Solution

3. If origin is shifted to the point $(-1,2)$ then what will be the transformed equation of the curve $2 x^{2}+y^{2}-3 x+4 y-1=0$ in the new axes ?

D Watch Video Solution

4. If origin is shifted to the point (a, b) then what will be the transformed equation of the

- Watch Video Solution

5. Find a point at which origin is shifted such that transformed equation of $x^{2}+x y-3 x-y+2=0$ has no first degree term and constant term. Also find the transformed equation.

- View Text Solution

6. Find a point at which origin is shifted such that transformed equation of $2 x^{2}+y^{2}-12 x y+16=0$ has no term containing x and constant term.

- View Text Solution

7. Prove that the area of triangle remains invariant on transforming the axes.

- View Text Solution

8. Find the slope of a line if its inclination is $(i) 30^{\circ},(i i) 135^{\circ}$.

(D) Watch Video Solution

9. Find the angle of inclination of the line whose slope is
$(i) \frac{1}{\sqrt{3}},(i i)-\sqrt{3}$.
D Watch Video Solution
10. Find sum of the slope of the lines passing through the following points:
$(i)(0,3)$ and $(5,1)$
$(i i)(-1,2)$ and $(2,5)$
A. $-3 / 5$
B. $3 / 5$
C. $7 / 5$
D. 1

Answer: B

- Watch Video Solution

11. If the slope of a line passing through the points $(x, 1)$ and $(-3,5)$ is $\frac{4}{3}$, find the value of x.
A. $x=-6$
B. $x=6$
C. $x=-7$
D. $x=7$

Answer: A

D Watch Video Solution

12. Find the angle between the line joining the points
$(-1,3)$ and $(-2,4)$ and X-axis.
13. Show that the line joining the points $(4,5)$ and $(1,2)$ is parallel to the line joining the points $(9,-2)$ and $(12,1)$.

- Watch Video Solution

14. Show that the line joining the points $(2,-6)$ and $(-4,-8)$ is perpendicular to the line joining the points $(4,-2)$ and $(6,-8)$.

- Watch Video Solution

15. If the points $A(1,3), B(-2,1), C(x, 2)$ and $D(-1,5)$ are given and $A B$ is perpendicular to $C D$, find the value of x

D Watch Video Solution

16. Without using Pythagoras theorem, show that the points $A(2,1), B(5,4)$ and $C(3,6)$ are the vertices of a rightangled triangle.

- Watch Video Solution

17. If the points $P(1,5), Q(-1,1)$ and $R(4, y)$ are collinear, find the value of y.
A. $y=-12$
B. $y=12$
C. $y=11$
D. $y=-11$

Answer: C

(Watch Video Solution

18. Using slopes, prove that the points $A(-2,-1), B(1,0)$
, $C(4,3)$ and $D(1,2)$ are the vertices of a parallelogram.

- Watch Video Solution

19. If three points $A(h, 0), P(a, b)$ and $B(0, k)$ lie on a line, show that: $\frac{a}{h}+\frac{b}{k}=1$.
20. The slopes of two lines are $\frac{1}{2}$ and 3 . Find the angle between them.

- Watch Video Solution

21. If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.

- Watch Video Solution

22. In Figure, time and distance graph of a linear motion is given. Two positions of time and distance are recorded as, when $T=0, D=2$ and when $T=3, D=8$. Using the concept of
slope, find law of motion, i.e., how distance depends upon

- Watch Video Solution

23. Find the equation of a line parallel to X-axis and 5 unit above it.
24. Find the equation of a line parallel to Y-axis and at a distance of 3 unit on left side of it.

- Watch Video Solution

25. Find the equation of lines drawn parallel to co-ordinate axes and passing through the point $(-1,4)$.

- Watch Video Solution

26. Find the equation of a line passing through the point $(-1,3)$ and whose slope is $\frac{1}{3}$.

(D) Watch Video Solution

27. Find the equation of a line passing through the point
$(2,-3)$ and makes an angle of 45° from X-axis.

- Watch Video Solution

28. Find the equation of a line passing through the points $(2,5)$ and $(-3,1)$.

- Watch Video Solution

29. Prove that the points $A(4,1), B(-2,3)$ and $C(-5,4)$ are collinear. Also find the equation of the line passing through these points.
30. Find the equation of the sides of $\triangle A B C$ whose vertices are $A(2,-3), B(0,1)$ and $C(4,2)$.

D Watch Video Solution

31. The vertices of $\triangle A B C$ are $A(-2,4), B(5,5)$ and $C(4,-2)$. Find the equation of the bisector of $\angle A$.

- Watch Video Solution

32. Find the equation of the perpendicular bisector of the line joining the points $(1,3)$ and $(-2,6)$.
33. Find the equation of a line whose slope is -2 and whose intercept on Y-axis is 5 .

D Watch Video Solution

34. Find the equation of a line which cuts an intercept of 5 units from negative direction of Y-axis and makes an angle of 135° from the positive direction of X-axis.

D Watch Video Solution

35. Find the equation of a line whose slope is 3 intersects X axis on left side at a distance of 2 untis from origin.

D Watch Video Solution

36. Find the equation of a line which cuts an intercept of 3 and -4 units from X-axis and Y-axis respectively.

- Watch Video Solution

37. Find the length of intercepts cuts on axes from the line $4 x-5 y=20$.

(D) Watch Video Solution

38. Find the equation of a line which passes through the point $(5,1)$ and cuts, equal in magnitude but opposite in sign, intercepts on axes.
39. Find the equation of line which passes through the point
$(2,3)$ and the sum of whose intercepts on axes is 10 .

- Watch Video Solution

40. If the mid-point of the line segment between the axes of a line is (p, q) then find the equation of the line.

- Watch Video Solution

41. Find the area of triangle formed by the line $a x+b y=2 a b$ and the co-ordinate axes.

- Watch Video Solution

42. Find the equation of a line which is at a distance of 5 units from origin and the perpendicular from origin to this line makes an angle α from the positive direction of X-axis where $\tan \alpha=\frac{4}{3}$.
A. $3 x+4 y=25$ or $3 x+4 y+25=0$
B. $4 x+3 y=25$ or $4 x+3 y+25=0$
C. $3 x-4 y=25$ or $3 x-4 y+25=0$
D. $4 x-3 y=25$ or $4 x-3 y+25=0$

Answer: A

(Watch Video Solution

43. Find the equation of a line which is at a distance of 5 units from origin and the perpendicular from origin to this line makes an angle of 30° from the positive direction of X axis.

D Watch Video Solution

44. Find the length of intercepts cuts on axes from the line $x \sin \alpha+y \cos \alpha=\sin 2 \alpha$ and the co-ordinates of the midpoint of the line segment lies between the axes.

(D) Watch Video Solution

45. Prove that the equation of a line passes through the point $\left(a \cos ^{3} \alpha, a \sin ^{3} \alpha\right)$ and perpendicular to the line
$x \tan \alpha+y=a \sin \alpha$ is $x \cos \alpha-y \sin \alpha-a \cos 2 \alpha$.

- Watch Video Solution

46. Find the co-ordinates of the foot of perpendicular drawn from the point $(3,-3)$ to the line $x-2 y=4$.

D Watch Video Solution

47. The fahrenheit ' F ' and Kelvin ' K ' temperatures show a linear relation. If at $F=32, K=273$ and at $F=212$,
$K=373$, then find K in terms of F. Also find the value of F when $K=0$.
48. Assuming that straight lines work as the plane mirror for a point, find the image of the point $(1,2)$ in the line $x-3 y+4=0$.

- Watch Video Solution

49. The equation of a line is $3 x+4 y-10=0$. Convert this equation into :
(i) slope-intercept
(ii) intercept
(iii) perpendicular form

- Watch Video Solution

50. Convert the equation $4 x+5 y+7=0$ into perpendicular form and find the length of perpendicular from origin.

D Watch Video Solution

51. Find the condition for two lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ to be
(i) parallel
(ii) perpendicular

(D) Watch Video Solution

52. Find the angle between the following pairs of lines:
$(i) x+2 y-1=0$ and $2 x-y+3=0$
$(i i) y=5 x+1$ and $y=-3 x+2$

- Watch Video Solution

53. Find the angle between the following pairs of lines:
$(i) x+2 y-1=0$ and $2 x-y+3=0$
(ii) $y=5 x+1$ and $y=-3 x+2$

- Watch Video Solution

54. Find the equation of a line passing through the intersection of the lines $x+3 y=4$ and $2 x-y=1$ and $(0,0)$ lies on this line.

D Watch Video Solution

55. If the lines $y=x+1, y=2 x$ and $y=k x+3$ are concurrent find the value of ' k '.

- Watch Video Solution

56. Find the equation of a line passing through the intersection of the lines $3 x+2 y=5$ and $2 x-y=1$ and cuts equal intercepts on the axes.
A. $x+y=2$
B. $x+y=-2$
C. $x-y=2$
D. $-x+y=2$
57. Find the equation of a line passes through the point $(1,3)$ and parallel to the line $3 x-5 y+7=0$.

D Watch Video Solution

58. Find the equation of a line, passes through ($-1,2$) and perependicular to the line $2 x+3 y=1$.

D Watch Video Solution

59. Find the equation of a line perpendicular to the line $\frac{x}{a}+\frac{y}{b}-1$ and passes through the mid-point of the line segment lying between the axes of the given line.

- Watch Video Solution

60. Two lines passes through the point $(3,1)$ meet an angle of 60°. If the slope of one line is 2 , find the equation of second line.

- Watch Video Solution

61. Find the length of perpendicular from point $(3,-2)$ to the line $3 x-4 y-2=0$.

D Watch Video Solution
62. Find the equation of a line passes through the points
$(4,3)$ and $(3,2)$. Also find the length of perpendicular from point $(-1,5)$ to this line.

D Watch Video Solution

63. Find the distance between the parallel lines

$$
3 x+4 y-7=0 \text { and } 3 x+4 y+8=0
$$

A. 1 units.
B. 2 units.
C. 3 units.
D. 4 units.

(D) Watch Video Solution

64. If the lines $3 x+b y-1=0$ and $a x-5 y+2=0$ are parallel, then find the relation between a and b.

D Watch Video Solution

65. Prove that the line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is at a distance of $\left|\frac{x_{1} y_{2}-x_{2} y_{1}}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}}\right|$ from origin.
66. Perpendicular distance from the origin to the line joining the points $(a \cos \theta, a \sin \theta)(a \cos \phi, a \sin \phi)$ is

(Watch Video Solution

67. Find the equation of a line passing through the intersection of the lines $y=2(x-1)$ and $y=3 x-5$ and which is at a distance of $\frac{7}{\sqrt{2}}$ units from origin.

- Watch Video Solution

68. Find the area of the triangle formed by the lines

$$
y=x, y=2 x, y=3 x+4
$$

69. If p is the length of perpendicular from point $(1,1)$ to the straight line $a x+b y+a+b=0$, then prove that :
$p^{2}=4+\frac{8 a b}{a^{2}+b^{2}}$

- Watch Video Solution

70. Prove that the locus of a moving point, which is equidistant from the lines $3 x-2 y=5$ and $3 x+2 y=5$, is a straight line.

(Watch Video Solution

71. Find the equation of a line which passes through the point $(1,1)$ and through the intersection of lines
$x+y-1=0$ and $3 x+2 y+1=0$.

- Watch Video Solution

72. Find the equation of a line which passes through the intersection of lines $2 x+y-1=0$ and $x-3 y+1=0$ and parallel to x-axis.

- Watch Video Solution

73. Find the equation of a line which passes through the intersection of the lines $3 x+y-2=0$ and $x-y+1=0$ and parallel to Y-axis.
74. Find the equation of a line passing through the point of intersection of the lines $x+3 y+1=0$ and $2 x-y+3=0$ and parallel to the line $3 x-2 y+1=0$.

- Watch Video Solution

75. Find the equation of a line passing through the point of intersection of lines $x-y-1=0$ and $2 x-3 y+1=0$ and perpendicular to the line $x-2 y+5=0$.

- Watch Video Solution

76. Show that the lines represented by
$x(a+3 b)+y(2 a-b)=5 a+b$ pass through a fixed point for different values of a and b.

(Watch Video Solution

77. Find the equation of a line passes through the point of intersection of thelines $2 x+3 y+1=0 \quad$ and $3 x-5 y-5=0$ and the made equal intercepts on the coordinate axes.

(D) Watch Video Solution

78. Find the equation of the line through the point of intersection of, the lines $x-3 y+1=0$ and $2 x+5 y-9-0$ and whose distance from the origin is $\sqrt{5}$
79. Find the new co-ordinates of the following points when origin is shifted to the point $(-1,4)$:
(i) $(2,5)$
(ii) $(-3,-2)$
$(i i i)(1,-4)$

- Watch Video Solution

2. At which point the origin should be shifted such that the new co-ordinates of the $(-2,3)$ becomes $(2,6)$?
3. If the origin is shifted to the point $(1,2)$ then what will be the transform equation of the following equations, it is given that the new and old axes are parallel : $(i) x^{2}+y^{2}-2 x-4 y=0(i i) 2 x^{2}-y^{2}-4 x+4 y-3=0$ $(i i i) x^{2}+x y-2 y^{2}-4 x+7 y-5=0(i v) 3 x+y=6$

- View Text Solution

4. Find the point at which origin is shifted such that the transformed equation of $x^{2}+2 y^{2}-4 x+4 y-2=0$ has no first degree term. Also find the transformed equation .

- Watch Video Solution

5. Find the point at which is shifted such that the transformed equations of the following equations has no first degree term :
(i) $2 x^{2}+3 y^{2}+4 x-12 y+10=0$
(ii) $x^{2}+y^{2}-x y-5 x+4 y+5=0$

- View Text Solution

6. Find the point at which origin is shifted such that the transformed equation of $y^{2}-4 y+8 x-2=0 \quad$ is independent of constant term and y
7. Show that the area of triangle whose vertices are $(1,0)$, $(2,4)$ and $(3,3)$ will not change on shifiting the origin to the point $(-2,3)$.

D Watch Video Solution

8. Find the slope of the lines whose iclination is given :
$(i) 45^{\circ}(i i) 60^{\circ}(i i i) 120^{\circ}$

- Watch Video Solution

9. Find the inclination of the lines whose slopes are as follows:
(i) $\sqrt{3}(i i) 1$ (iii) $-\frac{1}{\sqrt{3}}$
10. Find the slopes of the lines passing through the following points :
$(i)(1,5)$ and $(3,2)$
$(i i)(-4,3)$ and $(-6,3)$
$(i i i)(1,3)$ and $(1,4)$
$(i v)(2,-1)$ and $(3,2)$

D Watch Video Solution

11. If the slope of a line passing through the points $(1,4)$ and
$(x, 2)$ is 2 , find the value of x.
12. If the angle of inclination of line joining the points $(x, 3)$ and $(-2,5)$ is 45°, find the value of x.

- Watch Video Solution

13. If the slop of line joining the points $(6,-3)$ and $(x, 7)$ is

2 , find the values of x.

- Watch Video Solution

14. Show that the line joining the points $(4,-1)$ and $(-3,3)$ is parallel to the line joining the points $(8,0)$ and $(1,4)$.
15. If the line joining the points $(5, y)$ and $(4,9)$ is parallel to the line joining the points $(0,5)$ and $(1,7)$, find the value of y.

D Watch Video Solution

16. Show that the line joining the points $(4,-3)$ and $(0,7)$ is perpendicular to the line joining the points $(5,2)$ and $(0,0)$.

(D) Watch Video Solution

17. If the line joining the points $(6,-2)$ and $(8,4)$ is perpendicular to the line joining the points $(12,8)$ and $(24, y)$, find the value of y.

D Watch Video Solution

18. Without using Pythagoras theorem, show that $A(4,4), B(3,5)$ and $C(-1,-1)$ are the vertices of a right angled triangle.

- Watch Video Solution

19. Using slopes, show that the points $A(0,5), B(3,2)$ and $C(-1,6)$ are collinear.
20. Using the slope of line, show that the points $(-1,-2)$, $(0,4), \quad(3,3)$ and $(2,-3)$ are the vertices of a parallelogram.

D Watch Video Solution

21. Using slopes, show that the points $(4,11),(1,5)$ and $(-1,1)$ are collinear.

- Watch Video Solution

22. If the points $(-1, y),(1,2)$ and $(5,4)$ are collinear, find the value of y.
23. If the points $P(h, k), Q\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$ lie on a line. Show that: $\left(h-x_{1}\right)\left(y_{2}-y_{1}\right)=\left(k-y_{1}\right)\left(x_{2}-x_{1}\right)$.

D Watch Video Solution

24. The slope of a line is double of the slope of another line.

If tangent of the angle between them is $\frac{1}{3}$, find the slopes of the lines.

- Watch Video Solution

25. Show that the diagonals of a rhombus bisect each other at right angles.
26. Prove that a median of an equilateral triangle is perpendicular to the corresponding side.

- Watch Video Solution

27. Prove that the line joining the mid-points of the two sides of a triangle is parallel to the third side.

D Watch Video Solution

28. Find the equation of the following lines:
(i) parallel to X-axis and 2 units above it.
(ii) parallel to X-axis and 3 units below it.
(iii) parallel to Y-axis and 6 units left of it.
(i) parallel to Y-axis and 4 units right of it.

- Watch Video Solution

29. Find the equation of a line which pasess through the point $(1,-1)$ and parallel to
$(i) X-\operatorname{axis}(i i) Y-$ axis

- Watch Video Solution

30. Find the equation of line passing through the point
$(2,6)$ and perpendicular to
$(i) X-\operatorname{axis}(i i) Y-$ axis
(D) Watch Video Solution
31. Find the equation of a line passing through the point
$(1,-2)$ and whose slope is 4 .

- Watch Video Solution

32. Find the equation of a line passing through the point $(-2,0)$ and makes an angle of $\frac{2 \pi}{3}$ from the positive direction of $X-$ axis.

- Watch Video Solution

33. Find the equation of a line passing through the point
$(0,-2)$ and makes an angle of 75° from the positive direction of X-axis.
34. (i) Find the equation of a line passing through origin and makes an angle of 60° from the positive direction of X-axis.
(ii) Find the equation of a line for which $\tan \theta=2$ and the length of intercept on X-axis is 3 units.

D Watch Video Solution

35. (i) Find the equation of line passing through $(2,2)$ and makes an angle of 135° from positive direction of X-axis.
(ii) Find the equation of a line passing through the point
$(2,1)$ and makes an angle ' θ ' from the positive direction of X-axis where $\cos \theta=-\frac{1}{3}$.
36. Find the equation of the line passing through the following points :
$(i)(1,2)$ and $(4,7)$
$(i i)(-3,1)$ and $(0,73)$
(iii) origin and (1, 4)
$(i v)(-2,-3)$ and $(1,2)$

D Watch Video Solution

37. (i) Find the equation of a line passing through the points
(a, b) and $\left(a b, b^{2}\right)$.
(ii) The vertices of $\Delta A B C$ are $A(2,5), B(3,2)$ and $C(5,6)$.

Find the equation of the bisector of $\angle A$.
38. If the point (p, q) lies on the line joining the points $(-4,5)$ and $(-5,7)$, then show that $2 p+q+3=0$.

- Watch Video Solution

39. Find the equation of the medians of $\triangle A B C$ whose vertices are $A(1,0), B(2,4)$ and $C(3,2)$.

(D) Watch Video Solution

40. The vertices of $\triangle A B C$ are $A(-3,2), B(0,3)$ and $C(1,0)$. Find the equation of the median through B.
41. Find the equation of the perpendicular bisector of the line segment joining the points $(1,0)$ and $(3,5)$.

- Watch Video Solution

42. Show that the points $(0,3),(-2,-2)$ and $(2,8)$ are collinear. Also find the equation of line through these points.

- Watch Video Solution

43. Find the equation of a line whose
(i) Slope $=-1$ and Y - intercept $=3$.
(ii) Slope $=\frac{2}{5}$ and $Y-$ intercept $=-2$.
(iii) Slope $=\frac{1}{3}$ and $Y-$ intercept $=\frac{2}{3}$.
44. Find the equation of a line which intersects Y-axis at a distance of 4 units above origin and makes an angle of 45° from positive direction of X-axis.

- Watch Video Solution

45. Find the $Y-$ intercept of the line $2 y=4 x-3$.

D Watch Video Solution

46. Find the equation of a line which intersects X-axis at a distance of 2 units on right of origin and makes an angle of 30° from positive direction of X-axis.

(Watch Video Solution

47. Find the equation of lines whose X and Y-intercepts are as follows :
(i)2 and $3(i i)-2$ and $-5(i i i) 3$ and $-5(i v) 4$ and $-\mathbf{2}^{\prime}$

D Watch Video Solution

48. Find the intercepts cuts on X-axis and Y-axis from the following lines:
$(i) 3 x+4 y=12(i i) 2 x-5 y=8$
$(i i i) x+2 y+3=0(i v) 2 x-y+3=0$

- Watch Video Solution

49. Find the equation of a line which passes through the point $(1,3)$ and makes equal intercepts on X and Y-axis.

- Watch Video Solution

50. Find the equation of a line which passes through $(-3,2)$ and makes intercepts equal in magnitude but opposite in sign on X and Y-axis.

- Watch Video Solution

51. Find the equation of a line passes through $(3,4)$ and the ratio of its intercepts on X and Y-axis is $3: 2$.
52. Find equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .

D Watch Video Solution

53. (i) Find the intercepts made by line $5 x-2 y=10$ on both axes. Also find the length of segment between the axes made by lines.
(ii) Find the equation of a line whose X and Y intercepts are respectively 3 and 4 times of the intercepts of the line $2 x+3 y=6$.

- Watch Video Solution

54. (i) Find the equation of a line, in which the mid- point of the line segment between the axes is $(-3,2)$.
(ii) Find the area of triangle formed by the line $4 x+3 y=24$ and the co-ordinate axes.

D Watch Video Solution

55. Find the equation of a line whose segment between the axes is divided in the ratio $2: 3$ by the point (h, k).

D Watch Video Solution

56. Find the equation of a line which is at a perpendicular distance of $\sqrt{2}$ units from origin and the perpendicular from
origin to this line makes an angle of 135° from positive direction of X-axis.

- Watch Video Solution

57. Find the equation of a line which is at a distance of 2 units from origin and the perpendicular from origin to this line makes an angle $\tan ^{-1} \frac{12}{5}$ from positive direction of X axis.

- Watch Video Solution

58. Find the equation of a line which is at a distance of 4 units from origin and the slope of perpendicular from origin to this line is $\frac{1}{\sqrt{3}}$.
59. Find the equation of a line which makes a triangle of area $96 \sqrt{3}$ square from co-ordinate axes and the perpendicular drawn from origin to this line makes an angle 60° from X axis.

D View Text Solution

60. Convert the line $3 x-4 y+5=0$ into perpendicular form and find the length of perpendicular from origin to this line.
61. Convert the following equations into slope-intercept form and find their slope and y-intercepts.
$(i) 5 x+1 y=26(i i) 6 x-8 y+5=0$

D Watch Video Solution

62. Convert the following equations into intercept form and find the intercepts cuts from axes from these lines:
$(i) 4 x+3 y=24(i i) 2 x-7 y=14$
$(i i i) 2 x+3 y=6(i v) 3 x-y=4$

- Watch Video Solution

63. Convert the following equations into perpendicular form and find the length of perpendicular from origin and the
angle between x-axis and the perpendicular from origin :
(i) $\sqrt{3} x-y=8(i i) 2 x+y \sqrt{5}=6$

D Watch Video Solution

64. Find the angle formed by the line $\sqrt{3} x+y-5=0$ from the positive direction of x-axis.

(D) Watch Video Solution

65. Find the angle between the lines $\sqrt{3} x+y=2$ and $x+\sqrt{3} y=3$.

(Watch Video Solution

66. Find the equation of a line passes through the points
$(3,4)$ and parallel to the line $x+5 y=1$.

- Watch Video Solution

67. Find the equation of a line passes through the point $(-2,1)$ and perpendicular to the line $3 x+y=5$.

- Watch Video Solution

68. Prove that the lines $2 x+5 y=8$ and $4 x+10 y-1=0$ are parallel.
69. Prove that the lines $x+3 y+2=0$ and $3 x-y=0$ are perpendicular.

D Watch Video Solution

70. Find the angle between the following pairs of lines:
(i) $y=\sqrt{3} x+1$ and $y=\frac{1}{\sqrt{3}} x+2$
(ii) $y=x$ and $y=1-x$
(iii) $2 x+3 y=2$ and $3 x-2 y=1$.

D Watch Video Solution

71. Find the slope of a line perpendicular to the line $3 x+5 y=8$.
72. If a line passes through the points $(a, 1)$ and $(3,-5)$, meets the line $3 x+y-1=0$ at right angle, then find the value of ' a '.

- Watch Video Solution

73. Find the point of intersection of the following pair of lines:
(i) $9 x-10 y=12$ and $2 x-5=0$
(ii) $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$
(iii) $x+y=8$ and $x-y=2$

- Watch Video Solution

74. (i) Find the value of ' a ' if the lines $3 x-2 y+8=0$,
$2 x+y+3=0$ and $a x+3 y+11=0$ are concurrent.
(ii) If the lines $y=m_{1} x+c_{1}, \quad y=m_{2} x+c_{2} \quad$ and $y=m_{3} x+c_{3}$ meet at point then shown that:
$c_{1}\left(m_{2}-m_{3}\right)+c_{2}\left(m_{3}-m_{1}\right)+c_{3}\left(m_{1}-m_{2}\right)=0$

(Watch Video Solution

75. Find the equation of line joining origin to the point of intersection of the pair of lines $3 x+y=10$ and $x-y=2$.

- View Text Solution

76. Find the equation of a line passing through origin and parallel to the line $3 x-5 y+2=0$.

(.) Watch Video Solution

77. Find the equation of a line passing through origin and parallel to the line joining the points $(1,3)$ and $(2,-1)$.

- Watch Video Solution

78. Find the equation of a line passing through the point ($-1,-2$) and parallel to the line joining the points $(2,-3)$ and $(3,-2)$

- Watch Video Solution

79. Find the equation of a line passing through the intersection of the lines $3 x-y=1$ and $5 x+2 y=9$ and parallel to the line $3 x+5 y=8$.

D Watch Video Solution

80. Find the equation of a line parallel to the line $x \cos \alpha+y \sin \alpha=p$ and passing through the mid-point of the line segment joining the points $(1,5)$ and $(3,-3)$.

- View Text Solution

81. Find the equation of a line passing through the point
$(-1,0)$ and perpendicular to the line $x+5 y=4$.
82. Find the equation of perpendicular bisector of line segment joining the points $(1,5)$ and $(3,-1)$

- Watch Video Solution

83. Find the equation of a line passing through the point of intersection of the lines $3 x+5 y=-2$ and $5 x-2 y=7$ and perpendicular to the line $4 x-5 y+1=0$.

- Watch Video Solution

84. Find the length of perpendicular drawn from point
$(2,-1)$ to the line $3 x+4 y-11=0$.

(Watch Video Solution

85. Find the length of perpendicular drawn from origin to the line $12 x-5 y=26$.

- Watch Video Solution

86. Find the length of perpendicular from the point $(-1,-2)$ to the line $x=2 y-15$.

(D) Watch Video Solution

87. Find the length of perpendicular from origin to the line
$x+7 y+4 \sqrt{2}=0$.
88. Find the distance between the parallel lines $5 x+12 y-20=0$ and $5 x+12 y+6=0$.

(Watch Video Solution

89. (i) Find the co-ordinates of the foot of perpendicular from point $(-1,3)$ to the line $3 x-4 y=16$.
(ii) The co-ordinates of the foot of perpendicular drawn from origin to a line are $(2,3)$. Find the equation of the line.
90. Find the length of perpendicular from the point $(a \cos \alpha, a \sin \alpha)$ to the line $x \cos \alpha+y \sin \alpha=p$.

- Watch Video Solution

91. Find the distance between the parallel lines $x+4 \sqrt{3} y+10=0$ and $x+4 \sqrt{3} y-18=0$.

- Watch Video Solution

92. Find the relation between a and b if the lines $3 x-b y+5=0$ and $a x+y=2$ parallel.

- Watch Video Solution

93. If p and q are the lengths of perpendicular from the origin to the line $x \cos (\theta)-y \sin (\theta)=k \cos (2 \theta) \quad$ and $x \sec (\theta)+y \operatorname{cosec}(\theta)=k$ respectively, then prove that $p^{2}+4 q^{2}=k^{2}$

- Watch Video Solution

94. Show that the distance between the parallel lines
$a x+b y+c=0$ and $k(a x+b y)+d=0$ is $\left|\frac{c-\frac{d}{k}}{\sqrt{a^{2}+b^{2}}}\right|$

- Watch Video Solution

95. (i) If the length of perpendicular from origin to the line $a x+b y+a+b=0$ is p, then show that :
$p^{2}-1=\frac{2 a b}{a^{2}+b^{2}}$
(ii) If the length of perpendicular from point $(1,1)$ to the line $a x-b y+c=0$ is unity then show that :
$\frac{1}{a}-\frac{1}{b}+\frac{1}{C}=\frac{c}{2 a b}$

- Watch Video Solution

96. The equations of sides $A B, B C$ and $A C$ of $\triangle A B C$ are respectively $y=x, y=0$ and $4 x+3 y=12$, then find :
(i) length of perpendicular from B to $A C$
(ii) $\angle B A C$.

- View Text Solution

97. If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show
that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

- Watch Video Solution

98. Find the coordinates of the incentre and centroid of the triangle whose sides have the equations
$3 x-4 y=0,12 y+5 x=0 a d n y-15=0$.

D Watch Video Solution

99. Find the co-ordinates of the circumcentre of a triangle whose vertices are $(7,5),(6,6)$ and $(-2,2)$.
100. Find the co-ordinates of the orthocentre of a triangle whose vertices are $(3,-1),(-1,2)$ and $(0,0)$.

- View Text Solution

101. The equation of one diagonal of a square is $2 x+y=6$ and its one vertex is $(4,3)$. Find the equation of other diagonal.

(Watch Video Solution

102. The co-ordinates of the vertex of an equilateral triangle are $(2,-1)$ and equation of its base is $x+y-1=0$. Find the equations of its other two sides.
103. A ray of light is sent along the line $x-2 y-3=0$ upon reaching the line $3 x-2 y-5=0$, the ray is reflected from it. Find the equation of the line containing the reflected ray.

- Watch Video Solution

104. show that the equation of the straight line through the origin making angle ϕ with the line $y=m x+b$

- Watch Video Solution

105. Show that the straight lines given by
$(2+k) x+(1+k) y=5+7 k$ for different values of k pass
through a fixed point. Also, find that point.

(D) Watch Video Solution

106. Find the equation of a line passing through the point of intersection of the lines $2 x-7 y+11=0$ and $x+3 y=8$ and passes through the point $(2,-3)$.

(Watch Video Solution

107. Find the equation of a line passing through the point of intersection of the lines $4 x+3 y-1=0$ and $x+2 y+3=0$ and
(i) parallel to X-axis.
(ii) parallel to Y-axis.
parallel to line $2 x+y-1=0$.
(iv) perpendicular to line $3 x-y+1=0$.

D Watch Video Solution

108. Find the equation of line passing through the point of intersection of the lines $2 x+3 y+1=0$ and
$3 x-5 y-5=0$
(i) perpendicular to X-axis.
(ii) perpendicular to Y-axis.
(iii) perpendicular to line $x-2 y+1=0$
(iv) parallel to line $x+2 y-1=0$.
109. Find the equation of a line passing through the point of intersection of the lines $x+y=4$ and $2 x-3 y-1=0$ and parallel to a line whose intercepts on the axes are 4 and 6 units.

D Watch Video Solution

110. Find the equation of a line passing through the point of intersection of the lines $5 x+y-3=0$ and $x+3 y+1=0$ and made equal angles from the coordinates axes.
111. Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and $(-3,6)$.
A. -4
B. -6
C. 4
D. 6

Answer: B

D Watch Video Solution

112. The co-ordinates of the vertices of $\triangle A B C$ are $A(-2,4), B(5,5)$ and $C(4,-2)$. The equation of the bisector of $\angle A$ is :
A. $x+3 y=10$
B. $x-3 y=10$
C. $3 x+y=10$
D. $3 x-y=10$

Answer: A

- View Text Solution

113. Find the equation of a line which passes through the point $(5,1)$ and cuts, equal in magnitude but opposite in sign, intercepts on axes.
A. $x+y=6$
B. $2 x+y=11$
C. $2 x-y=9$
D. $x-y=4$

Answer: D

- Watch Video Solution

114. The co-ordinates of three vertices of a parallelogram $A B C D$ are $A(1,0), B(3,4)$ and $C(1,2)$. The co-ordinates of fourth vertex D are :
A. $(-1,2)$
B. $(-5,-4)$
C. $(1,2)$
D. $(2,0)$

Answer: C

- Watch Video Solution

115. The perpendicular drawn from origin to the line $y=m x+c$ meets the line at point $(-1,-2),(c, m)=?$
A. $\left(\frac{5}{2}, \frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{5}{2}\right)$
C. $\left(-\frac{1}{2}, \frac{-5}{2}\right)$
D. None of these

Answer: A

116. The perpendicular distance between the lines $3 x+4 y=6$ and $3 x+4 y+4=0$ is :
A. 1 unit
B. 2 units
C. 3 units
D. None of these

Answer: B

- Watch Video Solution

117. The equation of the perpendicular bisector of line $A B$ is $x+2 y=8$ and the co-ordinates of point A are $(1,1)$. Coordinates of B are :
A. $(0,2)$
B. $(1,3)$
C. $(3,5)$
D. $(2,5)$

Answer: C

- Watch Video Solution

118. Equation of a line passing through the point $(2,3)$ and perpendicular to the line $x+y+1=0$ is :
A. $y-x+1=0$
B. $x-y+1=0$
C. $x+y-1=0$
D. None of these

Answer: B

D Watch Video Solution

119. In what ratio, the line joining $(-1,1)$ and $(5,7)$ is divided by the line $x+y=4 ?$
A. $3: 2$
B. $2: 3$
C. $1: 2$
D. $2: 1$

Answer: C
120. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.
A. $(1,4)$
B. $(-1,-4)$
C. $(1,-4)$
D. $(-1,4)$

Answer: B
121. The locus of the points of intersection of the lines $x \cos \theta+y \sin \theta=a \quad$ and $\quad x \sin \theta-y \cos \theta=b, \quad(\theta=$ variable) is :
A. $x^{2}+y^{2}=a^{2}+b^{2}$
B. $x^{2}+y^{2}=a^{2}-b^{2}$
C. $x^{2}+y^{2}=2\left(a^{2}+b^{2}\right)$
D. None of the above

Answer: A

- Watch Video Solution

122. A straight line through the point $(2,2)$ intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the point A and B,
respectively. Then find the equation of the line $A B$ so that triangle $O A B$ is equilateral.
A. $x=2$
B. $x+y=4$
C. $y=2$
D. None of these

Answer: C

D Watch Video Solution

123. The triangle formed by the straight lines $x=-y$,
$x+y=4$ and $x+3 y=4$ is :
A. isosceles
B. equilateral
C. right-angled
D. None of these

Answer: A

D Watch Video Solution

124.

The
lines
$p x+q y+r=0, q x+r y+p=0, r x+p y+q=0, \quad$ are concurrant then
A. $p+q+r=p q r$
B. $p^{3}+q^{3}+r^{3}=3 p q r$
C. $p^{2}+q^{2}+r^{2}=2(p q+q r+r p)$
D. None of these

Answer: B

(D) Watch Video Solution

125. Find the point of intersection of the following pairs of lines: $b x+a y=a b a n d b x+b y=a b$.
A. $x=y+4$
B. $(l x+m y)(a+b)=(l+m) a b$
C. $(x+y)(a+b)=2 a b+2$
D. $(l x-m y)(a-b)=(l-m) a b$

Answer: B
126. The area of triangle formed by the straight lies $y=1$,
$2 x+y=2$ and $2 x-y+2=0$ is,
A. $\frac{1}{2}$ sq. units
B. 4 sq. units
C. 2 sq. units
D. None of these

Answer: A
(D) Watch Video Solution
127. The equation of the base of an equilateral triangle is $x+y=2$ and its vertex is $(2,-1)$. Find the length and equations of its sides.
A. $\sqrt{\frac{3}{2}}$
B. $\sqrt{\frac{2}{3}}$
C. $\frac{3}{2}$
D. None of these

Answer: B

D Watch Video Solution

128. A line passes through the point $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y-intercept is
A. $1 / 3$
B. $2 / 3$
C. $4 / 3$
D. None of these

Answer: C

- Watch Video Solution

129. Write the coordinates of the orthocentre of the triangle formed by points (8,0), (4,6) and (0,0)
A. $(0,1)$
B. $(0,0)$
C. $(1,1)$
D. $(1,-1)$

Answer: D

D Watch Video Solution

130. If the line $y=m x$, meets the lines $x+2 y=1$ and
$2 x-y+3=0$ at one point only then $m=?$
A. 1
B. -1
C. -2
D. None of these

Answer: B
131. Draw a quadrilateral in the Cartesian plane, whose vertices are $(-4,5),(0,7),(5,-5)$, and $(-4,-2)$. Also, find its area.

D Watch Video Solution

132. The base f an equilateral triangle with side $2 a$ lies along the y-axis such that the mid point of the base is at the origin.

Find the vertices of the triangle.
133. Find the distance between $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ when:
(i) $P Q$ is parallel to the yaxis, (ii) $P Q$ is parallel to the xaxis.

D Watch Video Solution

134. Find a point on the x-axis, which is equidistant from the point $(7,6)$ and $(3,4)$.

D Watch Video Solution

135. Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points $P(0,-4)$ and $B(8,0)$.
136. Without using Pythagoras theorem, show that $A(4,4), B(3,5)$ and $C(-1,-1)$ are the vertices of a right angled triangle.

D Watch Video Solution

137. Find the slope of the line, which makes an angle of $30 o$ with the positive direction of yaxis measured anticlockwise.

(D) Watch Video Solution

138. Find the value of x for which the points
$(x-1),(2,1)$ and $(4,5)$ are collinear.

- Watch Video Solution

139. Without using distance formula, show that points $(-2,-1),(4,0),(3,3)$, and $(-3,2)^{\prime}$ are the vertices of a parallelogram.

- Watch Video Solution

140. Find the angle between the X-axis and the line joining the points $(3,-1)$ and $(4,-2)$.

(Watch Video Solution

141. The slope of a line is double of the slope of another line.

If tangent of the angle between them is $\frac{1}{3}$, find the slopes of the lines.
142. A line passes through $\left(x_{1}, y_{1}\right)$ and (h, k). If slope of the line is m, show that $k-y_{1}=m\left(h-x_{1}\right)$.

D Watch Video Solution

143. If three points $A(h, 0), P(a, b)$ and $B(0, k)$ lie on a line, show that: $\frac{a}{h}+\frac{b}{k}=1$.

D Watch Video Solution

144. Consider the following population and year graph: find the slope of the line $A B$ and using it find what will be the population in the year 2010.

(Watch Video Solution

145. Find the equation of the line which satisfy the given conditions : Write the equations for the x and y axes.

- Watch Video Solution

146. Find the equation of the line which satisfy the given conditions : Passing through the point $(4,3)$ with slope $\frac{1}{2}$.

- Watch Video Solution

147. Find the equation of the line passing through $(0,0)$ with slope m.

- Watch Video Solution

148. Find the equation of the line passing through $(2,2 \sqrt{3})$ and inclined with x-axis at an angle of 75°.

- Watch Video Solution

149. Find the equation of a straight line: with slope -2 and intersecting the x-axis at a distance of 3 units to the left of origin.

- Watch Video Solution

150. Find the equation of the line which satisfy the given conditions : Intersecting the yaxis at a distance of 2 units above the origin and making an angle of 30° with positive direction of the x-axis.

D Watch Video Solution

151. Passing through the points $(-1,1)$, and $(2,-4)$.

(Watch Video Solution

152. Find the equation of the line which satisfy the given conditions: Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive x axis is 30°.

- Watch Video Solution

153. The vertices of $\triangle P Q R$ are $P(2,1), Q(-2,3), R(4,5)$.

Find equation of the median through the vertex R.

- Watch Video Solution

154. Find the equation of the line passing through ($-3,5$) and perpendicular to the line through the points $(2,5)$ and $(-3,6)$.

(D) Watch Video Solution

155. A line perpendicular to the line segment joining the points $(1,0)$ and $(2,3)$ divides it in the ratio $1: n$. Find the
equation of the line.

- Watch Video Solution

156. Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the point $(2,3)$.

- Watch Video Solution

157. Find equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .
158. Find equation of the line through the point $(0,2)$ making an angle $\frac{2 \pi}{3}$ with the positive xaxis. Also, find the equation of line parallel to it and crossing the x-axis at a distance of 2 units below the origin.

D Watch Video Solution

159. The perpendicular from the origin to a line meets it at the point $(-2,9)$ find the equation of the line.

D Watch Video Solution

160. The length L (in centimetre) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if
$L=124.942$ when $C=20$ and $L=125.134$ when $C=110$,
express L in terms of C.

- Watch Video Solution

161. The owner of a milk store finds that, he can sell 980 litres
of milk each week at Rs $14 /$ litre and 1220 litres of milk each
week at Rs $16 /$ litre. Assuming linear relation between selling price and demand, how many litres could he sell weekly at Rs 17/litre?

(Watch Video Solution

162. $\mathrm{P}(a, b)$ is the midpoint of a line segment between axes.

Show that equation of the line is $\frac{x}{a}+\frac{y}{b}=2$.
163. Point $R(h, k)$ divides a line segment between the axes m the ratio $1: 2$. Find equation of the line.

- Watch Video Solution

164. By using the concept of equation of a line, prove that the three points $(3,0),(-2,-2)$,and $(8,2)$ are collinear.

- Watch Video Solution

165. Reduce the following equations into slope intercept form and find their slopes and the y intercepts.(i) $x+7 y=0$, (ii) $6 x+3 y 5=0$, (iii) $y=0$.

(D) Watch Video Solution

166. Reduce the following equations into intercept form and find their intercepts on the axes.(i) $3 x+2 y 12=0$,
$4 x 3 y=6$, (iii) $3 y+2=0$.

(D) Watch Video Solution

167. Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive xaxis.(i) $x-\sqrt{3} y+8=0$, (ii) $y 2=0$, (iii) $x y=4$.
168. Find the distance of the point $(-1,1)$ from the line
$12(x+6)=5(y-2)$.

- Watch Video Solution

169. Find the points of the xaxis, whose distances from the line $\frac{x}{3}+\frac{y}{4}=1$ are 4 unit is.

(D) Watch Video Solution

170. Find the distance between parallel lines
(i)
$15 x$
$+$
$8 y$
$34=$
0
and
$15 x+8 y+31=0$
(ii)
$|(x+y)+p=0|(x+y) \quad r=0$

D Watch Video Solution

171. find equation of the line parallel to the line $3 x-4 y+2=0$ and passing through the point $(-2,3)$.

(D) Watch Video Solution

172. Find equation of the line perpendicular to the line $x \quad 7 y+5=0$ and having x intercept 3.

- Watch Video Solution

173. Find angles between the lines $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$.

- Watch Video Solution

174. The line through the points ($\mathrm{h}, 3$) and (4, 1) intersects the line $7 x-9 y-19=0$ at right angle. Find the value of A.

- Watch Video Solution

175. Prow that the line through the point $\left(x_{1}>y_{1}\right)$ and parallel to the line $A x+B y+C=0$ is

$$
A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0 .
$$

176. Two lines passing through the point $(2,3)$ intersects each other at an angle of 60 . If slope of one line is 2 , find equation of the other line.

D Watch Video Solution

177. Find the equation of the right bisector of the line segment joining the points $(3,4)$ and $(-1,2)$.

(Watch Video Solution

178. Find the coordinates of the foot of perpendicular from the point $(-1,3)$ to the line $3 x-4 y-16=0$.
179. The perpendicular from the origin to the line $y=m x+c$ meets it at the point $(-1,2)$. Find the values of m and c.

- Watch Video Solution

180. If p and q are the lengths of perpendicular from the origin to the line $x \cos (\theta)-y \sin (\theta)=k \cos (2 \theta)$ and $x \sec (\theta)+y \operatorname{cosec}(\theta)=k$ respectively, then prove that $p^{2}+4 q^{2}=k^{2}$

- Watch Video Solution

181. In the triangle $A B C$ with vertices $A(2,3), B(4,1)$ and $C(1$,
2), find the equation and length of altitude from the vertex A.

(.) Watch Video Solution

182. If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b , then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

- Watch Video Solution

183. Find the values of k for which the line $(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$ is (a) Parallel to the xaxis, (b) Parallel to the vaxis, (c) Passing through the origin.
184. Find the values of 6 and p, if the equation $x \cos \theta-y \sin \theta=p$ is the normal form of the line $\sqrt{3} x+y+2=0$.

- Watch Video Solution

185. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6 , respectively.

- Watch Video Solution

186. What are the points on the yaxis whose distance from the line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.
187. Find perpendicular distance from the origin of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \varphi, \sin \varphi)$.

- Watch Video Solution

188. Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines $x-7 y+5=0$ and $3 x+y=0$.

D Watch Video Solution

189. Find the equation of a line drawn perpendicular to the line $\frac{x}{4}+\frac{y}{6}=1$ through the point where it meets the y axis.

(.) Watch Video Solution

190. Find the area of the triangle formed by the lines
$y-x=0, x+y=0$ and $x-k=0$.

- Watch Video Solution

191. Find the value of p so that the three lines $3 x+y 2=0$, $p x+2 y 3=0$ and $2 x y 3=0$ may intersect at one point.

- Watch Video Solution

> 192. If three lines whose equations are $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $y=m_{3} x+c_{3}$ are
$m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$.

D Watch Video Solution

193. Find the equation of the lines through the point $(3,2)$ which make an angle of 45° with the line $x-2 y=3$.

- Watch Video Solution

194. Find the equation of the line passing through the point of intersection of the lines $4 x+7 y-3=0$ and $2 x-3 y+1=0$ that has equal intercepts on the axes.

- Watch Video Solution

195. Show that the equation of the passing through the origin and making an angle θ with the $y=m x+c$ is $\frac{y}{x}= \pm \frac{m+\tan \theta}{1-m \tan \theta}$.

- Watch Video Solution

196. In what ratio, the line joining $+(-1,1) \operatorname{and}(5,7)$ is divided by the line $x+y=4$?

- Watch Video Solution

197. Find the distance of the line $4 x+7 y+5=0$ from the point $(1,2)$ along the line $2 x-y=0$.
198. Find the direction in which a straight line must be drawn through the point $(-1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.

D View Text Solution

199. The hypotenuse of a right angled triangle has its ends at the points $(1,3)$ and $(4,1)$. Find the equation of the legs (perpendicular sides) of the triangle.

(D) Watch Video Solution

200. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.

- Watch Video Solution

201. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$, find the value of m.

- Watch Video Solution

202. If sum of the perpendicular distances of a variable point $P(x, y)$ from the lines $x+y 5=0$ and $3 x 2 y+7=0$ is always 10 . Show that P must move on a line.

D Watch Video Solution
203. Find equation of the line which is equidistant from parallel lines $9 x+6 y \quad 7=0 \quad$ and $3 x+2 y+6=0$.

D Watch Video Solution

204. A ray of light passing through the point $P(1,2)$ reflects on the x-axis at the point A and the reflected ray passes through the point $Q(5,3)$. Find the coordinates of the point A.

D Watch Video Solution

205. Prove that the product of the lengths of the perpendiculars drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ is b^{2}.

- Watch Video Solution

206. A person standing at the junction (crossing) of two straight paths represented by the equations $2 x-3 y+4=0$ and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time.

Find equation of the path that he should follow.

(Watch Video Solution

