©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

APPLICATIONS OF INTEGRALS

Solved Example

1. Find the area of the region bounded by the line $y=$ $2 \mathrm{x}, \mathrm{X}$ - axis and ordinate $\mathrm{x}=2$.
2. Find the area of the circle $x^{2}+y^{2}=a^{2}$ with radius a
A. $\pi a^{2} s q$. units
B. $\pi a^{3} s q$. units
C. πa^{4} sq. units
D. $\pi a^{5} s q$. units

Answer: A
3. Find the area of the region bounded by $x^{2}=4 y$, $y=2, y=4$ and the y-axis in the first quadrant.

- Watch Video Solution

4. Find the area bounded by the curve $y=x(x-1)(x-2)$ and the x-axis.

- Watch Video Solution

5. Find the area of the region bounded by the curve

$$
y=|x+1| \text {, lines } x=-4, x=2 \text { and X-axis. }
$$

A. 5
B. 7
C. 6
D. 9

Answer: D

- Watch Video Solution

6. Find the area of the region included between the parabolas $y^{2}=4 a x a n d x^{2}=4 a y$, wherea >0.
7. Find the area bounded by the parabola $y^{2}=4 a x$ and the line $y=2 a x$.

- Watch Video Solution

8. Find by integration the area of the region bounded by the curve $y=2 x-x^{2}$ and the x-axis.

- Watch Video Solution

9. Find the area of the region in the first quadrant enclosed by the x-axis, the line $y=x$, and the circle
$x^{2}+y^{2}=32$.

- Watch Video Solution

10. Find the ratio of the areas of the portion between the circle $x^{2}+y^{2}=a^{2}$ and straight line
$x=\frac{a}{2}$

- Watch Video Solution

11. In the adjoining, $O A B O$ is the region of the ellipse $9 x^{2}+y^{2}=36$ which lies in first quadrant. If
$O A=2, O B=6$, then find the area of the region
bounded by chord $A B$ and arc $A B$.

A. $(3 \pi-8) s q$. units.
B. $(3 \pi-7) s q$. units.
C. $(3 \pi-6) s q$. units.
D. $(3 \pi-9) s q$. units.

Answer: C
12. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (2,
$2)$ and (3, 1).

D Watch Video Solution

Exercise 8 A

1. Using intergration, find the area of the region bounded by the line $y=m x, X$-axis and $x=2$.
2. Find the area of the region bounded by the line $y=3 x+2$, the x-axis and the ordinates $x=1$ and $x=-1$.

- Watch Video Solution

3. Find the area bounded by the line $y=x$, the x axis and the ordinates $x=-1$ and $x=2$

- Watch Video Solution

4. Find the area of the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

- Watch Video Solution

5. Find the area of the portion of an ellipse $4 x^{2}+9 y^{2}=36$, which is surrounding by the positive direction of x and y-axes.
6. Using integration, find the area of the region bounded by the curve $y^{2}=9 x$ and lines $x=1$ and $x=4$.

- Watch Video Solution

7. Using intergration, find the area of the region bounded by the curve $y^{2}=x, x=1, x=4$ and X axis.
8. Using intergration, find the area of the region bounded by the lines $y=|x+1|, x=-3, x=1$ and X -axis.

- Watch Video Solution

9. Find the area of that region bounded by the curve
$y=\cos x$, X-axis, $x=0$ and $x=\pi$.

- Watch Video Solution

10. Find the area of that region of the parabola $y^{2}=4 a x$ which lies between X-axis, $x=2 a$ and the latus rectum.

D Watch Video Solution

11. Find the area of the region bounded by the curve
$y=x^{2}$ and the line $y=4$.

- Watch Video Solution

12. Find the area bounded by the curve $y^{2}=4 a x$ and the lines $y=2 a$ and y-axis.

- Watch Video Solution

13. Find the area of the parabola $y^{2}=4 a x$ bounded by its latus rectum.

- Watch Video Solution

14. Using integration, find the area of the region bounded by the parabola $y^{2}=4 x$ and the line
$x=4$.

- Watch Video Solution

15. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.
A. 27 sq. units.
B. 17 sq. units.
C. 26 sq. units.
D. 28 sq. units.
16. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.
A. $a=4^{4 / 3}$
B. $a=4^{3 / 2}$
C. $a=4^{1 / 3}$
D. $a=4^{2 / 3}$

Answer: D
17. Find the area of the region bounded by: the parabola $y=x^{2}$ and the line $y=x$

D Watch Video Solution

> 18. FInd the area bounded by the curves
> $y^{2}=9 x$ and $x^{2}=9 y$.
A. 26 sq. units.
B. 27 sq. units.
C. 28 sq. units.
D. 29 sq. units.

Answer: B

- Watch Video Solution

19. Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are
$A(2,0), B(4,5)$ and $C(6,3)$.

- Watch Video Solution

20. Using integration, find the area of the triangle whose vertices are $(1,0),(4,0)$ and $(4,4)$.
21. Using integration find the area of the triangular region whose sides have equations
$y=2 x+1, y=3 x+1$ and $x=4$

- Watch Video Solution

22. Find the area of the region
$\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$.
23. Find the area of the region bounded by the curves $y^{2}=x+1$ and $y^{2}=-x+1$.
A. $\frac{5}{3}$ sq. units.
B. $\frac{7}{3}$ sq. units.
C. $\frac{8}{3}$ sq. units.
D. $\frac{10}{3}$ sq. units.

Answer: C

- Watch Video Solution

24. Find the area of the region bounded by the curves $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.

D Watch Video Solution

25. Find the smaller area enclosed between linex, if
$y=\{x, \quad$ if $x \geq 0$ and $-x, \quad$ if $x<0 \quad$ and
curve $4 x^{2}+9 y^{2}=36$

- Watch Video Solution

26. The equation of the common tangent to the parabolas $y^{2}=4 a x$ and $x^{2}=4 b y$ is given by

- Watch Video Solution

27. Using definite integration, find the area of the
smaller region bounded by the ellipse
$9 x^{2}+16 y^{2}=144$ and $x=2$.

- Watch Video Solution

28. The circle $x^{2}+y^{2}=4 a^{2}$ is divided into two parts by the line $x=\frac{3 a}{2}$. Find the ratio of areas of these two parts.

- Watch Video Solution

Exercise 8 B Multiple Choice Questions

1. Find the area bounded by the parabola $y^{2}=4 a x$
and the line $y=2 a x$.
A. 3a sq. units
B. $\frac{1}{3 a}$ sq. units
C. $\frac{2}{3 a}$ sq. units
D. None of these

Answer: B

- Watch Video Solution

2. Examples: Find the area bounded by the parabola $y^{2}=4 a x$ and its latus rectum.
A. $\frac{8 a^{2}}{3}$ sq. units
B. $2 a^{2}$ sq. units
C. $\frac{4 a^{2}}{3}$ sq. units

D. None of these

Answer: A

- Watch Video Solution

3. Find the area of the region included between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, wherea >0.
A. $\frac{16 a^{2}}{3}$ sq. units
B. $\frac{8 a^{2}}{3}$ sq. units
C. $\frac{4 a^{2}}{3}$ sq. units
D. None of these

Answer: A

- Watch Video Solution

4. Area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$
A. $\frac{1}{4} \pi a b$ sq. units
B. $\frac{1}{2} \pi a b$ sq. units
C. $\pi a b$ sq. units
D. None of these

Answer: C

5. The vertices of a triangle are $(1,0),(4,0)$ and $(4,4)$.

Its area is :
A. 4 sq. units
B. 6 sq. units
C. 8 sq. units
D. None of these

Answer: B

- Watch Video Solution

6. The area of the region bounded by the circle $x^{2}+y^{2}=1$ and the line $x+y=1$ is :
A. $\left(\frac{\pi}{4}-\frac{1}{2}\right)$ sq. units
B. $\frac{\pi}{4}$ sq. units
C. $\frac{1}{2}$ sq. units
D. None of these

Answer: A
7. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.
A. $4 \sqrt{3}$ sq. units
B. $8 \sqrt{3}$ sq. units
C. $10 \sqrt{3}$ sq. units
D. None of these

Answer: B

- Watch Video Solution

8. Find the area of the region bounded by: the parabola $y=x^{2}$ and the line $y=x$
A. 1 sq. unit
B. $\frac{1}{2}$ sq. unit
C. $\frac{1}{4}$ sq. unit
D. None of these

Answer: B
9. Find the area of the region bounded by: the parabola $y=x^{2}$ and the line $y=x$
A. $\frac{9}{2}$ sq. units
B. $\frac{9}{4}$ sq. units
C. $\frac{9}{8}$ sq. units
D. 9 sq. units

Answer: A
10. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.
A. 18 sq. units
B. 24 sq. units
C. 27 sq. units
D. None of these

Answer: C

- Watch Video Solution

1. Examples: Find the area of the region bounded by the curve $y^{2}=2 y-x$ and the y-axis.
A. $\frac{2}{3}$ sq. units
B. $\frac{4}{3}$ sq. units
C. 2 sq. units
D. None of these

Answer: B

- Watch Video Solution

2. Find the area of the region bounded by
$y=x^{2}+1, y=x, x=0$ and $y=2$.
A. $\frac{21}{2}$ sq. units
B. $\frac{15}{2}$ sq. units
C. 9 sq. units
D. None of these

Answer: A

- Watch Video Solution

3. The area of region bounded by circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$ is :
A. $\frac{2 \pi}{3}$ sq. units
B. $\frac{\sqrt{3}}{2}$ sq. units
C. $\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ sq. units
D. None of these

Answer: C

D View Text Solution
4. The area of the region bounded by $y=|x-1|$ and $y=1$ is
A. 1 sq. unit
B. 2 sq. units
C. 3 sq. units
D. None of these

Answer: A

- Watch Video Solution

5. The area bounded by the curves
$y=x e^{x}, y=x e^{-x}$ and the line $x=1$ is
A. $\frac{1}{e}$ sq. units
B. $\frac{2}{e}$ sq. units
C. $\left(1-\frac{1}{e}\right)$ sq. units
D. None of these

Answer: B

- Watch Video Solution

6. The area bounded by the x-axis and the curve
$y=4 x-x^{2}-3$ is
A. $\frac{125}{6}$ sq. units
B. $\frac{125}{3}$ sq. units
C. $\frac{125}{4}$ sq. units
D. $\frac{125}{2}$ sq. units

Answer: A

- Watch Video Solution

7. The area of the region bounded by the curve $y=x \sin x, \mathrm{x}$-axis, $x=0$ and $x=2 \pi$ is :
A. 2π sq. units
B. 3π sq. units
C. 4π sq. units
D. 5π sq. units

Answer: C

- Watch Video Solution

8. The area of the loop of the curve $a y^{2}=x^{2}(a-x)$ is $4 a^{2}$ squinits \quad (b) $\frac{8 a^{2}}{15}$ squinits
$16 a^{2}$ 9 squinits (d) None of these
A. $\frac{4 a^{2}}{15}$ sq. units
B. $\frac{7 a^{2}}{15}$ sq. units
C. $\frac{8 a^{2}}{15}$ sq. units
D. None of these

Answer: C

- Watch Video Solution

9. The area of the region bounded by the curve $y=\sin 2 x, y$-axis and $y=1$ is :
A. 1 sq. unit
B. $\frac{1}{2}$ sq. unit
C. $\frac{1}{4}$ sq. unit
D. $\left(\frac{\pi}{4}-\frac{1}{2}\right)$ sq. uint

Answer: B

- Watch Video Solution

10. Find the area common to the circle

$$
\begin{aligned}
& x^{2}+y^{2}=16 a^{2} \quad \text { and } \quad \text { the parabola } \\
& y^{2}=6 a x, a>0 .
\end{aligned}
$$

A. $\frac{a^{2}}{3}(4 \pi+\sqrt{3})$ sq. units
B. $\frac{2 a^{2}}{\sqrt{3}}\left(1+4 \frac{\pi}{\sqrt{3}}\right)$ sq. units
C. $\frac{2 a^{2}}{3}(4 \pi+\sqrt{3})$ sq. units
D. None of the above

Answer: B

- Watch Video Solution

Exercise 81

1. Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x-axis.

- Watch Video Solution

2. Find the area of the region bounded by $y^{2}=9 x$,
$x=2, x=4$ and the x -axis in the first quadrant.
3. Find the area of the region bounded by $x^{2}=16 y, y=1, y=4$ and the y-axis in the first quadrant.

D Watch Video Solution

4. Find the area of the region bounded by the ellipse

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
$$

- Watch Video Solution

5. Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
6. Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.
7. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

- Watch Video Solution

8. The area between $x=y^{2}$ and $x=4$ is divided into
two equal parts by the line $x=a$, find the value of a.

- Watch Video Solution

9. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.
10. Using integration, find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.

- Watch Video Solution

11. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

- Watch Video Solution

12. Area lying in the first quadrant and bounded by
the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: A

- Watch Video Solution

13. Area of the region bounded by the curve $y^{2}=4 x$
, y-axis and the line $y=3$ is (A) 2 sq. units (B) $\frac{9}{4}$ sq. units (C) $6 \sqrt{3}$ sq. units (D) none of these
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer: B

D Watch Video Solution

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.

D Watch Video Solution

2. Find the area bounded by curves

$$
(x-1)^{2}+y^{2}=1 \text { and } x^{2}+y^{2}=1 .
$$

D Watch Video Solution

3. Find the area of the region bounded by the curves
$y=x^{2}+2, y=x, x=0$ and $x=3$.

D Watch Video Solution

4. Using integration find the area of region bounded by the triangle whose vertices are
$(1,0),(1,3) \operatorname{and}(3,2)$.

- Watch Video Solution

5. Using integration find the area of the triangular region whose sides have equations $y=2 x+1, y=3 x+1$ and $x=4$

- Watch Video Solution

6. Smaller area enclosed by the circle $x^{2}+y^{2}=4$
and the line $x+y=2 \mathrm{is}(\mathrm{A}) 2(\pi-2)$ (B) $\pi-2$ (C)
$2 \pi-1$ (D) $2(\pi+2)$
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

Answer: B

- Watch Video Solution

7. Area lying between the curves $y^{2}=4 x$ and

$$
y=2 x \text { is(A) } \frac{2}{3} \text { (B) } \frac{1}{3} \text { (C) } \frac{1}{4} \text { (D) } \frac{3}{4}
$$

A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer:

- Watch Video Solution

Miscellaneous Exercise

1. Find the area under the given curves and given
lines:(i) $y=x^{2}, x=1, x=2$ and x -axis(ii) $y=x^{4}$, $x=1, x=5$ and x -axis

- Watch Video Solution

2. Find the area between the curves $y=x$ and $y=x^{2}$.

D Watch Video Solution

3. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}$,

$$
x=0, y=1 a n d y=4
$$

4. Sketch the graph of $y=|x+3|$ and evaluate $\int-60|x+3| d x$.

- Watch Video Solution

5. Find the area between the x-axis and the curve
$y=\sin x$ from $x=0$ to $x=2 \pi$

- Watch Video Solution

6. Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$.
7. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

- Watch Video Solution

8. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

D Watch Video Solution

9. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$

- Watch Video Solution

10. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and the x-axis.
11. Using the method of integration find the area bounded by the curve $|x|+|y|=1[$ Hint: The required region is bounded by lines $x+y=1, x-y=1, x+y=1 \quad$ and $-x-y=1]$.

- Watch Video Solution

12. Find the area bounded by curves

$$
\left\{(x, y): y \geq x^{2} \text { and } y=|x|\right\}
$$

13. Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.

- Watch Video Solution

14. Using the method of integration find the area of the region bounded by lines:
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$
15. Find the area of the region
$\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

- Watch Video Solution

16. The area (in square units) bounded by the curve
$y=x^{3}$, the x-axis and the ordinates at $x=-2$ and $x=1$ is
A. -9
B. $\frac{-15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer: D

- Watch Video Solution

17. The area bounded by the curve $y=x|x|$, x -axis and the ordinates $x=1$ is given by
[Hint : $y=x^{2}$ if $x>0$ and $y=-x^{2}$ if

$$
x<0] .
$$

A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: C

- Watch Video Solution

18. The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is
A. $\frac{4}{3}(4 \pi-\sqrt{3})$
B. $\frac{4}{3}(4 \pi+\sqrt{3})$
C. $\frac{4}{3}(8 \pi-\sqrt{3})$
D. $\frac{4}{3}(8 \pi+\sqrt{3})$

Answer: C

D Watch Video Solution

19. Find the area bounded by the y-axis,
$y=\cos x$, and $y=\sin x w h e n 0 \leq x \leq \frac{\pi}{2}$.
A. $2(\sqrt{2-1})$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

