©゙" doubtnut

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

AREA OF PARALLELOGRAMS AND TRIANGLES

Solved Examples

1. The area of a parallelogram is $32 \mathrm{~cm}^{2}$. If its altitude is twice of its base, then find the altitude
A. 2
B. 4
C. 8
D. 16

- Watch Video Solution

2. The area of a parallelogram is $150 \mathrm{~cm}^{2}$. If the ratio of its base and corresponding altitude is $3: 2$, find the length of base and altitude

- Watch Video Solution

3. The diagonals of a parallelogram $A B C D$ intersect at O. A line through O meets $A B$ in x and $C D$ in Y. Show that $\operatorname{ar}(A X Y X)=\frac{1}{2}\left(a r \|^{g m} A B C D\right)$

- Watch Video Solution

4. Show that a median of a triangle divides it into two triangles of equal areas.

- Watch Video Solution

5. The diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at point ' O '. If $B O=O D$, then prove that the areas of $\triangle A B C$ and $\triangle A D C$ are equal

- Watch Video Solution

6. If each diagonals of a quadrilateral separates it into two triangles of equal area then show that the quadrilateral is a parallelogram.
7. The vertices of a rectangle $P Q R S$ are joined from an interior point ' O '. Prove that the sum of the area of two opposite triangles so formed is equal to the sum of the areas of remaining two triangles

- Watch Video Solution

8. In the adjoining figure D, E and F are the mid-points of the sides
BC, CA and AB respectively of $\triangle A B C$. Prove that:
(i) $\square B D E F$ is a parallelogram
(ii) area of $\triangle D E F=\frac{1}{4} \times$ area of $\triangle A B C$
(iii) area of $\square B D E F=\frac{1}{2} \times$ area of $\triangle A B C$

D Watch Video Solution

9. In the adjoining figure, AD is the median of $\triangle A B C$ and x be any point on side AD. Prove that:
area $(\triangle A B X)=$ area $(\triangle A C X)$

- Watch Video Solution

10. The medians of $\triangle A B C$ intersect at point G . Prove that:
area of $\triangle A G B=\frac{1}{3} \times$ area of $\triangle A B C$

D Watch Video Solution

11. In the figure, $A B C D$ is a quadrilateral. A line $D P$ drawn parallel to diagonal $A C$ from point D, meet $B C$ produced at P. Prove that: area of $\triangle A B P=$ area of $\square A B C D$

- Watch Video Solution

12. XY is a line parallel to side BC of a triangle ABC . If $B E|\mid A C$ and $C F|\mid A B$ meet XY at E and F respectively, show that $\operatorname{ar}(A B E)=\operatorname{ar}(A C F)$

Watch Video Solution

13. A point D is taken on the side BC of a $\triangle A B C$ such that $B D=2 D C$. Prove that $\operatorname{ar}(\triangle A B D)=2 a r(\triangle A D C)$

D Watch Video Solution

14. XY is a line parallel to side BC of a triangle ABC . If $B E|\mid A C$ and $C F|\mid A B$ meet XY at E and F respectively, show that $\operatorname{ar}(A B E)=\operatorname{ar}(A C F)$

- Watch Video Solution

15. In the figure, $A B C$ and $B D E$ are two equilateral triangle such that
D is the mid-point of $B C$. If $A E$ intersects $B C$ at F, show that:
(i) $\operatorname{ar}(\triangle B D E)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$ (ii) $\operatorname{ar}(\triangle B D E)=\frac{1}{2} \operatorname{ar}(\triangle B A E)$
(iii) $\operatorname{ar}(\triangle A B C)=2 \operatorname{ar}(\triangle B E C)$ (iv) $\operatorname{ar}(\triangle B F E)=\operatorname{ar}(\triangle A F D)$
(v) $\operatorname{ar}(\triangle B F E)=2 \operatorname{ar}(\triangle F E D)(\mathrm{vi}) \operatorname{ar}(\triangle F E D)=\frac{1}{8} \operatorname{ar}(\triangle A F C)$

- View Text Solution

16. $A B C D$ is a parallelogram. X and Y are mid-points of $B C$ and $C D$.

Prove that $\operatorname{ar}(\triangle A X Y)=\frac{3}{8} \operatorname{ar}\left(| |^{g m} A B C D\right)$

Watch Video Solution

Problems From Ncert Exemplar

1. If E, F, G and H are respectively the mid-points of the sides of a parallelogram $A B C D$, Show that $\operatorname{ar}(E F G H)=\frac{1}{2} A R(A B C D)$

- Watch Video Solution

2. In Figure, P is a point in the interior of a parallelogram $A B C D$.

Show that $\operatorname{ar}(A P B)+\operatorname{ar}(P C D)=\frac{1}{2} \operatorname{ar}\left(\|\left.\right|^{g m} A B C D\right)$ $a r(A P D)+a r(P B C)=a r(A P B)+\operatorname{ar}(P C D)$
3. In Fig. 9.24, ABC and ABD are two triangles on the same base AB.

If line- segment $C D$ is bisected by $A B$ at O, show that

- Watch Video Solution

4. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogramABCD. Show that $a r(A P B)=\operatorname{ar}(B Q C)$.

- Watch Video Solution

5. A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal w
6. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that $a r \backslash(A O D) \backslash=\backslash a r \backslash(B O C)$. Prove that ABCD is a trapezium.

- Watch Video Solution

7. In the figure, PSDA is a parallelogram. Points Q and R are taken on PS such that $P Q=Q R=R S$ and $P A\|Q B\| R C$. Prove that
$\operatorname{ar}(P Q E)=\operatorname{ar}(C F D)$.

- Watch Video Solution

8. X and Y are points on the side $L N$ of the triangle $L M N$ such that $L X=X Y=Y N$. Through X, a line is drawn parallel to $L M$ to meet $M N$
at Z (see figure). Prove that $\operatorname{ar}(\Delta L Z Y)=\operatorname{ar}(M Z Y X)$.

- Watch Video Solution

9. $A B C D$ is a square. E and F are respectively the midpoints of $B C$ and $C D$. If R is the mid-point of $E F$, prove that
$\operatorname{ar}(\triangle A E R)=\operatorname{ar}(\triangle A F R)$.

- Watch Video Solution

10. If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram, so formed will be
half of the area of the given quadrilateral (figure).

- Watch Video Solution

11. In figure, $C D|\mid A E$ and $C Y| \mid B A$. Prove that $\operatorname{ar}(\Delta C B X)=\operatorname{ar}(\triangle A X Y)$.

- Watch Video Solution

12. In figure, $A B C D$ and AEFD are two parallelograms. Prove that $\operatorname{ar}(\triangle P E A)=\operatorname{ar}(\Delta Q F D)$.

D Watch Video Solution

Exercise

1. The base of a parallelogram is 3 times of its corresponding height. If the area of the parallelogram is $48 \mathrm{~cm}^{2}$, then find the base and the corresponding height of the parallelogram.
2. The ratio of the base and corresponding height of a parallelogram is $5: 2$. If the area of the parallelogram is $90 \mathrm{~cm}^{2}$, then find its base and the corresponding height.

- Watch Video Solution

3. In the adjoining figure, prove that $A B C D$ is a parallelogram. Also find its area.

- Watch Video Solution

4. In the figure, find the length of RN.

- Watch Video Solution

5. Show that the segment joining the mid-points of a pair of opposite sides of a parallelogram, divides it into two equal parallelograms.
6. Prove that of all parallelograms of which the sides are given, the parallelogram which is rectangle has the greatest area.

- Watch Video Solution

7. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

- Watch Video Solution

8. If the diagonals $A C, B D$ of a quadrilateral $A B C D$, intersect at O, and separate the quadrilateral into four triangles of equal area, show that quadrilateral $A B C D$ is a parallelogram.
9. The diagonal $A C$ of a quadrilateral $A B C D$ divides it into two triangles of equal areas. Prove that diagonal AC bisects the diagonal BD.

- Watch Video Solution

10. Show that the area of a rhombus is half the product of the lengths of its diagonals. GIVEN : A rhombus $A B C D$ whose diagonals $A C$ and $B D$ intersect at O TO PROVE : $\operatorname{ar}(r h o m b u s A B C D)=\frac{1}{2}(A C x B D)$

- Watch Video Solution

11. $\triangle A B C$ and $\triangle D B C$ are on same base BC and their vertices A and D are on opposite sides of $B C$. It is given that:
area of $\triangle A B C=$ area of $\triangle D B C$

Prove that $B C$ bisects the line segment AD.

- Watch Video Solution

12. O^{\prime} is an interior point of a parallelogram $A B C D$. Prove that :
area
$\triangle A O B+$ area of $\triangle C O D=$ area of $\triangle A O D+$ area of $\triangle B O C$

D Watch Video Solution

13. O^{\prime} is any point on diagonal $A C$ of a parallelogram $A B C D$. Prove that:
area of $\triangle A O D=$ area of $\triangle A O B$
14. In the adjoning figure, D and E are the points on the sides $A B$ and $A C$ respectively of $\triangle A B C$ and area of $\triangle B C E=$ area of $\triangle B C D$.

Prove that $D E|\mid B C$

- Watch Video Solution

15. In the adjoning figure, $A B C D$ is a parallelogram. Prove that : area of $\triangle B P C=$ area of $\triangle D P Q$

- Watch Video Solution

16. In a quadrilateral $A B C D, A M$ and $C N$ are perpendiculars from the vertices A and C respectively on diagonal $B D$. Prove that:
area of $\square A B C D=\frac{1}{2} \times B D \times(A M+C N)$

- Watch Video Solution

17. In the adjoining figure, $A B C D$ is a quadrilateral in which
$A D|\mid B C . A C$ and BD intersect each other at point 'O'. Prove
that:
area of $\triangle C O D=$ area of $\triangle A B O$

- Watch Video Solution

18. D is a point on the base BC of $\triangle A B C . A D$ is produced upto E such that $D E=A D$. Prove that:
area of $\triangle B C E=$ area of $\triangle A B C$
19. In the adjoining figure, D is the mid-point of side AB of $\triangle A B C$ and P be any point on side BC . If $C Q|\mid P D$, then prove that: area of $\triangle B P Q=\frac{1}{2} \times$ area of $\triangle A B C$

- Watch Video Solution

20. In a $A B C, E$ is the mid-point of median $A D$. Show that

$$
\operatorname{ar}(B E D)=\frac{1}{4} \operatorname{ar}(A B C)
$$

- Watch Video Solution

21. In parallelogram $A B C D, P$ is a point on side $A B$ and Q is a point on side BC, prove that
(i) $\triangle C P D$ and $\triangle A Q D$ are equal in area.
(ii) area $(\triangle A Q D)=$ area of $\triangle A P D+$ area of $\triangle C P B$

- Watch Video Solution

22. In the given figure, M and N are the mid-points of the sides $D C$ and $A B$ respectively of the parallelogram $A B C D$. If the area of parallelogram is $48 \mathrm{~cm}^{2}$
(i) State the area of $\triangle B E C$
(ii) Name the parallelogram which is equal in area to the triangle

BEC.

D Watch Video Solution
23. $A B C D$ and $B C F E$ are parallelgorams. If area of triangle $E B C=480 \mathrm{~cm}^{2}, A B=30 \mathrm{~cm}$ and $B C=40 \mathrm{~cm}$. Calculate
(i) area of parallelogram $A B C D$
(ii) area of parallelogram BCEF
(iii) length of altitude from A on $C D$.
(iv) area of $\triangle E C F$

24. The given figure shows a pentagon ABCDE.EG drawn parallel to DA meets BA produced at G and $C F$ drawn parallel to $D B$ meets $A B$ produced at F. Prove that the area of pentagon $A B C D E$ is equal to the area of triangle GDF.

D Watch Video Solution

25. In the given figure, $A P$ is parallel to $B C, B P$ is parallel to $C Q$. Prove that the areas of triangle $A B C$ and $B Q P$ are equal

- Watch Video Solution

26. The following figure shows two paralelograms $A B C D$ and $A B E F$
prove that
area of $\triangle A D F=\operatorname{areaof} \triangle B C E$

27. The side $A B$ of a parallelogram $A B C D$ is produced to any point E.

A line through A and parallel to CE meets $C B$ produced at G and then parallelogram EBGF is completed (see the figure). Prove that area of $\| g m A B C D=$ area of $\| g m B E F G$.

(D) Watch Video Solution

28. A point E is taken on the side $B C$ of a parallelogram $A B C D$. $A E$ and DC are produced to meet at F. Prove that
$\operatorname{ar}(\triangle A D F)=\operatorname{ar}(A B F C)$.

- Watch Video Solution

29. In the following figure, $A P\|P S\| Q R$ and $P Q\|D B\| S R$, prove that area of quadrilateral $P Q R S=2 \times$ area of quadrilateral ABCD

- Watch Video Solution

30. O is any point on the diagonal $B D$ of the parallelogram
$A B C D$. Prove that $\operatorname{ar}(O A B)=\operatorname{ar}(O B C)$

- Watch Video Solution

31. D is the mid-point of side $A B$ of the triangle $A B C . E$ is the midpoint of $C D$ and F is the mid-point of $A E$. Prove that $8 \times$ area of $(\triangle A F D)=$ area of $\triangle A B C$

D Watch Video Solution

32. In triangle $A B C, E$ and F are the mid-point of sides $A B$ and $A C$ respectively. If $B F$ and $C E$ intersect each other at point O. Prove that $\triangle O B C$ and quadrilateral AEOF are equal in area.
33. $A B C D$ is a parallelogram. P and Q are the mid-point of sides $A B$ and $A D$ resepctively. Prove that area of $\triangle A P Q=\frac{1}{8}$ of area of parallelogram ABCD

- Watch Video Solution

34. In the given figure, squares $A B D E$ and $A F G C$ are drawn on the side $A B$ and the hypotenuse $A C$ of the right angle triangle $A B C$. If BH is perpendicular to FG, Prove that
(i) $\triangle E A C \cong \triangle B A F$
(ii) area of square $\mathrm{ABDE}=$ area of rectangle ARHF .

- Watch Video Solution

1. The lengths of the diagonals of a rhombus are 12 cm and 16 cm .

Find the area of rhombus

- Watch Video Solution

2. Find the area of trapezium in the given figure.

D Watch Video Solution

3. In the given figure, $B C=8 \mathrm{~cm}$ and $A D=4 \mathrm{~cm} . A D| | B C$, find the area of $\triangle E B C$

- Watch Video Solution

4. In the given figure, $A B C D$ is a parallelogram whose area is $60 \mathrm{~cm}^{2}$.

Find the area of $\triangle A C B$

- Watch Video Solution

5. In the given figure, if the area of parallelogram ABCD is $40 \mathrm{~cm}^{2}$, find the area of parallelogram ABEF

- Watch Video Solution

6. In the given figure, if the area of $\Delta E D C=25 \mathrm{~cm}^{2}$, find the area of parallegram $A B C D$

- Watch Video Solution

7.

In
the
adjoining
figure,
$A B=8 \mathrm{~cm}, D M=6 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. Find the length of DN

- Watch Video Solution

8. In the given figure $A D$ is the median. If the area of $\triangle A B D=10 \mathrm{~cm}^{2}$, find the area of $\triangle A B C$

- Watch Video Solution

9. In the given figure, $A B C D$ is a parallelogram. Find the area of $\triangle A E D$

10. The area of a parallelogram is $180 \mathrm{~cm}^{2}$. If the ratio of its base and altitude is $9: 5$, find the length of the base and corresponding altitude

- Watch Video Solution

Revision Exercise Short Answer Questions

1. In the adjoining figure, $\mathrm{BD}=\mathrm{DC}$ and $\mathrm{AE}=\mathrm{ED}$. Prove that
area of $\triangle A C E=\frac{1}{4}$ area of $\triangle A B C$

D Watch Video Solution

2. In a $\triangle A B C, D, E$ and F are the mid-point of sides BC, CA and $A B$ respectively. If area of $\triangle A B C=16 \mathrm{~cm}^{2}$, find the area of trapezium FBCE

- Watch Video Solution

3. In the given figure, $P Q R S$ is a parallelogram. If X and Y are midpoint of $P Q$ and $S R$ respectively and diagonal $S Q$ is joined. Find the ratio of area of $(|\mid g m X Q R Y)$: area $(\Delta Q S R)$

D Watch Video Solution

4. In the given figure, $A B C D$ and $F E C G$ are parallelograms equal in area. If $\operatorname{ar}(\triangle A Q E)=12 \mathrm{~cm}^{2}$, find $\operatorname{ar}\left(\left|\left.\right|^{g m} F G B Q\right)\right.$

- Watch Video Solution

5. In a trapezium $A B C D, A B \| D C, A B=a c m$, and $D C=b c m$. If M and N are the midpoints of the nonparallel sides, AD and BC respectively then find the ratio of $\operatorname{ar}(D C N M)$ and $\operatorname{ar}($ MNBA $)$.

- Watch Video Solution

6. In the given figure, D is the mid-point of $B C, E$ is the mid-point of $B D$ and O is the mid-point of $A E$. Find the ratio of area of $\triangle B O E$ and $\triangle A B C$

- Watch Video Solution

7. In the adjoining figure, $D E|\mid B C$. Prove that area $(\triangle A C D)=$ area $(\triangle A B E)$

- Watch Video Solution

8. The base BC of $\triangle A B C$ is divided at D , so that $B D=\frac{1}{2} D C$ Prove that $\operatorname{ar}(\triangle A B D)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$

- Watch Video Solution

9. Prove that of all parallelograms of which the sides are given, the parallelogram which is rectangle has the greatest area.

(Watch Video Solution

10. Show that the segment joining the mid-points of a pair of opposite sides of a parallelogram, divides it into two equal parallelograms.

(Watch Video Solution

Revision Exercise Long Answer Question

1. In $\Delta A B C, D$ is the mid-point of $A B$ and P is any point on $B C$. If
$C Q|\mid P D$ meets $A B$ and Q (shown in figure), then prove that
$\operatorname{ar}(\triangle B P Q)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$.

- Watch Video Solution

2. In figure, $C D|\mid A E$ and $C Y| \mid B A$. Prove that $\operatorname{ar}(\Delta C B X)=\operatorname{ar}(\Delta A X Y)$.

- Watch Video Solution

3. In the given figure, $A P\|B Q\| C R$. Prove that $\operatorname{ar}(\triangle A Q C)=\operatorname{ar}(\triangle P B R)$

Watch Video Solution

4. In the given figure, $B C \| X Y, B X| | C A$ and $A B|\mid Y C$. Prove that area $(\triangle A B X)=$ area $(\Delta A C Y)$

- Watch Video Solution

5. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

- Watch Video Solution

