# ©゙doubtnut 

## MATHS

# BOOKS - NAGEEN MATHS (HINGLISH) 

## THREE-DIMENSIONAL GEOMETRY

## Solved Example

1. A line makes $30^{\circ}, 120^{\circ}$ and $90^{\circ}$ angles from the positive direction of $x$ axis, $y$-axis and $z$-axis respectively. Find its direction cosines.
A. $\frac{\sqrt{3}}{2}, 1,0$
B. $\frac{\sqrt{3}}{2},-\frac{1}{2}, 0$
C. $\sqrt{3},-1,0$
D. $\frac{\sqrt{3}}{2}, \frac{1}{2}, 0$
2. Find the direction ratios and direction cosines of a line joining the points $(3,-4,6)$ and $(5,2,5)$.

## ( Watch Video Solution

3. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

## - Watch Video Solution

4. A vector of magnitude 6 units makes equal makes angles from $O X-, O Y-$ and $O Z$-axes. Find the vector.

## - Watch Video Solution

5. Find the equation of a line passing through the point $(2,-3,5)$ and parallel to vector $(3 \hat{i}+2 \hat{j}-\hat{k})$.

## Watch Video Solution

6. Find the vector and cartesian equation of a line passes through the points ( $1,3,2$ ) and origin.

## - Watch Video Solution

7. Find the value of $\lambda$. If the points $A(-1,3,2), B(-4,2,-2)$ and $C(5, \lambda, 10)$ are collinear.
A. 2
B. 3
C. 4
D. 5

## - Watch Video Solution

8. Find the angle between the lines $\vec{r}=(\hat{i}+\hat{j})+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and $\vec{r}=(\hat{i}-\hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$

## - View Text Solution

9. Show that the lines
$\frac{x-1}{1}=\frac{y}{-5}=\frac{z}{3}$ and $\frac{x+1}{7}=\frac{y}{2}=\frac{z-3}{1}$ are
A. perpendicular
B. parallel
C. perpendicular and parallel
D. none of these

## Watch Video Solution

10. Show that the lines $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7} \quad$ and $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ intersect. Also find the co-ordinates of their point of intersection.
A. $(5,7,6)$
B. $(5,-7,5)$
C. $(5,-7,6)$
D. $(-4,-7,6)$

## Answer: C

## - Watch Video Solution

11. Find the co-ordinates of a point where the line $\frac{x-1}{-2}=\frac{y-2}{3}=\frac{z+5}{-4}$, meets the plane $2 x+4-z=3$.
A. $(-3,-1,-1)$
B. $(3,1,1)$
C. $(2,-3,-1)$
D. $(3,-1,-1)$

## Answer: D

## - Watch Video Solution

12. Find the co-ordinates of the foot of perpendicular drawn from point $A(1,6,3)$ to the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$.

## - Watch Video Solution

13. Find the shortest distance the lines $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}+\hat{j}+\hat{k})-\mu(3 \hat{i}-5 \hat{j})$
14. Find the shortest distance between the lines $\frac{x+2}{-4}=\frac{y}{1}=\frac{z-7}{1}$ and $\frac{x+3}{-4}=\frac{y-6}{3}=\frac{9}{2}$

## - Watch Video Solution

15. Find the shrotest distance between the lines
$\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(2 \hat{i}-\hat{j}+\hat{k})$.

## - Watch Video Solution

16. Show that the points $A(0,4,3), B(-1,-5,-3), C(-2,-2,1)$ and $D(1,1,1)$ are coplanar. Also find the equation of the plane in which these points lie.

## - Watch Video Solution

17. Find the equation of the plane which cuts the intercepts of length $3,-4$ and 2 units on the axes respectively.

## - Watch Video Solution

18. Convert the equation of plane $2 x-4 y+3 z=24$ into intercept from and find the intercepts cuts from the axes.

## - Watch Video Solution

19. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the three coordinate axes is constant. Show that the plane passes through a fixed point.

## - Watch Video Solution

20. A plane cuts the co-ordinate axes at $A, B$ and $C$ respectively. If the centroid of $\triangle A B C$ is $(2,-3,4)$, find the equation of the plane.

## - Watch Video Solution

21. Find the vector and equation of a plane which is at a distance of 10 units from origin and normal vector from origin to this plane is $2 \hat{i}-\hat{j}+2 \hat{k}$.

## - Watch Video Solution

22. The vector equation of a plane is $\vec{r} \cdot(3 \hat{i}+2 \hat{j}-6 \hat{k})=56$. Convert it into normal form. Also find the length of perpendicular from origin and direction cosines of normal to the plane.

## - Watch Video Solution

23. The co-ordiantes of the foot of perpendicular from origin to a plane are $(1,2,-3)$. Find the eqution of the plane.

## - Watch Video Solution

24. Find the normal form of the plane $2 x+3 y-z=5$. Also find the length of perpendicular from origin and d.c's of the normal to the plane.

## - Watch Video Solution

25. Find the vector and cartesian equation of plane which passes through the point $(1,3,-2)$ and normal to the vector $(2 \hat{i}+\hat{j}-3 \hat{k})$.
A. $2 x+y+3 z=11$
B. $2 x+y-3 z=11$
C. $2 x-y-3 z=11$
D. $2 x-y+3 z=11$

## Answer: B

## D Watch Video Solution

26. Find the vector equation of the following plane in product form $\vec{r}=(\hat{i}-\hat{k})+\lambda(\hat{i}+2 \hat{j})+\mu(\hat{i}+3 \hat{j}-\hat{k})$.

## - Watch Video Solution

27. Find the cartesian form of the equation of the plane.
$\vec{r}=(\lambda-\mu) \hat{i}+(1-\mu) \hat{j}+(2 \lambda+3 \mu) \hat{k}$

## - Watch Video Solution

28. Find the angle between the planes $3 x+y+2 z=1$ and $2 x-y+z+3=0$.
29. Find the value of ' $\lambda$ ' if the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})+3=0$ and $\vec{r} \cdot(\lambda \hat{i}+2 \hat{j}+7 \hat{k})=10$ are perpendicular.

## - Watch Video Solution

30. Find the equation of a plane passes through the point $(1,-2,4)$ and parallel to the plane $3 x-y+3+2 z+5=0$.

## - Watch Video Solution

31. Find the equation of the plane which passes through the point $(2,2,2)$ and through the intersection of the planes $3 x-y+2 z=4$ and $x+y+z=2$.

## - Watch Video Solution

32. Find the vector equation of a plane passing through the intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})-5=0$ and through the point $(2,2,1)$.
A. $\vec{r} \cdot(11 \hat{i}+12 \hat{j}+13 \hat{k})=59$
B. $\vec{r} \cdot(11 \hat{i}+12 \hat{j}-13 \hat{k})=59$
c. $\vec{r} \cdot(11 \hat{i}-12 \hat{j}+13 \hat{k})=59$
D. $\vec{r} \cdot(11 \hat{i}-12 \hat{j}-13 \hat{k})=59$

## Answer: A

## - Watch Video Solution

33. Find the angle between the line
$\vec{r}=(2 \hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}+2 \hat{j}+\hat{k}) \quad$ and the plane
$\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})+1=0$.
34. If the line $\vec{r}=(2 \hat{i}+\hat{j}-\hat{k})+\lambda(\hat{i}+m \hat{j}-2 \hat{k})$ is parallel to the plane $\vec{r} \cdot(2 \hat{i}+\hat{j}+m \hat{k})=1$ then find the value of $m$.

## Watch Video Solution

35. Find the equation of a plane passes through the points $(0,0,0)$ and $(1,3,5)$ and parallel to the line $\frac{x}{-2}=\frac{y}{1}=\frac{z+3}{4}$.

## - Watch Video Solution

36. Find ten equation of the plane passing through the point $(0,7,-7)$ and containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$.

## - Watch Video Solution

37. Find the perpendicular distance from the point $(1,-3,4)$ to the plane $3 x-4 y+12 z-1=0$.
38. Show that the point $(1,2,1)$ is equidistant from the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}-2 \hat{k})=5$ and $\vec{r} \cdot(2 \hat{i}-2 \hat{j}+\hat{k})+3=0$.

## - Watch Video Solution

39. Show that the distance between planes
$2 x-2 y+z+3=0$ and $4 x-4 y+2 z+5=0 i s \frac{1}{6}$

## - Watch Video Solution

40. Find the equations of het planes parallel to the plane $x+2 y-2 z+8=0$ which are at distance of 2 units from the point $(2,1,1)$.

## - Watch Video Solution

41. Find the co-ordinates of the foot of perpendicular and its perpendicular distance drawn from the point $(1,3,4)$ to the plane $2 x-y+2+3=0$. Also find the image of the point $(1,3,4)$ in the plane.

## - Watch Video Solution

42. Find the image of the point $(1, \backslash 2, \backslash 3)$ in the plane $x+2 y+4 z=38$

## - Watch Video Solution

43. A variable plane is at a constant distance $p$ from the origin and meets the coordinate axes in $A, B, C$. Show that the locus of the centroid of the tehrahedron $O A B C i s x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$.

## - Watch Video Solution

44. Find the distance of the point $(2,3,4)$ from the line $\frac{x+3}{3}=\frac{y-2}{6}=\frac{z}{2} \quad$ measured parallel to the plane $3 x+2 y+2 z-5=0$.

## - Watch Video Solution

45. Show that the line
$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$
$\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})$ are coplanar. Also find the equation of plane in which these lines lie.

## - Watch Video Solution

46. 

Prove
that
the
lines
$\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-6}{7}$ are coplanar .
Aslo, find the plane containing these two lines.
47. Find the equation of a plane passing through the parallel lines $\frac{x-3}{1}=\frac{y+2}{-4}=\frac{z}{5}$ and $\frac{z-4}{1}=\frac{y-3}{-4}=\frac{z-2}{7}$ are coplanar. Also find the equation of plane in which these lines lie.

## - Watch Video Solution

## Exercise 11 A

1. If a line makes angles $900,1350,450$ with the $\mathrm{x}, \mathrm{y}$ and z -axes respectively, find its direction cosines.

## - Watch Video Solution

2. Can a line make angle $45^{\circ}, 60^{\circ}, 120^{\circ}$ with $x-, y$ - and $z$-axes respectively.

## - Watch Video Solution

3. Find the direction cosines of that line whose direction ratios are as follows:
(i) $1,-2,2$, (ii) $2,6,3$
(iii) $3,1,-2$

## D Watch Video Solution

4. Find the direction cosines of the line joining the following points :
(i) $A(2,-1,3), B(3,1.1)$
(ii) $A(2,-1,2), B(-4,2,0)$
(iii) $A(4,3,-5), B(-2,1,-8)$

## - Watch Video Solution

5. Show that the point $A(2,-3,-4), B(1,2,3), C(3,-8,-11)$ are collinear.
6. Find the angle between those lines whose direction ratios are as follows:
(i) $(2,3,6)$ and $(1,2,2)$
(ii) $(4,-3,5)$ and $(3,4,5)$
(iii) $(1,2,1)$ and $(4,-3,2)$

## - Watch Video Solution

7. Find the angle between the following vectors :
(i) $\vec{a}=2 \hat{i}-6 \hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$
(ii) $\vec{a}=6 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=4 \hat{i}-2 \hat{j}+9 \hat{k}$

## - Watch Video Solution

8. Show that the joint of the points $(1,2,3),(4,5,7)$ is parallel to the join of the points $(-4,3,-6),(2,9,2)$.
9. If the co-ordinates of four points in space are $A(6,-6,0), B(-1,-7,6), C(3,-4,4) \quad$ and $\quad D(2,-9,2)$ then show that $A B$ is perpendicular to $C D$.

## - Watch Video Solution

10. If $\vec{r}$ is a vector of magnitude 21 and has direction ratios $2,-3 a n d 6$, then find $\vec{r}$.

## - Watch Video Solution

11. Find the angles which the following vectors, makes form the coordinates axes:
(i) $2 \hat{i}+\hat{j}+3 \hat{k}$, (ii) $3 \hat{i}-4 \hat{j}+5 \hat{k}$
12. Find the angle between the lines whose direction cosines are given by the equations $3 l+m+5 n=0$ and $6 m n-2 n l+5 l m=0$

## - Watch Video Solution

13. Prove that the lines whose directioncosines are given by the equtions $l+m+n=0$ and $3 l m-5 m n+2 n l=0$ are mutually perpendicular.

## - Watch Video Solution

14. If the direction cosines of two lines are $l_{1}, m_{1}, n_{1}$ and $l_{2}, m_{2}, n_{2}$, then find the direction cosine of a line perpendicular to these lines.

## - Watch Video Solution

15. Find the angel between any two diagonals of a cube.

## - Watch Video Solution

16. Find the angle between two lines whose direction ratios are proportional to $1,1,2 \operatorname{and}(\sqrt{3}-1),(-\sqrt{3}-1), 4$.

## - Watch Video Solution

17. Find the angles of a triangle whose verties are $A(3,2,1), B(35,2)$ and $C(5,-2,3)$.

## - Watch Video Solution

18. If a line makes angles $900,1350,450$ with the $\mathrm{x}, \mathrm{y}$ and z -axes respectively, find its direction cosines.

## - Watch Video Solution

19. Find the direction cosines of a line which makes equal angles with the coordinate axes.
20. If a line has the direction ratios $18,12,4$, then what are its direction cosines?

## - Watch Video Solution

21. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

## - Watch Video Solution

22. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,4),(1,1,2)$ and $(5,5,2)$.

## - Watch Video Solution

1. Find the vector equation of a lin e passes through the point whose position vector is $(2 \hat{i}-\hat{j}-\hat{k})$ and parallel to vector $\hat{i}+5 \hat{k}$.

## - Watch Video Solution

2. Find the vector equation of a line passes through the point $\hat{i}+3 \hat{j}+\hat{k}$ and parallel to vector $3 \hat{i}-2 \hat{j}+k$.

## - Watch Video Solution

3. Find the equation of a line passes through the point $(2,3,4)$ and whose direction ratios are $3,-1,-2$.

## - Watch Video Solution

4. Find the equation of a line parallel to the line $\frac{x-5}{3}=\frac{y+1}{-2}=\frac{z}{1}$ and passes through the point $(0,-1,2)$.
5. The cartesian equation of a line is $\frac{x+2}{1}=\frac{y+3}{-2}=\frac{z}{3}$, find its vector equation.

## - Watch Video Solution

6. Find the vector equation of the line through $A(3,4,-7) \operatorname{and} B(1,-1,6)$. Find also, its Cartesian equations.

## - Watch Video Solution

7. Find the equation of a line passes through the points whose position vectors are $(\hat{i}+4 \hat{j}+\hat{k})$ and $(2 \hat{i}-\hat{j}+5 \hat{k})$.

## - Watch Video Solution

8. Prove that the points $A(2,0,-3), B(1,-2,-5)$ and $C(3,2,-1)$ are collinear.

## Watch Video Solution

9. Prove that the points $A(9,-1,4), B(-1,-3,2)$ and $C(4,-2,3)$ are collinear.

## - Watch Video Solution

10. Prove that the point $A(1,2,3), B(-2,3,5)$ and $C(7,0,-1)$ are collinear.

## - Watch Video Solution

11. Find the values of $\lambda$ ad $\mu$ if the points $A(-1,4,-2), B(\lambda, \mu, 1)$ and $C(0,2,-1)$ are collinear.
12. Find the equation of a line passes through the point $\hat{i}+\hat{j}+5 \hat{k}$ and parallel to line joining the points $(2,-4,1)$ and $(0,1,3)$.

## - Watch Video Solution

13. The cartesian equation of a line is $6 x+1=3 y-2=3-2 x$. Find its direction ratios.

## - Watch Video Solution

14. Find the angle between the following pairs of lines
(i)

$$
\vec{i}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}) \quad \text { and }
$$

$\vec{r}=5 \hat{j}+\hat{k}+\mu(3 \hat{i}+2 \hat{j}+6 j \hat{k})$
(ii) $\vec{r}=\hat{i}+\hat{j}+\lambda(\hat{i}+2 \hat{j}+\hat{k})$ and $\vec{r}=\mu(3 \hat{i}+6 \hat{j}+4 \hat{k})$
(iii) $\frac{x-1}{2}=\frac{y-2}{3}-\frac{z-1}{-3}$ and $\frac{x+3}{-1}=\frac{y-5}{8}=\frac{z-1}{4}$
(iv) $\frac{5-x}{-2}=\frac{y+3}{-2}=\frac{z-5}{1}$ and $\frac{x+1}{2}=\frac{2 y-3}{4}=\frac{z-2}{1}$
(v) $\frac{x+3}{1}=\frac{y-1}{2}, z=3$ and $\frac{x-1}{-2}=\frac{y+3}{3}=\frac{z+5}{4}$

## - Watch Video Solution

15. (i) Show that the line $\frac{x+3}{2}=\frac{y+1}{-1}=\frac{z+3}{3}$ and $\frac{x}{5}=\frac{y-5}{1}=\frac{z-3}{-3}$ are perpendicular.
(ii) Show that the lines $\frac{x-4}{-2}=\frac{y+3}{4}=\frac{z+1}{1}$ are mutually perpendicular.

## - Watch Video Solution

16. Find the values of $\lambda$ if the following of lines perpendicular:
$\frac{1-x}{3}=\frac{7 y-14}{3 \lambda}=\frac{z+1}{2}$ and $\frac{7-7 x}{3 \lambda}=\frac{y}{1}=\frac{1-z}{5}$

## - Watch Video Solution

17. Show that the following pairs of lines intersect. Also find their point of intersection :
(i) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$
(ii) $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ and $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$

## - Watch Video Solution

18. Show that the lines
$\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-1}{1} \quad$ and $\quad \frac{x-1}{1-}=\frac{y-1}{-1}=\frac{z-1}{2} \quad$ do not intersect.

## - Watch Video Solution

19. Show that the lines $\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(3 \hat{i}-\hat{j})$ and $\vec{r}=4 \hat{i}+\hat{k}+\mu(2 \hat{i}+3 \hat{k})$ intersect. Also find the co[-ordinates of their point of intersection.
20. Find the co-ordinates of that point at which the lines joining the points $(1,1,2)$ and $(3,5,-1)$ meets the $x y$-plane.

## - Watch Video Solution

21. Find the co-ordinates of that point at which the line joining the points
( $-2,1,4$ ) and $(2,0,3)$ meets the $y z$ - plane.

## - Watch Video Solution

22. Find the coordinates of a point at which the line $\frac{x+1}{2}=\frac{y-3}{-2}=\frac{z+5}{6}$, meets the plane $3 x-y+z=3$.

## - Watch Video Solution

23. Find the coordinates of a point at which the line $\frac{x+1}{2}=\frac{y-1}{-2}=\frac{z+5}{6}$, meets the plane $x-2 y+3 z=8$.
24. Find the co-ordiantes of the foot of perpendicular drawn from the point $(1,2,3)$ to the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$.

## - Watch Video Solution

25. Find the length and the foot of the perpendicular drawn from the point $(2,-1,5)$ to the line $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{x+8}{11}$

## - Watch Video Solution

26. Find the co-ordinates of the foot of perpendicular and length of perpendicular drawn from point $(\hat{i}+6 \hat{j}+3 \hat{k})$ to the line $\vec{r}=\hat{j}+2 \hat{k}+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})$.

## - Watch Video Solution

27. Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$

## Watch Video Solution

28. Find the image of the point $(0,2,3)$ in the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$.

## Watch Video Solution

29. Find the image of the point $(3 \hat{i}-\hat{j}+11 \hat{k})$ in the line $\vec{r}=2 \hat{j}+3 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$.

## - Watch Video Solution

30. Find the shortest distance between the following lines:
(i) $\vec{r}=4 \hat{i}-\hat{j}+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and
$\vec{r}=\hat{i}-\hat{j}+2 \hat{k}+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$
(ii) $\vec{r}=-\hat{i}+\hat{j}-\hat{k}+\lambda(\hat{i}+\hat{j}-\hat{k})$ and
$\vec{r}=\hat{i}-\hat{j}+2 \hat{k}+\mu(-\hat{i}+2 \hat{j}+\hat{k})$
(iii) $\frac{x-1}{-1}=\frac{y+2}{1}=\frac{z-3}{-2}$ and
$\frac{x-1}{1}=\frac{y+1}{2}=\frac{z+1}{-2}$
(iv) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$
(v) $\vec{r}=\vec{i}+2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ and
$\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(-\hat{i}+\hat{j}-\hat{k})$

## - Watch Video Solution

31. Find the co-ordinates of the point at a distance of $\sqrt{5}$ units from the point $(1,2,3)$ on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$.

## - Watch Video Solution

32. Find the co-ordinates of the point at a distance of $\sqrt{14}$ from the midpoint of AB on the line joining the point $A(1,2,3)$ and $B(3,6,9)$.
33. Find the equations of the plane passing through the following points :
(i) $A(2,1,0), B(3,-2,-2), C(3,1,7)$
(ii) $A(1,1,1), B(1,-1,2), C(-2,-2,2)$
(iii) $A(0,-1,0), B(2,1,-1), C(1,1,1)$
(iv) $A(1,-2,5), B(0,-5,-1), C(-3,5,0)$
(v) $(4,-1,-1), B(2,0,2), C(3,-1,2)$

## - Watch Video Solution

2. Show that the points $A(-1,4,-3), B(-3,2,1), C(3,2,-5)$ and $D(-3,8,-5)$ are coplanar. Also find the equation of the plane passing through these points.

## - Watch Video Solution

3. Show that the point $A(4,-1,2), B(-3,5,1), C(2,3,4)$ and $D(1,6,6)$ are coplanar. Also find the equation of the plane passing through these points.

## - Watch Video Solution

4. Find the equation of a plane which cuts the interscepts 4,3 and -2 units on $x, y$ and $z$-axes respectively.

## - Watch Video Solution

5. Find the equation of a plane passes through the point $(1,2,3)$ and cuts equal intercepts on the co-ordinate axes.

## - Watch Video Solution

6. Find the equation of a plane passes through the point $(4,4,1)$ and the ratio of intercepts cuts on axes from this plane is $2: 1: 1$.

## Watch Video Solution

7. A plane meets the coordinate axes at $A, B a n d C$ respectively such that the centroid of triangle $A B C$ is $(1,-2,3)$. Find the equation of the plane.

## - Watch Video Solution

## Exercise 11 D

1. Find th equation of the plane which is at distance of 8 units from origin and the perpendicular vector from origin to this plane is $(2 \hat{i}+\hat{j}-2 \hat{k})$.

## - Watch Video Solution

2. Find the equation of the plane which is at a distance of $\sqrt{29}$ units from origin and the perpendicular vector from oiring to this plane is $(4 \hat{i}-2 \hat{j}+3 \hat{k})$.

## - Watch Video Solution

3. The vector equation of a plane is $\vec{r} \cdot(\hat{i}+2 \hat{j}+2 \hat{k})=12$. Convert it into normal form. Find the d.c.s' of the perpendicular vector drawn from origin to this plane and length of perpendicular.

## - Watch Video Solution

4. The vector equation of a plane is $\vec{r} \cdot(6 \hat{i}-3 \hat{j}-\hat{k})+2=0$. Convert it into normal form. Also find the length of perpendicular from origin and the d.c.'s of this perpendicular vector.

## - Watch Video Solution

5. Find the equation of a plane which is a distance of 2 units from origin and the d.r's of perpendicular vectors are $2,-1,2$.

## - Watch Video Solution

6. Find the angle between the planes
$\vec{r} \cdot(\hat{i}+\hat{j}-2 \hat{k})=3$ and $\vec{e} r \cdot(2 \hat{i}-2 h * j+\hat{k})=22$

## - Watch Video Solution

7. Find the vector equation of the following planes whose Cartesian equations are $x+2 y+3 z+5=0$

## - Watch Video Solution

8. The co-ordiantes of the foot of perpendicular from origin to a plane are
$(3,-2,1)$. Find the equation of the plane.
9. Find the normal form of the plane $x+2 y-2 z+6=0$. Also find the length of perpendicular from origin to this plane and the d.c.'s of the normal.

## - Watch Video Solution

10. Find the d.c.'s of the normal and length of perpendicular from origin to the plane $x=2$.

## - Watch Video Solution

11. In each of the following cases,determine the direction cosines of the normal to the plane ned its distance from the origin: $x+y+z=1$

## - Watch Video Solution

12. Find the coordinates of the foot of perpendicular drawn from origin to the planes: $2 x-3 y+4 z-6=0$

## - Watch Video Solution

13. Find the coordinates of the foot of perpendicular drawn from origin to the planes: $x+y+z=1$

## - Watch Video Solution

14. Find the vector and Cartesian equation of the plane that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$.

## - Watch Video Solution

15. Find the vector and cartesian equation of a plane which passes through the point $(2,-1,3)$ and perpendicular to a line whose d.r.'s are
$1,-3,5$.

## - Watch Video Solution

16. Find the Cartesian equtionof the followig plane: 'vecr=(lamd-2mu)hati+ (3-mu)hatj+(2lamda+mu)hatk.

## - Watch Video Solution

17. Convert the equation of the plane
$\vec{r}=(\hat{i}-\hat{j})+\lambda(-\hat{i}+\hat{j}+2 \hat{k})+\mu(\hat{i}+2 \hat{j}+\hat{k}) \quad$ into scalar product form.

## - Watch Video Solution

18. Find the vector equation of the plane passing thrugh the points $(2,5,-3),(-2,-3,5),(5,3,-3)$.
19. Find the equation of the plane passing through $A(2,2,-1), B(3,4$, 2) $\operatorname{and} C(7,0,6)$. Also find a unit vector perpendicular to this plane.

## - Watch Video Solution

20. Find the cartesian equation of plane passing through the points $(1,1,1),(1,-1,1)$ and $(-7,-3,-5)$.

## - Watch Video Solution

21. Find the angle between the folowing planes :-
(i) $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=5$ and $\vec{r} \cdot(-\hat{i}+\hat{j})=1$
(ii) $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-6 \hat{k})=1$ and
$\vec{r} \cdot(\hat{i}-2 \hat{j}+2 \hat{k})+3=0$
(iii) $x+y-2 z=3$ and $2 x-2 y+z+1=0$
(iv) $x+y-z=8$ and $-x+2 y+z-1=0$
22. Find the value of ' $\lambda$ ' if the following planes are perpendicular.
(i) $2 x-4 y+3 z+1=0$ and $x+2 y+\lambda z=3$
(ii) $\vec{r} \cdot(3 \hat{i}-6 \hat{j}-2 \hat{k})=1$ and
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\lambda \hat{i})=2$

## - Watch Video Solution

23. Find the equation of the plane passes through the point $(2,3,5)$ and parallel to the plane $x-3 y+z=8$.

## - Watch Video Solution

24. Find the equation of the plane passes through the point $(1,-3,1)$ and parallel to the plane $2 x+3 y+z=1$.

## - Watch Video Solution

25. Find the equation of the plane passes through the point $(2,1,-2)$ and parallel to the plane $\vec{r} \cdot(3 \hat{i}+\hat{j}-\hat{k})=0$.

## - Watch Video Solution

26. Find the equation of the plane through the points $(2,2,1)$ and $(9,3,6)$ and perpendicar $\rightarrow$ thepla $\neq 2 \mathrm{x}+6 \mathrm{y}+6 \mathrm{z}=1^{`}$

## - Watch Video Solution

27. Find the equation of a plane passes through the point ( $0,0,0$ ) and perpendicular to each to the planes $x+2 y-z=1$ and $3 x-4 y+z=5$.

## - Watch Video Solution

28. Find the equation of the plane passing through the point ( $1,3,2$ ) and perpendicular to each of the planes $x+2 y+3 z=5$ and
$3 x+3 y+z=0$.

## - Watch Video Solution

29. Find the equation of a plane passing through the intersection of the planes $\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=5$ and $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=3$ and passes through the point $(2,1,-2)$.

## - Watch Video Solution

30. Find the equation of a plane containing the line of intersection of the planes $x+y+z-6=0 a n d 2 x+3 y+4 z+5=0$ passing through $(1,1,1)$.

## - Watch Video Solution

31. Find the equation of the plane passing through the intersection of the planes $2 x-3 y+z-4=0 a n d x-y+z+1=0$ and perpendicular to
the plane $x+2 y-3 z+6=0$.

## - Watch Video Solution

32. Find the equation of a plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}-7 \hat{j}+4 \hat{k})=3$ and $\vec{r} \cdot(3 \hat{i}-5 \hat{j}+4 \hat{k})+11-0$ and passes through the point $(-2 \hat{i}+\hat{j}+3 \hat{k})$.

## - Watch Video Solution

33. Find the equation of a plane passing through the intersection of the planes $x-3 y+2 z-5-0$ and $2 x+y+3 z-1=0$ and passes through the point $(1,-2,3)$.

## - Watch Video Solution

34. Prove that the equator of a plane through point $(2,-4,5)$ and the line $o$ intersection of the planes $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})=1$ and
$\vec{r} \cdot(3 \hat{i}+\hat{j}-2 \hat{k})=2$ is $\vec{r} \cdot(2 \hat{i}+8 \hat{j}+7 \hat{k})=7$.

## - Watch Video Solution

35. Find the vector equation to the plane through the point $(2,1,-1)$ passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0 a d \vec{r} \cdot(\hat{j}+2 \hat{k})=0$

## - Watch Video Solution

## Exercise 11 E

1. Find the angle between the following lines and the planes:
(i) line $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and planes
$\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=4$.
(ii) line $\vec{r}=(2 \hat{i}+3 \hat{j}+9 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ and plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$.
(iii) line $\frac{x+1}{3}=\frac{y}{2}=\frac{z}{4}$ and plane $2 x+y-3 z=5$.
(iv) line $\frac{x-3}{9}=\frac{y+4}{6}=\frac{z+2}{2}$ and plane $3 x-y+z=0$.

## - Watch Video Solution

2. Find the value of ' $m$ ' for which the line $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}+\hat{k}) \quad$ is parallel to the plane $\vec{r} \cdot(3 \hat{i}-2 \hat{j}+m \hat{k})=5$.

## Watch Video Solution

3. Find the value of ' $m$ ' for which the line $\vec{r}=\hat{i}+\lambda(2 \hat{i}-m \hat{j}-3 \hat{k})$ is parallel to the plane $\vec{r} \cdot(m \hat{i}+3 \hat{j}+\hat{k})=1$.

## - Watch Video Solution

4. Find the Cartesian equation of the plane passing through the points $A(0,0,0)$ and $b(3,-1,2)$ and parallel to the line
$\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$

## - Watch Video Solution

5. Find the equation of the plane passes through the point $(2,3,-4)$ and ( $1,-1,3$ ) and parallel to $x$-axis.

## - Watch Video Solution

6. Find the equation of a line passing through the point $(1,2,3)$ and perpendicular to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=1$.

## Watch Video Solution

7. The equation of the line passing through $(1,2,3)$ and parallel to the planes $x-y+2 z=5$ and $3 x+y+z=6$ is.

## - Watch Video Solution

8. Find the perpendicular distance from the point $(2 \hat{i}-\hat{j}+4 \hat{k})$ to the plane $\vec{r} \cdot(3 \hat{i}-4 \hat{j}+12 \hat{k})=1$.

## - Watch Video Solution

9. Find the perpendicular distance from the point $(2 \hat{i}+\hat{j}-\hat{k})$ to the plane $\vec{r} \cdot(i-2 \hat{j}+4 \hat{k})=3$.

## - Watch Video Solution

10. Find the distance of the point $(2,1,0)$ from the plane $2 x+y+2 z+5=0$.

## - Watch Video Solution

11. Find the distance of each of the following points from the corresponding given plane: $(2,3,-5), x+2 y-2 z=9$
12. Ifthe points $(1,1, \lambda)$ and $(-3,0,1)$ are equidistant from the plane, $3 x+4 y-12 z+13=0$, then $\lambda$ satisfiesthe equation

## - Watch Video Solution

13. Find the distance between the planes
$2 x-y+2 z=4$ and $6 x-3 y+6 z=2$.

## - Watch Video Solution

14. Find the distance between the parallel planes
$\vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})=5$ and
$\vec{r} \cdot(6 \hat{i}-9 \hat{j}+18 \hat{k})+20=0$.

- Watch Video Solution

15. Find the equation of the plane parallel to the plane $x-2 y+2 z-3=0$, which is at a unit distance from $(1,2,3)$

## - Watch Video Solution

16. Find the length of the foot of the perpendicular from the point $(1,1,2)$ to the plane $\vec{r} \cdot(2 \hat{i}-2 \hat{j}+4 \hat{k})+5=0$

## - Watch Video Solution

17. Find the co-ordinates of the foot of perpendicular and the length of perpendicular drawn from the point $(2,3,7)$ to the plane $3 x-y-z=7$.

## - Watch Video Solution

18. Find the image of the point $(1,3,4)$ in the plane $2 x-y+z+3=0$.

## (D) Watch Video Solution

19. Find the image of point $(0,0,0)$ in the plnae $3 x+4-6 z+1=0$.

## - Watch Video Solution

20. A variable plane is at a constant distance $p$ from the origin and meets the coordinate axes in $A, B, C$. Show that the locus of the centroid of the tehrahedron $O A B C i s x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$.

## - Watch Video Solution

21. The distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$, is

## - Watch Video Solution

22. Find the distance of the point ( $0 .-3$. -2 ) from the plane $x+2 y-z=1$ measured parallel to $\frac{x+1}{2}=\frac{y+1}{2}=\frac{z}{3}$

## - Watch Video Solution

23. Find the equation of the plane passing through the intersection of the planes $2 x-3 y+z-4=0 a n d x-y+z+1=0 \quad$ and perpendicular to the plane $x+2 y-3 z+6=0$.

## - Watch Video Solution

24. Find the equation of the plane through the intersection of the planes $3 x-4 y+5 z=10$ and $2 x+2 y-3 z=4$ and parallel to the line $x=2 y=3 z$.

## - Watch Video Solution

25. Find the equation of a line passing through the point $(2 \hat{i}-3 \hat{j}-5 \hat{k})$ and perpendicular to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+5 \hat{k})+2=0$. Also find the point of intersection of this line and the plane.

## - Watch Video Solution

26. Find the equation of the plane which is at a distance of 5 units fom the origin and perpendiculat to $2 \hat{i}-3 \hat{j}+6 \hat{k}$

## - Watch Video Solution

## Exercise 11 F


find the equation of the plane containing them.
2. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.

## - Watch Video Solution

3. Find the vector equation of the plane in which the lines $\vec{r}=\hat{i}+\hat{j}+\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and $\vec{r}=(\hat{i}+\hat{j})+\mu(-\hat{i}+\hat{j}-2 \hat{k})$ lie.

## - Watch Video Solution

4. Show that the lines

$$
\begin{aligned}
& \vec{r}=(2 \hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k}) \text { and } \\
& \vec{r}=(2 \hat{i}+6 \hat{j}+3 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+4 \hat{k})
\end{aligned}
$$

are coplanar. Also the find the equation of the plane passing through these lines.
5. The equation of the plane which contains two parallel lines $\frac{x+1}{3}=\frac{y-2}{2}=\frac{z}{1}$ and $\frac{x-3}{3}=\frac{y+4}{2}=\frac{z-1}{1}$ is

## - Watch Video Solution

## Exercise 11 G

1. Show that the line through the points $(1,1,2),(3,4,2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.
A. $30^{\circ}$
B. $60^{\circ}$
C. $90^{\circ}$
D. $180^{\circ}$

## Answer: C

2. Find the shortest distance between the following pair of line:
$\vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and $\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}$
A. $\frac{4}{\sqrt{19}}$
B. $\frac{3}{\sqrt{19}}$
C. $\frac{2}{\sqrt{19}}$
D. $\frac{1}{\sqrt{19}}$

## Answer: B

## Watch Video Solution

3. Find the distance of the plane $2 x-2 y+4 z=6$ from the origin.
A. $\frac{8}{\sqrt{29}}$
B. $\frac{6}{\sqrt{29}}$
C. $\frac{4}{\sqrt{29}}$
D. $\frac{2}{\sqrt{29}}$

## Answer: A

## - Watch Video Solution

4. A plane meets the coordinate axes at $A, B a n d C$ respectively such that the centroid of triangle $A B C$ is $(1,-2,3)$. Find the equation of the plane.
A. $\alpha x+\beta y+\gamma z=1$
B. $\alpha^{2} x+\beta^{2} y+\gamma^{2} z=3$
C. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=1$
D. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$.

## Answer: D

5. Find the euqationof the plane which cuts intercepts $2,3,-4$ on the axes.
A. $6 x+4 y-3 z=12$
B. $6 x-4 y+3 z=12$
C. $2 x-3 y+4 z=12$
D. None of these

## Answer: B

## - Watch Video Solution

6. Find the perpendicular distasnce of the point (1,0,0) from the lines ( $x$ -1)/2=(y+1)/(-3)=(z+10)/8
A. $\sqrt{6}$ unit
B. $2 \sqrt{6}$ unit
C. $3 \sqrt{6}$ unit
D. None of these

## Answer: B

## - Watch Video Solution

7. Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$
A. $(1,0,7)$
B. $(0,1,7)$
C. $(7,-1,0)$
D. $(-7,-1,0)$

## Answer: A

## - Watch Video Solution

8. Find the image of the point $(1,3,4)$ in the plane $2 x-y+z+3=0$.
A. $(3,5,-2)$
B. $(2,3,-5)$
C. $(-3,5,2)$
D. $(-2,3,5)$

## Answer: C

## - Watch Video Solution

9. The distance between the planes $3 x+5 y+z=8$ and $3 x+5 y+z+27=0$ is :
A. $\frac{8}{\sqrt{35}}$
B. $\frac{27}{\sqrt{35}}$
C. $\sqrt{35}$
D. $2 \sqrt{35}$

## Answer: C

10. Find the equation of the plane passing through the points $(1,-1,2)$ and $(2,-2,2)$ and which is perpendicular to the plane $x-2 y+2 z=9$
A. $2 x+2 y+z=2$
B. $x+y-2 z+1=0$
C. $x+y-2 z=4$
D. None of these

## Answer: A

## - Watch Video Solution

## Exercise 11 H

1. An equation of a plane parallel to the plane $x-2 y+2 z-5=0$ and at a unit distance from the origin is
A. $x-2 y+2 z-3=0$
B. $x-2 y+2 z+1=0$
C. $z x-2 y+2 z-1=0$
D. $x-2 y+2 z+5=0$

## Answer: A

## - Watch Video Solution

2. If $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$ and
$|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$ then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|=?$
A. 1
B. 2
C. 3
D. 4

## Watch Video Solution

3. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3} \quad$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer $k$ is equal to
A. -5
B. 5
C. 2
D. -2

## Answer: A

## - Watch Video Solution

4. The vector parallel to the line of intersection of the planes
$\vec{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2$ is :
A. $2 \hat{i}+7 \hat{j}+13 \hat{k}$
B. $-2 \hat{j}+7 \hat{k}+13 \hat{k}$
C. $2 \hat{i}-7 \hat{j}+13 \hat{k}$
D. $-2 \hat{i}-7 \hat{j}+13 \hat{k}$

## Answer: B

## - Watch Video Solution

5. Equation of a plane passing through the intersection of the planes $\vec{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2$ and passing through the point $(\hat{i}+2 \hat{j}-\hat{k})$ is :
A. $\vec{r} \cdot(2 \hat{i}-7 \hat{j}-13 \hat{k})=1$
B. $\vec{r} \cdot(2 \hat{i}+7 \hat{j}+13 \hat{k})=1$
C. $\vec{r} \cdot(2 \hat{i}-7 \hat{j}-13 \hat{k})=4$
D. None of these

## - Watch Video Solution

6. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinate axes at A,B and C respectively. Find the equation of the sphere $O A B C$.
A. $x^{2}+y^{2}+z^{2}+a z+b y+c z=0$
B. $x^{2}+y^{2}+z^{2}+2 a z+2 b y+2 c z=0$
C. $x^{2}+y^{2}+z^{2}-a x-b y-c z=0$
D. None of these

## Answer: C

## D Watch Video Solution

7. Equation of the line passing through $(1,1,1)$ and parallel to the plane
$2 x+3 y+z+5=0$ is
A. $\frac{x-1}{-1}=\frac{y+2}{1}=\frac{z-3}{-1}$
B. $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z-3}{-1}$
C. $\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-3}{3}$
D. None of above

## Answer: A

## - Watch Video Solution

8. The perpendicular distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k}) \quad$ and the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is :
A. $\frac{10}{3}$
B. $\frac{5}{3 \sqrt{3}}$
C. $\frac{10}{3 \sqrt{3}}$
D. $\frac{5}{3}$

## - Watch Video Solution

9. Find the vector equation to the plane through the point $(2,1,-1)$ passing through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0$ and $\vec{r} \cdot(\hat{j}+2 \hat{k})=0$
A. $\vec{r} \cdot(\hat{i}+9 \hat{j}+11 \hat{k})=0$
B. $\vec{r} \cdot(\hat{i}+9 \hat{j}+11 \hat{k})=6$
C. $\vec{r} \cdot(\hat{i}-9 \hat{j}-11 \hat{k})=0$
D. None of the above

## Answer: A

## - Watch Video Solution

10. A line makes angles $\alpha, \beta$, $\gamma$ and $\delta$ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{5}{3}$

## Answer: C

## - Watch Video Solution

## Exercise 112

1. Show that the three lines with direction cosines
$\frac{12}{13},-\frac{3}{13},-\frac{4}{13}, \frac{4}{13}, \frac{12}{13}, \frac{3}{13}, \frac{3}{13},-\frac{4}{13}, \frac{12}{13} \quad$ are mutually perpendicular.
2. Show that the line thorugh the points $(1,-1,2)$ and $(3,4,-2)$ is perpendicular to the line through the points ( $0,3,2$ ) andf $(3,5,6)$.

## - Watch Video Solution

3. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(1,2,1),(1,2,5)$.

## - Watch Video Solution

4. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

## - Watch Video Solution

5. Find the equation of the line in Cartesiasn form that passes through the point with positoin vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.

## - Watch Video Solution

6. Find the cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$

## - Watch Video Solution

7. The cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.

## - Watch Video Solution

8. Find the vector and the cartesian equations of the lines that passes through the origin and $(5,2,3)$.

## - Watch Video Solution

9. Find the vector and the cartesian equations of the line that passes through the points $(3,2,5),(3,2,6)$.

## - Watch Video Solution

10. Find the angle between the following pairs of lines.
(i)

$$
\hat{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})
$$

and
$\vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$
(ii) $\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$ and
$\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$

## - Watch Video Solution

11. Find the angle between the following pair of lines: (i) $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\quad \frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$ (ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

## - Watch Video Solution

12. Find the values of p so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

## - Watch Video Solution

13. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

## - Watch Video Solution

14. Find the shortest distance between the following pair of line:

$$
\vec{r}=\hat{i}+2 \hat{j}+\hat{k}+\operatorname{lamd}(\hat{i}-\hat{j}+\hat{k}) \text { and } \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+
$$

## - Watch Video Solution

15. Find the shortest distance between the following lines: $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} ; \frac{3-x}{-1}=\frac{y-5}{-2}=\frac{z-7}{1}$

## - Watch Video Solution

16. Find the shortest distance between the following pair of line: $\vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and $\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}$

## - Watch Video Solution

17. Find the shortest distance between the following pair of line:

$$
\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \text { and } \vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(\dot{s}
$$

## - Watch Video Solution

1. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.(a) $z=2$ (b) $x+y+z=1$ (c) $2 x+3 y z=5(\mathrm{~d}) 5 y+8=0$

## - Watch Video Solution

2. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$

## ( Watch Video Solution

3. Find the Cartesian equations of the following planes whose vector equations are: $\vec{r} \cdot[(s-2 t) \hat{i}+93-t) \hat{j}+(2 s+t) \hat{k}]=15$

## D Watch Video Solution

4. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.(a) $2 x+3 y+4 z 12=0$ $3 y+4 z 6=0$ (c) $x+y+z=1$ (d) $5 y+8=0$

## - Watch Video Solution

5. Find the vector and Cartesian equation of the plane that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$.

## - Watch Video Solution

6. Find the equations of the planes that passes through three points. (a)
$(b)(c)((d)(e) 1, \quad 1, \quad 1(f)), \quad((g)(h) 6, \quad 4, \quad 5(i)), \quad((j)(k) \quad 4$
(n) (o) ` ( p ) (q) (( r ) (s) 1," "1," "O( t ))," "((

## - Watch Video Solution

7. Find the intercepts cut off by the plane $2 x+y z=5$.

## - Watch Video Solution

8. Find the equation of the plane with intercept 3 on the $y$-axis and parallel to ZOX plane.

## - Watch Video Solution

9. Find the equation of the plane through the intersection of the planes

$$
\begin{aligned}
& 3 x+2 z \quad 4=0 \\
& x+y+z \quad 2=0 \text { and the point }(2,2,1) .
\end{aligned}
$$

## - Watch Video Solution

10. Find the vector of the plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and the point (2,1,3)'.

## (D) Watch Video Solution

11. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$

## - Watch Video Solution

12. Find the direction cosines of the unit vector perpendcular to the plane $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$

## - Watch Video Solution

13. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
(a) $7 x+5 y+6 z+30=0 \quad$ and
$3 x \quad y \quad 10 z+4=0(b){ }^{2} 2 x^{\prime \prime} "+"$
14. In the following cases, find the distance of each of the given points from the corresponding given plane.

Point
(a) $(0,0,0)$
$3 x-4 y+12 z=3$
(b) $(3,-2,1)$
$2 x-y+2 z+3=0$
(c) $(2,3,-5)$
$x+2 y-2 z=9$
(d) $(-6,0,0)$
$2 x-3 y+6 z-2=0$

## - Watch Video Solution

## Miscellaneous Exercise

1. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.
2. If $l_{1}, m_{1}, n_{1}$ and $l_{2}, m_{2}, n_{2}$ are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.

## - Watch Video Solution

3. Find the angle between the lines whose direction ratios are a, b, c and $b c, c a, a b$.

## - Watch Video Solution

4. Find the equation of a line parallel to $x$ axis and passing through the origin.

## - Watch Video Solution

5. the coordinates of the points
$A, B, C, D b e 91,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$ respectively then find the angle between $A B$ and $C D$.

## - Watch Video Solution

6. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of $k$.

## - Watch Video Solution

7. Find the vector equation of the line passing through $(1,2,3)$ and perpendicular to the plane $\rightarrow r \hat{i}+2 \hat{j}-5 \hat{k}+9=0$.

## - Watch Video Solution

8. Find the equation of the plane passing through (a,b,c) and paralle toteh plne $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

## Watch Video Solution

9. Find the shortest distance between lines

$$
\begin{aligned}
& \vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}) \\
& \vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k}) .
\end{aligned}
$$

## - Watch Video Solution

10. Find the coordinates of the point where the line through $(5,1,6)$ and (3, 4,1) crosses the YZ-plane.

## - Watch Video Solution

11. Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the ZX -plane.

## Watch Video Solution

12. find the coordinates of point where the line through $(3,-4,-5)$ and
$(2,-3,1)$ crosses the plane $2 x+y+z=7$.

## - Watch Video Solution

13. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$
A. $7 x-8 y-3 z+25=0$.
B. $7 x-8 y+3 z-25=0$.
C. $7 x+8 y+3 z+25=0$.
D. $7 x-8 y+3 z+25=0$.

Answer: D

## - Watch Video Solution

14. If the points $(1,1, \quad p)$ and $(3,0,1)$ be equidistant from the plane $\rightarrow r 3 \hat{i}+4 \hat{j}-12 \hat{k}+13=0$, then find the value of $p$.

## - Watch Video Solution

15. Find the equation of the plane passing through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to $x-$ axis.

## - Watch Video Solution

16. If $O$ be the origin and the coordinates of $P$ be $(1,2,-3)$ then find the equation of of the plane passing through $P$ and perpendicular to $O P$.
A. $x+2 y-3 z-14=0$
B. $x+2 y-3 z+14=0$
C. $2 x+2 y-3 z-28=0$
D. none of these

## Answer: A

## - Watch Video Solution

17. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0, \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$
18. Find the distance of the point $(-1,-5,-10)$ from the point of the intersection of the line $\vec{r}=2 \hat{i}-2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

## - Watch Video Solution

19. Find the vector equation o the line passing through $(1,2,3)$ and parallel to the planes $\vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$

## - Watch Video Solution

20. Find the vector equation of the line passing through the point $(1,2,4)$ and perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$

## - Watch Video Solution

21. Prove that if a plane has the intercepts $a, b, c$ and is at a distance of $p$ units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.

## - Watch Video Solution

22. Find the distance between the planes
$2 x+3 y+4 z=4$ and $4+6 y+8 z=12$.
A. $\frac{4}{\sqrt{29}}$ units
B. 4 units
C. 8 units
D. $\frac{2}{\sqrt{29}}$ units

## Answer: D

## - Watch Video Solution

23. The planes: $2 x y+4 z=5 a n d 5 x 2.5 y+10 z=6 \operatorname{are}(\mathrm{~A})$ Perpendicular
(B) Parallel(C) intersect y-axis (D) passes through $\left(0,0, \frac{5}{4}\right)$
A. perpendicular
B. parallel
C. intersect $y$-axis
D. passes through $\left(0,0, \frac{5}{4}\right)$

## Answer: B

