©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

DIFFERENTIAL EQUATIONS

Solved Example

1. Find the order and degree of the differential equation.
$\frac{d^{3} y}{d x^{3}}=\sqrt{x+\left(\frac{d y}{d x}\right)^{3}}$

- Watch Video Solution

2. Find the order and degree of the differential equation .
$\frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{3}-1=0$
3. The slope of a curve at point (x, y) is equal to sum of coordinate of that point. Represent it in form of a differential equation.

- Watch Video Solution

4. The rate of decreasing the radium is directly proportional to the amount ' Q ' present in it. Represent it in the form of a differential equation.

- Watch Video Solution

5. If A and B are arbitrary constants, then find the differential equation corresponding to $y=A \cos (x+B)$.

- Watch Video Solution

6. Find the differential equation corresponding to the equation $y=A \cdot e^{x}+B$.

- Watch Video Solution

7. Find the differential equation corresponding to the equation $y=A e^{2 x}+B e^{-x}$.

- Watch Video Solution

8. Find the differential equation from the equation $(x-h)^{2}+(y-k)^{2}=a^{2}$ by eliminating h and k.

- Watch Video Solution

9. Find the differential equation for the equation $x^{2}+y^{2}-2 a x=0$.
10. Find the differential equations corresponding to $v=\frac{A}{r}+B$.

- Watch Video Solution

11. Show that $y=x \sin x$ is a solution of the differential equation $\frac{d^{2} y}{D x^{2}}+y-2 \cos x=0$.

- Watch Video Solution

12. Prove that $y=e^{x}+m$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=0$, where m is a constant.

- Watch Video Solution

13. Show that $y=a \cdot e^{2 x}+b \cdot e^{-x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=0$.
14. Verify that $y=c e^{\tan -1_{x}}$ is a solution of differential equation
$\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0$.

- Watch Video Solution

15. Solve the differential equation $\frac{d y}{d x}=\sec ^{2} x$.

- Watch Video Solution

16. Solve the differential equation $\frac{d y}{d x}=\frac{1}{x}$.

- Watch Video Solution

17. Solve the differential equation $\frac{d y}{d x}=\sin (2 x+5)$.
18. Solve the differential equation $\frac{d y}{d x}=\sin ^{4} x \cdot \cos x$.
A. $y=\frac{1}{5} \sin ^{5} x+c$
B. $y=\sin ^{5} x+c$
C. $y=5 \sin ^{5} x+c$
D. $y=-\frac{1}{5} \sin ^{5} x+c$

Answer: A

- Watch Video Solution

19. Solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}=x$.

- Watch Video Solution

20. Find the solution of the differential equation $\cos y d y+\cos x \sin y d x=0$ given that $y=\pi / 2$, when $x=\pi / 2$.

- Watch Video Solution

21. Solve the differential equation $\frac{d y}{d x}=\frac{1-\cos 2 y}{1+\cos 2 y}$.

- Watch Video Solution

22. Solve the differential equation $\frac{d y}{d x}=\frac{x(2 \log x+1)}{(\sin y+y \cos y)}$.

(Watch Video Solution

23. The solution of the differential equation

$$
3 e^{x} \tan y d x+\left(1+e^{x}\right) \sec ^{2} y d y=0 \text { is }
$$

- Watch Video Solution

24. Solution of the differential equation $(1+x) y d x+(1-y) x d y=0$ is
A. $\log (x \cdot y)+x-y=c$.
B. $\log \left(\frac{x}{y}\right)+x-y=c$.
C. $\log (x \cdot y)+x=c$.
D. none of these

Answer: A

- Watch Video Solution

25. Solve the differential equation $\frac{d y}{d x}=e^{2 x-y}+x^{2} \cdot e^{-y}$.

- Watch Video Solution

26. Solve the differential equation : $\left(1-x^{2}\right)(1-y) d x=x y(1+y) d y$
27. Solve the differential equation $4 x \frac{d y}{d x}=5 y$, given that $y(1)=3$.

- Watch Video Solution

28. Solve the differential equation $y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$.

- Watch Video Solution

29. In a bank, principal increases continuously at the rate of 5% per year. In how many years Rs 1000 double itself?

- Watch Video Solution

30. Solve the differential equation : $\frac{d y}{d x}=\frac{x^{2}-y^{2}}{x y}$.
A. $C=x^{2}\left(x^{2}+2 y^{2}\right)$.
B. $C=x^{2}\left(x^{2}-2 y^{2}\right)$.
C. $C=x^{2}\left(2 x^{2}-2 y^{2}\right)$.
D. $C=x^{2}\left(2 x^{2}+2 y^{2}\right)$.

Answer: B

- Watch Video Solution

31. Solve the following differential equation: $x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$

- Watch Video Solution

32. Show that the differential equation $\frac{(x-y) d y}{d x}=x+2 y$, is homogeneous and solve it.

- Watch Video Solution

33. Solve the following differential
equation:
$y d x+x \log \left(\frac{y}{x}\right) d y=2 x d y$

Watch Video Solution

34. Solve the differential equation $x \cdot \frac{d y}{d x}-y=\log x$.

- Watch Video Solution

35. Find the general solution of the differential equation $y d x-\left(x+2 y^{2}\right) d y=0$.

- Watch Video Solution

Exercise 9 A

1. Find the order and degree, if defined, of each of the following
differential equations: (i) $\frac{d y}{d x}-\cos x=0$
$x y \frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}=0$ (iii) $y^{m}+y^{2}+e^{y^{\prime}}=0$
2. Find the order and degree, if defined, of each of the following differential equations: (i) $\frac{d y}{d x}-\cos x=0$
$x y \frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}=0$ (iii) $y^{m}+y^{2}+e^{y^{\prime}}=0$

- Watch Video Solution

3. Determine order and degree (if defined) of differential equations given
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$

- Watch Video Solution

4. Find the order and degree of the following differential equations.
$\frac{d^{2} y}{d x^{2}}+1=0$

- Watch Video Solution

5. Find the order and degree of the following differential equations. $\frac{d y}{d x}+y=\log x$

- Watch Video Solution

6. Find the order and degree of the following differential equations.
$2 x \cdot \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+5=0$

- Watch Video Solution

7. Find the order and degree of the following differential equations.
$\frac{d^{3} y}{d x^{3}}+2\left(\frac{d y}{d x}\right)^{4}+3 x=0$

- Watch Video Solution

8. Find the order and degree of the following differential equations.

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+x\left(\frac{d y}{d x}\right)^{2}-5=0
$$

- Watch Video Solution

9. Find the order and degree of the following differential equations.
$\frac{d^{2} y}{d x^{2}}=4 \sqrt{x+\left(\frac{d y}{d x}\right)^{2}}$

- Watch Video Solution

10. Find the order and degree of the following differential equations. $\frac{d^{2} z}{d y^{2}}+3\left(\frac{d z}{d y}\right)^{3}+1=0$

- Watch Video Solution

Exercise 9 B

1. If A and B are arbitrary constants, then find the differential equation corresponding to the equation $y=A x+B$.
2. Find the equation of the curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abscissa and ordinate of the point.

- Watch Video Solution

3. If a and b are arbitrary constants, then find the differential equation corresponding to $y=a \cos (x+b)$.

- Watch Video Solution

4. Find the differential equation corresponding to $y=c x^{3}$, where c is arbitrary constant.

- Watch Video Solution

5. Find the differential equation corresponding to $y=c x+c-c^{3}$, where c is arbitrary constant.

- Watch Video Solution

6. Write the differential equation obtained eliminating the arbitrary constant C in the equation $x y=C^{2}$.

- Watch Video Solution

7. Find the differential equation of $x y=a e^{x}+b e^{-x}$.

- Watch Video Solution

8. For all values of A and B, find the differential equation of $y=A \sin x+B \cos x$.

- Watch Video Solution

9. For all values of A and B, find the differential equation of $y=A \cos p x+B \sin p x$.

- Watch Video Solution

10. Find the differential equation corresponding to curve $y=A \sin x+B \cos x+x \sin x$, where A and B are arbitrary constants.

- Watch Video Solution

11. For all values of A and B, find the differential equation of $y=A e^{3 x}+B e^{4 x}$.

- Watch Video Solution

12. Find the differential equation corresponding to j $y=a e^{2 x}+b e^{-3 x}+c e^{x}$ where a, b, c are arbitrary constants.

Watch Video Solution

13. Find the differenital equation for the curve $y=k(x-k)^{2}$ for all values of k.

- Watch Video Solution

14. Find the differential equation of those circles whose centres lie on X axis and whose radii are variable ' r '.

- Watch Video Solution

15. Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
16. Form the differential equation of the family of circles touching the y axis at origin.

- Watch Video Solution

Exercise 9 C

1. Show that $y=A \cos x+B \sin x$ is a solution of differential equation
$\frac{d^{2} y}{d x^{2}}+y=0$.

- Watch Video Solution

2. Show that $y=e^{2 x}$ is a solution of differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$
3. Show that $y=c \cdot e^{-x}$ is a solution of differential equation $\frac{d y}{d x}+y=0$.

- Watch Video Solution

4. Verify that $y=4 \sin 3 x$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+9 y=0$.

- Watch Video Solution

5. Show that $y=A \cos m x+B \sin m x$ is a solution of differential equation $\frac{d^{2} y}{d x^{2}+m^{2} y=0}$

- Watch Video Solution

6. Show that $y=a \cos (\log x)+b \sin (\log x)$ is a solution of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$

(Watch Video Solution

7. If $y=e^{m \sin ^{-1} x}$ prove that $\left(1-x^{2}\right)\left(\frac{d^{2} y}{d x^{2}}\right)-x \frac{d y}{d x}=m^{2} y$

- Watch Video Solution

8. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=\sqrt{1+x^{2}}: y^{\prime}=\frac{x y}{1+x^{2}}$

- Watch Video Solution

9. Verity that $y^{2}=4 a(x+a)$ is a solution of the differential equation
$y\left\{1-\left(\frac{d y}{d x}\right)^{2}\right\}=2 x \frac{d y}{d x}$.
10. Show that $y=e^{x}(A \cos x+B \sin x)$ is the solution of the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$.

- Watch Video Solution

11. Show that $A x^{2}+B y^{2}=1$ is a solution of the differential equation $x\left\{y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right\}=y \frac{d y}{d x}$.

- Watch Video Solution

12. Show that $x=y-\cos y$, is a solution of differential equation $(y \sin y+\cos y+x) \frac{d y}{d x}-y=0$.

- Watch Video Solution

13. Show that $y=A x+\frac{B}{x}, x \neq 0$ is a solution of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$

- Watch Video Solution

Exercise 9 D

1. Solve the following differential equations
$\frac{d y}{d x}=e^{x}$

- Watch Video Solution

2. Solve the following differential equations
$\frac{d y}{d x}=x$
3. Solve the following differential equations $\frac{d y}{d x}=x^{2}+\sin 4 x$

- Watch Video Solution

4. Solve the following differential equations
$\frac{d y}{d x}=x^{3}+x^{2}+8 x+1$

- Watch Video Solution

5. Solve the following differential equations
$\frac{d y}{d x}=\cot x$

- Watch Video Solution

6. Solve the following differential equations
$\frac{d y}{d x}=\operatorname{cosec} 2 x+3 x^{2}$
7. Solve the following differential equations $\frac{d y}{d x}+\frac{1+x^{2}}{x}=0$

Watch Video Solution

8. Solve the following differential equations
$\frac{d y}{d x}=\sec x(2 \sec x+\tan x)$

- Watch Video Solution

9. Solve the following differential equations
$\frac{d y}{d x}=\sin ^{8} x \cdot \cos x$

- Watch Video Solution

10. Solve the following differential equations
$\frac{d y}{d x}=\sin x \cdot \sin y$
11. Solve the following differential equations $\frac{d y}{d x}=\sqrt{\frac{1+y^{2}}{1+x^{2}}}$

- Watch Video Solution

12. Solve the following differential equations
$\frac{d y}{d x}+\frac{1+y^{2}}{y}=0$

- Watch Video Solution

13. Solve the following differential equations

$$
\frac{d y}{d x}=\frac{1}{y+\sin y}
$$

14. Solve the following differential equations
$\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$

(Watch Video Solution

15. Solve the following differential equations

$$
\frac{d y}{d x}=\frac{x y+y}{x y+x}
$$

- Watch Video Solution

16. Solve the following differential equations
$x^{2}(1-y) \frac{d y}{d x}+y^{2}(1+x)=0$

- Watch Video Solution

17. Solve the following differential equations

$$
\frac{d y}{d x}=-\frac{y}{x}
$$

18. Solve the following differential equations
$\frac{d y}{d x}=-\sqrt{\frac{1-y^{2}}{1-x^{2}}}$

- Watch Video Solution

19. Solve the following differential equations
$\frac{d y}{d x}=e^{x-y}+x^{3} \cdot e^{-y}$

- Watch Video Solution

20. Solve the following differential equations
$\left(1+x^{2}\right) x y d y=\left(1+y^{2}\right) d x$

- Watch Video Solution

21. Solve the following differential equations
$x^{2}(y+1) d x+y^{2}(x-1) d y=0$

Watch Video Solution

22. Solve the following differential equations
$\frac{d y}{d x}=\sqrt{4-y^{2}}$

- Watch Video Solution

23. Solve the following differential equations
$\sqrt{a+x} \frac{d y}{d x}+x=0$

- Watch Video Solution

24. Solve the following differential equations
$x \cos ^{2} y d x=y \cos ^{2} x d y$
25. Solve the following differential equations
$\frac{d y}{d x} \cdot x y^{2}\left(1+x^{2}\right)+\left(1+y^{3}\right)=0$

- Watch Video Solution

26. Solve the following differential equations
$\frac{d y}{d x}=1+x+y+x y$

- Watch Video Solution

27. Solve the following differential equations
$\log \left(\frac{d y}{d x}\right)=a x+b y$

- Watch Video Solution

28. Solve the differential equation $\left(x y^{2}+x\right) d x+\left(y x^{2}+y\right) d y=0$

- Watch Video Solution

29. Solve the following differential equations
$y \sec ^{2} x d x+(y+7) \tan x d y=0$

- Watch Video Solution

30. Solve the following differential equations
$\frac{d y}{d x}=\tan ^{-1} x$

- Watch Video Solution

31. Solve the following differential equations

$$
\frac{d y}{d x}=x \cdot e^{x}
$$

32. Find the particular solution of the differential equation $\left(1+x^{2}\right) \sec ^{2} y d y+2 x \tan y d x=0$, it is given that at $x=1, y=\pi / 4$.

- Watch Video Solution

33. Find the particular solution of the differential equation $\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d y=0$, it is given that at $x=0, y=1$.

- Watch Video Solution

34. Find the particular solution of the differential equation $\left(1+y^{2}\right)(1+\log x) d x+x d y=0$, it is given that at $x=1, y=1$.

- Watch Video Solution

35. Find the equation of a curve, passes through $(-2,3)$ at which the slope of tangent at any point (x, y) is $\frac{2 x}{y^{2}}$.

- Watch Video Solution

36. Find the equation of a curve, passes through $(0,-2)$, for which the product of the slope of tangent and the y-coordinate of that point is equal to the x-coordinate.

- Watch Video Solution

37. In a bank principal increases at the rate of $r \%$ per year. Find the value of r if Rs. 100 double itself in 10 years $\left((\log)_{e} 2=0.6931.\right)$

- Watch Video Solution

1. Solve the following differential equations
$\left(x^{2}-x y\right) d y+y^{2} d x=0$

- Watch Video Solution

2. Solve the following differential equations
$\frac{d y}{d x}=\frac{x+y}{x}$

- Watch Video Solution

3. Solve the differential equations $x^{2} d y-\left(x^{2}+x y-2 y^{2}\right) d x=0$ `

Watch Video Solution

4. Solve the following differential equations
$\frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}$
5. Solve the differential equations $x^{2} d y+\left(x y+y^{2}\right) d x=0$

Watch Video Solution

6. Solve the following differential equations
$2 x y d y=\left(y^{2}-x^{2}\right) d x$

- Watch Video Solution

7. Solve the following differential equations
$\left(x \cos \frac{y}{x}+y \sin \frac{y}{x}\right) y d x=\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right) x d y$

- Watch Video Solution

8. Solve the following differential equation: $x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$
9. $y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0$

- Watch Video Solution

10. Solve the differential equations $(i) \frac{d y}{d x}+\frac{3 x y+y^{2}}{x^{2}+x y}=0$

- Watch Video Solution

11. Solve the following differential equations
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}$

(Watch Video Solution

12. Solve the following differential equations
$\frac{d y}{d x}=\frac{y^{2}+2 x y}{2 x^{2}}$, it is given that at $x=1, y=2$.
13. Solve the following differential equations $\left.\frac{d y}{d x}=\frac{y}{x}-\left(\sin \frac{y}{x}\right)\right)$,

- Watch Video Solution

14. $x^{*} \cos ((y) /(x))((d y) /(d x))=y \cos ((y) /(x))+x^{\prime}$ find its solution.

- Watch Video Solution

15. Show that the differential equation $2 y e^{\frac{x}{y}} d x+\left(y-2 x e^{\frac{x}{y}}\right) d y=0$ is homogeneous and find its particular solution, given that, $x=0$ when $y=1$.

- Watch Video Solution

Exercise 9 F

1. Find the general solution of the following differential equations $x \frac{d y}{d x}-y=x^{2}$

- Watch Video Solution

2. Find the general solution of the following differential equations
(i) $x \frac{d y}{d x}+y=x^{3}$

- Watch Video Solution

3. Find the general solution of the following differential equations
$x \frac{d y}{d x}+2 y=x^{2} \log x$

- Watch Video Solution

4. Find the general solution of the following differential equations

$$
\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x
$$

5. Find the general solution of the following differential equations $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=\frac{2}{x^{2}-1}$

- Watch Video Solution

6. Find the general solution of the differential equations (i) $\frac{d y}{d x}-y=x^{3} e^{x}$

- Watch Video Solution

7. Find the general solution of the differential equations
(i) $\frac{d y}{d x}+y \sec x=\tan x$.

- Watch Video Solution

8. Find the general solution of the differential equations: $\left(x+3 y^{2}\right) \frac{d x}{d y}=y(y>0)$

- Watch Video Solution

9. Find the general solution of the differential equations
(i) $y d x+\left(x-y^{2}\right) d y=0$

Watch Video Solution

10. Find the general solution of the following differential equations
$x \log x \frac{d y}{d x}+y=2 \log x$

- Watch Video Solution

11. Find the general solution of the differential equations:
$\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)$
12. Find the particular solution of the differential equation $\frac{d y}{d x}+2 y \tan x=\sin x$, it is given that at $x=\frac{\pi}{3}, y=0$.

- Watch Video Solution

13. Find the particular solution of the differential equation $\frac{d y}{d x}+y \cot x=2 x+x^{2} \cot x$, it is given that at $x=\pi / 2, y=0$

- Watch Video Solution

14. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.

- Watch Video Solution

15. Find the equation of a curve passing through the point $(0,2)$ given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5 .

- Watch Video Solution

16. Solve the differential equation :
$x \frac{d y}{d x}+y-x+x y \cot x=0, x \neq 0$.

- Watch Video Solution

17. Find the particular solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}}$ given that at $x=1, y=0$.

- Watch Video Solution

1. The degree of differential equation $\frac{d^{3} y}{d x^{3}}+\sin (y+x)=0$ is :
A. 3
B. 1
C. 2
D. not defined

Answer:

- Watch Video Solution

2. The solution of differential equation $y^{\prime}\left(1+x^{2}\right)=2 x y$ is:
A. $y=c\left(1+x^{2}\right)$
B. $y\left(1+x^{2}\right)=c$
C. $y=c \sqrt{1+x^{2}}$
D. $y \sqrt{1+x^{2}}=c$

Answer:

D Watch Video Solution

3. Solve $x \frac{d y}{d x}=y(\log y-\log x+1)$
A. $y=k \cdot e^{x}$
B. $y=x e^{k x}$
C. $y=e^{k x}$
D. None of these

Answer:

- Watch Video Solution

4. The solution of differential equation $x \frac{d y}{d x}=y$ is :
A. $x \cdot y=k$
B. $x+y=k$
C. $y=k x$
D. $x-y=k$

Answer:

- Watch Video Solution

5. The solution of differential equation $\sec ^{2} x d x+\sec ^{2} y d y=0$ is :
A. $\tan x=\tan y+k$
B. $\tan x+\tan y=k$
C. $\tan x \cdot \tan y=k$
D. None of these

Answer:

6. The equation of differential equation $2 x y \frac{d y}{d x}=y^{2}-x^{2}$ is :
A. $x^{2}-y^{2}=k x$
B. $x^{2}+y^{2}=k x$
C. $x^{2}-y^{2}=k y$
D. $x^{2}+y^{2}=k y$

Answer:

- Watch Video Solution

7. The differential equation corresponding to curve $y=a \cos (x+b)$ is :
A. $y+y=0$
B. $y-y=0$
C. $y^{\prime}+y=0$
D. $y^{\prime}-y=0$

Answer:

D Watch Video Solution

8. The differential equation corresponding to curve $y^{2}=4 a x$ is:
A. $3 x \frac{d y}{d x}=y$
B. $2 x \frac{d y}{d x}=y$
C. $x \frac{d y}{d x}=y$
D. $\frac{d y}{d x}=y$

Answer: B

Watch Video Solution

9. The solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$ is
A. $2 y e^{\tan ^{-1} x}=e^{2 \tan ^{-1} x}+c$
B. $y e^{\tan ^{-1} x}=e^{2 \tan ^{-1} x}+c$
C. $2 y=e^{\tan ^{-1} x}+c$
D. None of the above

Answer:

- Watch Video Solution

10. Find one parameter families of solution curves of the following differential equations: (or solve the following differential equations): $\frac{d y}{d x}-y=\cos 2 x x \frac{d y}{d x}+y=x^{3}$
A. $\frac{1}{x^{2}}$
B. $\frac{1}{x^{3}}$
C. $\frac{1}{x^{6}}$
D. $\frac{1}{x^{4}}$

Answer:

- Watch Video Solution

Exercise 9 H

1. Obtain the differential equation of all circles of radius r.
A. $\left\{1+\left(y_{1}\right)^{2}\right\}^{3}=r^{2}\left(y_{2}\right)^{2}$
B. $\left(1+y_{1}\right)^{3}=r^{2} y_{2}$
C. $\left(1+y_{2}\right)^{3}=r^{2}\left(y_{1}\right)^{2}$
D. None of the above

Answer:

2.

$$
\frac{d y}{d x}=\sin (x+y)+\cos (x+y) \text { is: }
$$

A. $\log \left|\tan \frac{x+y}{2}\right|+c$
В. $\log \left|1+\tan \frac{x+y}{2}\right|+c$
C. $\log \left|\cot \frac{x+y}{2}\right|+c$
D. $\log \left|1+\cot \frac{x+y}{2}\right|+c$

Answer:

- Watch Video Solution

3. Solve: $\left(x^{3}+3 x y^{2}\right) d x=\left(y^{3}=3 x^{2} y\right) d y$.
A. $x^{2}-y^{2}=\left(x^{2}+y^{2}\right) c$
B. $x^{2}+y^{2}=\left(x^{2}-y^{2}\right) c$
C. $x^{2}-y^{2}=\left(x^{2}+y^{2}\right)^{2} c$
D. None of the above

Answer:

- Watch Video Solution

4. passes through a curve point $\left(1, \frac{\pi}{4}\right)$ and at some point Its gradation is given by $\frac{y}{x}-\cos ^{2}\left(\frac{y}{x}\right)$ then equation of curve
A. $y=x \tan ^{-1} \log \frac{e}{x}$
B. $y=\tan ^{-1} \log \frac{e}{x}$
C. $y=x \tan ^{-1} \log \frac{x}{e}$
D. None of the above

Answer:

- Watch Video Solution

5. The differential equation of all parabolas whose axis are parallel to the y-axis is
$(b)(c)(d) \frac{(e)(f) d^{(g) 3(h)}(i) y}{j}\left((k) d(l) x^{(m) 3(n)}(o)\right)(p)(q)=0(r)(\mathrm{s})$
$(t)(u)(v) \frac{(w)(x) d^{(y) 2(z)}(a a) x}{b b}\left((c c) d(d d) y^{(e e) 2(f f)}(g g)\right)(h h)(i i)=C(j \jmath$
(kk) (c) [Math Processing Error] (ii) (d) [Math Processing Error] (ggg)
A. $\frac{d^{3} y}{d x^{3}}=0$
B. $\frac{d^{2} y}{d x^{2}}+y=0$
C. $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}=0$
D. None of these

Answer:

- Watch Video Solution

6. The solution of differential equation $\left(1+x^{2}\right) y^{\prime}+2 x y=4 x^{2}$
A. $3 y\left(1+x^{2}\right)=2 x^{3}+C$
B. $3 y\left(1+x^{2}\right)=x^{3}+C$
C. $3 y\left(1+x^{2}\right)=4 x^{3}+C$
D. None of these

Answer: C

- Watch Video Solution

7. The solution of differential equation $y d x=\left(y^{3}-x\right) d y$ is:
A. $x y=y^{2}+c$
B. $x y=y^{3}+c$
C. $x y=\frac{y^{3}}{3}+c$
D. $x y=\frac{y^{4}}{4}+c$

Answer: D

8. The solution of differential equation $\frac{d y}{d x}=\cos (x+y)$ is :
A. $\tan (x+y)=x+c$
B. $\tan \left(\frac{x+y}{2}\right)=x+c$
C. $\tan (x+y)=y+c$
D. None of the above

Answer: B

- Watch Video Solution

9. The solution of differential equation ${ }^{~} x(d y) /(d x)+y=x^{\wedge}(3)$ is :
A. $x^{5} y^{-5}=\frac{5}{2} x^{2}+c$
B. $x^{-5} y^{5}=5 x^{-2}+c$
C. $x^{5} y^{-5}=\frac{5}{2} x^{-2}+c$
D. None of the above

Answer:

- Watch Video Solution

Exercise 91

1. Determine order and degree (if defined) of differential equations given
$\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime}\right)=0$

- Watch Video Solution

2. Determine order and degree (if defined) of differential equations given
$y^{\prime}+5 y=0$

- Watch Video Solution

3. Determine order and degree (if defined) of differential equations given $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$

- Watch Video Solution

4. Determine order and degree (if defined) of differential equations given
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$

- Watch Video Solution

5. Determine order and degree (if defined) of differential equations given $\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$

- Watch Video Solution

6. Determine order and degree (if defined) of differential equations given

$$
\left(y^{m}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0
$$

7. Determine order and degree (if defined) of differential equations given $y^{m}+2 y^{\prime}+y^{\prime}=0$

- Watch Video Solution

8. Determine order and degree (if defined) of differential equations given
$y^{\prime}+y=e^{x}$

- Watch Video Solution

9. Determine order and degree (if defined) of differential equations given $y^{\prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0$

- Watch Video Solution

10. Determine order and degree (if defined) of differential equations given $y^{\prime \prime}+2 y^{\prime}+\sin y=0$

Watch Video Solution

11. The degree of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$
A. 3
B. 2
C. 1
D. not defined

Answer: D

- Watch Video Solution

12. The order of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$ is (A) 2 (B) 1 (C) 0 (D) not defined
A. 2
B. 1
C. 0
D. not defined

Answer:

- Watch Video Solution

Exercise 92

1. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=e^{x}+1: y^{\prime}-y^{\prime}=0$
2. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=x^{2}+2 x+C$ $y^{\prime}-2 x-2=0$

- Watch Video Solution

3. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=\cos x+C: y^{\prime}+\sin x=0$

- Watch Video Solution

4. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=\sqrt{1+x^{2}}: y^{\prime}=\frac{x y}{1+x^{2}}$

- Watch Video Solution

5. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation :

$$
y=A x: x y^{\prime}=y(x \neq 0)
$$

- Watch Video Solution

6. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=x s \in x$ $x y^{\prime}=y+x \sqrt{x^{2}-y^{2}}(x \neq 0$ and $x>y$ or $x<y)$

- Watch Video Solution

7. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $x y=\log y+C$
$y^{\prime}=\frac{y^{2}}{1-x y}(x y \neq 1)$

- Watch Video Solution

8. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y \cos y=x:(\mathrm{y} \sin \mathrm{y}+\cos \mathrm{y}+\mathrm{x}) \mathrm{y}=\mathrm{y}$

- Watch Video Solution

9. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $x+y=\tan ^{-1} y$
$y^{2} y^{\prime}+y^{2}+1=0$

- Watch Video Solution

10. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: $y=\sqrt{a^{2}-x^{2}} x \in(-x, a) \quad$:
$x+y \frac{d y}{d x}=0(y \neq 0)$

- Watch Video Solution

11. The number of arbitrary constants in the general solution of a differential equation of fourth order are: (A) 0 (B) 2 (C) 3 (D) 4
A. 0
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

12. The number of arbitrary constants in the particular solution of a differential equation of third order are: (A) 3 (B) 2 (C) 1 (D) 0
A. 3
B. 2
C. 1

D. 0

Answer: D

- Watch Video Solution

Exercise 93

1. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b. $\frac{x}{a}+\frac{y}{b}=1$

- Watch Video Solution

2. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and $\mathrm{b} \cdot y^{2}=a\left(b^{2}-x^{2}\right)$
3. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b. $y=a e^{3 x}+b e^{-2 x}$

Watch Video Solution

4. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b. $y=e^{2 x}(a+b x)$

- Watch Video Solution

5. Form a differential equation representing the given family of curves by eliminating arbitrary constants a and $b . y=e x(a \cos x+b \sin x)$

D Watch Video Solution

6. Form the differential equation of the family of circles touching the y axis at origin.
7. Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

- Watch Video Solution

8. Form the differential equation of the family of ellipses having foci on y axis and centre at origin.

- Watch Video Solution

9. Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.

- Watch Video Solution

10. Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

- Watch Video Solution

11. Which of the following differential equations has $y=c_{1} e^{x}+c_{2} e^{-x}$ as the general solution?
A. $\frac{d^{2} y}{d x^{2}}+y=0$
B. $\frac{d^{2} y}{d x^{2}}-y=0$
C. $\frac{d^{2} y}{d x^{2}}+1=0$
D. $\frac{d^{2} y}{d x^{2}}-1=0$

Answer: B

- Watch Video Solution

12. Which of the following differential equations has $y=x$ as one of its particular solution?(A)
$\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=x$

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=x \tag{B}\\
& \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=0 \tag{C}
\end{align*}
$$

($\left.\mathrm{d}^{\wedge} 2 \mathrm{y}\right) /\left(\mathrm{dx} x^{\wedge} 2\right)+\mathrm{x}(\mathrm{dy}) /(\mathrm{dx})+\mathrm{x} y=0$
A. $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=x$
B. $\frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+x y=x$
C. $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=0$
D. $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=0$

Answer:

- Watch Video Solution

Exercise 94

1. Find the general solution of the differential equations $\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$

- Watch Video Solution

2. Find the general solution of the differential equations ${ }^{`}(\mathrm{dy}) /(\mathrm{dx})=\mathrm{sqrt}(4-$ $\left.y^{\wedge} 2\right)(-2$

- Watch Video Solution

3. Find the general solution of the differential equations $\frac{d y}{d x}+y=1(y \neq 1)$

- Watch Video Solution

4. Find the general solution of the differential equations $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$
5. Find the general solution of the differential equations $\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$

- Watch Video Solution

6. Find the general solution of the differential equations $\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$

- Watch Video Solution

7. Find the general solution of the differential equations $y \log y d x x d y=$ 0

- Watch Video Solution

8. Find the general solution of the differential equations $x^{5} \frac{d y}{d x}=-y^{5}$

- Watch Video Solution

9. Find the general solution of the differential equations $\frac{d y}{d x}=\sin ^{-1} x$

- Watch Video Solution

10. Find the general solution of the differential equations $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

- Watch Video Solution

11. The differential equations, find a particular solution satisfying the given condition: $\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x ; y=1$ when $x=0$
A. $y=\frac{1}{6}\left[\log \left\{(x-1)^{2}\left(x^{2}-1\right)^{3}\right\}+\frac{1}{2} \tan ^{-1} x+1\right.$
B. $y=\frac{1}{4}\left[\log \left\{(x-1)^{2}\left(x^{2}+1\right)^{3}\right\}\right]-\frac{1}{2} \tan ^{-1} x+1$
C. $y=\frac{1}{4}\left[\log \left\{(x+1)^{2}\left(x^{2}-1\right)^{3}\right\}\right]-\frac{1}{2} \tan ^{-1} x+1$
D. $y=\frac{1}{4}\left[\log \left\{(x+1)^{2}\left(x^{2}+1\right)^{3}\right\}\right]-\frac{1}{2} \tan ^{-1} x+1$

Answer: D

- Watch Video Solution

12. The differential equations, find a particular solution satisfying the given condition: $x\left(x^{2}-1\right) \frac{d y}{d x}=1 ; y=0$ when $x=2$

- Watch Video Solution

13. The differential equations, find a particular solution satisfying the given condition: $\cos \left(\frac{d y}{d x}\right)=a(a \in R) ; y=1$

- Watch Video Solution

14. The differential equations, find a particular solution satisfying the given condition: $\frac{d y}{d x}=y \tan x ; y=1$ when $\mathrm{x}=0$

- Watch Video Solution

15. Find the equation of a curve passing through the point $(0,0)$ and whose differentialequation is $y^{\prime}=e x \sin x$

- Watch Video Solution

16. For the differential equation $x y \frac{d y}{d x}=(x+2)(y+2)$, find the solution curve passing through the point $(1,1)$.

- Watch Video Solution

17. Find the equation of a curve passing through the point $(0,2)$ given that at any point (x, y) on the curve, the product of the slope of its
tangent and y coordinate of the point is equal to the x coordinate of the point.

- Watch Video Solution

18. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point $(4,3)$. Find the equation of the curve given that it passes through $(2,1)$.

- Watch Video Solution

19. The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

- Watch Video Solution

20. In a bank principal increases at the rate of $r \%$ per year. Find the value of r if Rs. 100 double itself in 10 years $\left((\log)_{e} 2=0.6931.\right)$

- Watch Video Solution

21. In a bank, principal increases continuously at the rate of 5% per year.

An amountof Rs 1000 is deposited with this bank, how much will it worth after 10 years $\left(e^{0.5}=1.648\right)$

- Watch Video Solution

22. In a culture, the bacteria count is $1,00,000$. The number is increased by 10% in 2 hours. In how many hours will the count reach $2,00,000$, if the rate of growth of bacteria is proportional to the number present?

- Watch Video Solution

23. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is(A) $e^{x}+e^{-y}=C$ (B) $e^{x}+e^{y}=C(\mathrm{C}) e^{-x}+e^{y}=C(\mathrm{D}) e^{-x}+e^{-y}=C$
A. $e^{x}+e^{-y}=C$
B. $e^{x}+e^{y}=C$
C. $e^{-x}+e^{y}=C$
D. $e^{-x}+e^{-y}=C$

Answer:

- Watch Video Solution

Exercise 95

1. show that the given differential equation is homogeneous and solve each of them $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$
2. Show that the given differential equation is homogeneous and solve each of them. $y^{\prime}=\frac{x+y}{x}$

- Watch Video Solution

3. Show that the given differential equation is homogeneous and solve each of them. $(x y) d y(x+y) d x=0$

- Watch Video Solution

4. Show that the given differential equation is homogeneous and solve each of them. $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

- Watch Video Solution

5. Show that the given differential equation is homogeneous and solve each of them. $x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y$
6. Show that the given differential equation is homogeneous and solve each of them. $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$

- Watch Video Solution

7.

Solve
the
differential
equation
$(x d y-y d x) y \sin \left(\frac{y}{x}\right)=(y d x+x d y) x \cos \left(\frac{y}{x}\right)$.

- Watch Video Solution

8. Show that the given differential equation is homogeneous and solve each of them. $x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$

- Watch Video Solution

9. Show that the given differential equation is homogeneous and solve each of them. $y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0$

- Watch Video Solution

10. Show that the given differential equation is homogeneous and solve each of them. $\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$

- Watch Video Solution

11. The differential equations, find the particular solution satisfying the given condition: $(x+y) d y+(x y) d x=0 ; y=1$ when $x=1$

- Watch Video Solution

12. Find the particular solution of the differential equation satisfying the given conditions: $x^{2} d y+\left(x y+y^{2}\right) d x=0 ; y=1$ when $x=1$.
13. The differential equations, find the particular solution satisfying the given condition: $\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0 ; y=\frac{\pi}{4}$ when $\mathrm{x}=1$

- Watch Video Solution

14. Find the particular solution, satisfying the given condition, for the following differential equation: $\frac{d y}{d x}-\frac{y}{x}+\cos e c\left(\frac{y}{x}\right)=0 ; y=0$ when $x=1$

- Watch Video Solution

15. The differential equations, find the particular solution satisfying the given condition: $2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0 ; y=2$ when $\mathrm{x}=1$

- Watch Video Solution

16. A homogeneous differential equation of the from $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$ can be solved by making the substitution
A. $y=v x$
B. $v=y x$
C. $x=v y$
D. $x=v$

Answer: C

- Watch Video Solution

17. Which of the following is a homogenous differential equation ?
A. $(4 x+6 y+5) d y-(3 y+2 x+4) d x=0$
B. $(x y) d x-\left(x^{3}+y^{3}\right) d y=0$
C. $\left(x^{3}+2 y^{2}\right) d x+2 x y d y=0$
D. $y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$

Answer: D

D View Text Solution

Exercise 96

1. Find the general solution of the differential equations: $\frac{d x}{d y}+2 y=\sin x$

- Watch Video Solution

2. Find the general solution of the differential equations: $\frac{d y}{d x}+3 y=e^{-2 x}$

- Watch Video Solution

3. Find the general solution of the differential equations: $\frac{d y}{d x}+\frac{y}{x}=x^{2}$
A. $x y=\frac{x^{4}}{4}+c$
B. $x y=x^{4}+c$
C. $x y=\frac{x^{2}}{2}+c$
D. none of these

Answer: A

- Watch Video Solution

4. Find the general solution of the differential equations: ${ }^{\prime}(\mathrm{dx}) /(\mathrm{dy})+\sec x$ $y=\tan x($ Olt $=x$

- Watch Video Solution

5. Find the general solution of the differential equations: ${ }^{\prime} \cos ^{\wedge} 2 x(d x) /(d y)+y=\tan x(0 l t=x$
6. Find the general solution of the differential equations: $x \frac{d x}{d y}+2 y=x^{2} \log x$

- Watch Video Solution

7. Find the general solution of the differential equations: $x \log x \frac{d x}{d y}+y=\frac{2}{x} \log x$

(Watch Video Solution

8. Find the general solution of the differential equations:
$\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)$

- Watch Video Solution

9. Find the general solution of the differential equations: $x \frac{d x}{d y}+y-x+x y \cot x=0(x \neq 0)$
10. Find the general solution of the differential equations: $(x+y) \frac{d x}{d y}=1$

- Watch Video Solution

11. Find the general solution of the differential equation $y d x-\left(x+2 y^{2}\right) d y=0$.

- Watch Video Solution

12. Find the general solution of the differential equations: $\left(x+3 y^{2}\right) \frac{d x}{d y}=y(y>0)$

- Watch Video Solution

13. The differential equations, find a particular solution satisfying the given condition: $\frac{d x}{d y}+2 y \tan x=\sin x ; y=0$ when $x=\frac{\pi}{3}$

- Watch Video Solution

14. The differential equations, find a particular solution satisfying the given condition: $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}} ; y=0$ when $x=1$

- Watch Video Solution

15. The differential equations, find a particular solution satisfying the given condition: $\frac{d y}{d x}-3 y \cot x=\sin 2 x ; y=2$ when $x=\frac{\pi}{2}$

- Watch Video Solution

16. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of
the coordinates of the point.

- Watch Video Solution

17. Find the equation of a curve passing through the point $(0,2)$ given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5 .

- Watch Video Solution

18. The Integrating Factor of the differential equation $x \frac{d y}{d x}-y=2 x^{2}$ is(A) e^{-x} (B) e^{-y} (C) $\frac{1}{x}$ (D) x
A. e^{-x}
B. e^{-y}
C. $\frac{1}{x}$
D. x

Answer:

- Watch Video Solution

19. What is the integrating factor of the differential equation ${ }^{`}\left(1-y^{\wedge} 2\right)$
$(d x) /(d y)+y x=a y(-1$
A. $\frac{1}{y^{2}-1}$
B. $\frac{1}{\sqrt{y^{2}-1}}$
C. $\frac{1}{1-y^{2}}$
D. $\frac{1}{\sqrt{1-y^{2}}}$

Answer:

1. For each of the differential equations given below, indicate its order and degree (if defined).(i) $\frac{d^{2} y}{d x^{2}}+5 x\left(\frac{d y}{d x}\right)^{2}-6 x y=\log x$ $\left(\frac{d y}{d x}\right)^{3}-4\left(\frac{d y}{d x}\right)^{2}+7 y=\sin x$ (iii) $\frac{d^{4} y}{d x^{4}}-\sin \left(\frac{d^{3} y}{d x^{3}}\right)=0$

- Watch Video Solution

2. For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.(i) $y=a e^{x}+b e^{-x}+x^{2}: x \frac{d^{2} y}{d x^{2}}+2 y \frac{d y}{d x}-x y+x^{2}-2=0$
(ii) ${ }^{\wedge}=e^{\wedge} x(a \cos x+b s i n$

- Watch Video Solution

3. Form the differential equation representing the family of curves given by $(x-a)^{2}+2 y^{2}=a^{2}$, where a is an arbitrary constant.

- Watch Video Solution

4. Prove that $x^{2}-y^{2}=c\left(x^{2}+y^{2}\right)^{2}$ is the general solution of differential equation $\left(x^{3}-2 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$, where c is a parameter.

- Watch Video Solution

5. Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.

- Watch Video Solution

6. Find the general solution of the differential equation $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$.

- Watch Video Solution

7. Show that the general solution of the differentia equation $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$ is given by $x+y+1=A(1-x-y-2 x y)$
where A is a parameter.

- Watch Video Solution

8. Find the equation of the curve passing through the point $\left(0, \frac{\pi}{4}\right)$ whose differential equation is
$s \in \quad x \quad \cos \quad y d x+\cos \quad x \quad s \in y d y=0$.

- Watch Video Solution

9. Find the particular solution of the differential equation:
$\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$, given that $y=1$, when $x=0$.
A. $\cot ^{-1} y-\cot ^{-1} e^{x}=\frac{\pi}{2}$
B. $\cot ^{-1} y+\cot ^{-1} e^{x}=\frac{\pi}{2}$
C. $\tan ^{-1} y-\tan ^{-1} e^{x}=\frac{\pi}{2}$
D. $\tan ^{-1} y+\tan ^{-1} e^{x}=\frac{\pi}{2}$

Answer: D

D Watch Video Solution

10. Solve the differential equation $y e^{\frac{x}{y}} d x=\left(x e^{\frac{x}{y}}+y^{2}\right) d y(y \neq 0)$

- Watch Video Solution

11. Find a particular solution of the differential equation
$(x \quad y) \quad(d x+d y)=d x \quad d y$, given that $y=1$,
when $x=0$.(Hint: put $x \quad y=t$).

- Watch Video Solution

12. Solve the differential equation $\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right] \frac{d x}{d y}=1(x \neq 0)$

- Watch Video Solution

13. Find the particular solution of the differential equation. $\frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x,(x \neq 0)$, given that $y=0$ when $x=\frac{\pi}{2}$.

- Watch Video Solution

14. find the particular solution satisfying the given condition, for the following differential equation: $(x+1) \frac{d y}{d x}=2 e^{-y}-1$ given that $y=0$ when $x=0$

- Watch Video Solution

15. The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20,000 in 1999 and 25000 in the year 2004, what will be the population of the

- Watch Video Solution

16. The general solution of the differential equation $\frac{y d x-x d y}{y}=0$ is :
A. $x y=C$
B. $x=C y^{2}$
C. $y=C x$
D. $y=C x^{2}$

Answer:

- Watch Video Solution

17. The general solution of a differential equation of the type $\frac{d x}{d y}+P_{1} x=Q_{1} \quad$ is \quad (A) $\quad y e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+C$
$y \dot{e} \dot{\int P}^{\int P_{1} d x}=\int\left(Q_{1} e^{\int P_{1} d x}\right) d x+C$ (C) $x e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+C$
$x \mathrm{e}^{\wedge}$ (intP_1dx)
A. $y \cdot e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+C$
B. $y \cdot e^{\int P_{1} d x}=\int\left(Q_{1} e^{\int P_{1} d x}\right) d x+C$
C. $x \cdot e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+C$
D. $x \cdot e^{\int P_{1} d x}=\int\left(Q_{1} e^{\int P_{1} d x}\right) d x+C$

Answer:

- Watch Video Solution

18. The solution of the differential equation,
$e^{x}(x+1) d x+\left(y e^{y}-x e^{x}\right) d y=0$ with initial condition $f(0)=0$, is
A. $2 x e^{y}+y(2)=C$
B. $2 x e^{x} e^{-y}+y^{2}=C$
C. $y e^{x}+x^{2}=C$
D. $y e^{y}+x^{2}=C$

Answer: B

- Watch Video Solution

