

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

VECTORS

Miscellaneous Exercise

1. Write down a unit vector in XY-plane, making an angle of 30 with the positive direction of x-axis.

2. Find the scalar components and magnitude of the vector joining the points $P(x_1,y_1,z_1)$ and $Q(x_2,y_2,z_2)$

3. A girl walks 4 km towards west, and then she walks 3 km in a direction 30^0 east of north and

stops. Determine the girls displacement from her initial point of departure.

Watch Video Solution

4. If ightarrow a =
ightarrow b +
ightarrow c, then is it true that |
ightarrow a | = |
ightarrow b | + |
ightarrow c |? Justify your answer.

5. Find the value of x for which $x\left(\hat{i}+\hat{j}+\hat{k}\right)$ is a unit vector.

Watch Video Solution

6. Find a vector of magnitude 5 units and parallel to the resultant of the vectors

$$\overrightarrow{a}=2\hat{i}+3\hat{j}-\hat{k}$$
 and $\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}$

7. If $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}$, $\overrightarrow{b}=2\hat{i}-\hat{j}+3\hat{k}$ and $\overrightarrow{c}=\hat{i}-2\hat{j}+\hat{k}$ find a unit vector parallel to the vector $2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$

Watch Video Solution

that the points 8. Show A(1, -2, -8), B(5, 0, -2) and C(1, 3, 7)are collinear, and find the ratio in which Bdivides AC.

9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\left(2\overrightarrow{a}+\overrightarrow{b}\right)$ and ($\overrightarrow{a}-3\overrightarrow{b}$) respectively, externally in the ratio 1:2.Also, show that P is the mid-point of the line segment RQ.

Watch Video Solution

10. The two adjacent sides of a parallelogram are $2\hat{i}-4\hat{j}+5\hat{k}$ and $\hat{i}-2\hat{j}-3\hat{k}$. Find the

unit vector parallel to its diagonal. Also, find its area.

- A. $13\sqrt{5}$ sq. units
- B. $6\sqrt{5}$ sq. units
- C. $11\sqrt{2}$ sq. units
- D. $11\sqrt{5}$ sq. units

Answer: D

11. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are

$$\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}}.$$

Watch Video Solution

12. Let

$$egin{aligned}
ightarrow a = \hat{i} + 4\hat{j} + 2\hat{k}, \
ightarrow b = 3\hat{i} - 2\hat{j} + 7\hat{k} \end{aligned}$$

and $\;
ightarrow \, c = 2\hat{i} \, - \, \hat{j} + 4\hat{k}$. Find a vector $\;
ightarrow \, d$

which is perpendicular to both $\;
ightarrow a$ and $\;
ightarrow b$

and $\rightarrow c$. $\rightarrow d = 15$.

13. The scalar product of the vector

$$\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}$$
 with a unit vector along the sum of the vectors

vectors

 $\overrightarrow{b}=2\hat{i}+4\hat{j}-5\hat{k}\ and\ \overrightarrow{c}=\lambda\hat{i}+2\hat{j}+3\hat{k}$ is equal to 1. Find the value of λ and hence find

the unit vector along $\overrightarrow{b}+\overrightarrow{c}$.

of

sum

14. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} , \overrightarrow{b} , and $\overrightarrow{\cdot}$

Watch Video Solution

15. Prove that $(\hspace{.1cm}
ightarrow a + \hspace{.1cm}
ightarrow b)
ightarrow a \stackrel{.}{+} \hspace{.1cm}
ightarrow c |\hspace{.1cm}
ightarrow a |^2 + |\hspace{.1cm}
ightarrow b |^2$, if and only if $\;
ightarrow a,\;
ightarrow b$ are perpendicular, given $\rightarrow a \neq \rightarrow 0, \rightarrow b \neq \rightarrow 0$

Watch Video Solution

16. If θ is the angle between two vectors

$$\overrightarrow{a}$$
 and \overrightarrow{b} , $then$ \overrightarrow{a} \overrightarrow{b} ≥ 0 only when 'O

A.
$$0< heta<rac{\pi}{2}$$

$$\texttt{B.}\, 0 \leq \theta \leq \frac{\pi}{2}$$

C.
$$0< heta<\pi$$

D.
$$0 \leq \theta \leq \pi$$

Answer: B

17. Let \overrightarrow{a} and \overrightarrow{b} be two unit vectors and α be the angle between them, then $\overrightarrow{a}+\overrightarrow{b}$ is a unit vectors, if

A.
$$\alpha = \frac{\pi}{4}$$

$$\mathrm{B.}\,\alpha=\frac{\pi}{3}$$

$$\operatorname{C.}\alpha = \frac{\pi}{2}$$

$$\mathrm{D.}\,\alpha=\frac{2\pi}{3}$$

Answer: D

Watch Video Solution

The

 $\hat{i}.\left(\hat{j} imes\hat{k}
ight)+\hat{j}.\left(\hat{i} imes\hat{k}
ight)+\hat{k}.\left(\hat{i} imes\hat{j}
ight)$

value

of

B. -1

C. 1

D. 3

Answer: C

19. If is the angle between any two vectors \overrightarrow{a}

and
$$\overrightarrow{b}$$
 , then $\left|\overrightarrow{a}\overrightarrow{b}\right| = \left|\overrightarrow{a}\times\overrightarrow{b}\right|$ when θ is equal to (a) 0 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (d) π

A. 0

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{2}$$

D.
$$\pi$$

Answer: b

