

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

QUADRILATERALS

Solved Examples

1. The angles of a quadrilateral are in the ratio $3\!:\!4\!:\!5\!:\!6$. Find all its angles.

Watch Video Solution

2. Three angles of a quadrilateral are in the ratio 4:6:3. If the fourth angle is 100° find the three angles of the quadrilateral.

3. The angles of a quadrilateral are in the ratio 4:3:6:5. Show that it is a trapezium.

4. The side BA and DC of a quadrilateral ABCD are produced to E and F respectively. If

 $\angle BCF = a^0, \angle ABC = x^{\circ}, \angle ADC = y^{\circ} \text{ and } \angle DAE = b^{\circ},$

then find relation between a,b,x and y

$$A. x - y = a + b$$

$$B. x + y = a - b$$

$$\mathsf{C.}\,x-y=a-b$$

D.
$$x + y = a + b$$

Answer: D

5. In a rectangle ABCD, diagonals AC and BD intersect at O. If

$$\angle OAB = 35^{\circ}$$
, find :

$$(a)\angle ABC(b)\angle ABO(c)\angle CO(d)\angle BOC)$$

6. In the given figure, ABCD is a square. Find \boldsymbol{x} .

A. 60°

B. 120°

C. 100°

D. 110°

Answer: B

- **7.** In a quadrilateral ABCD, AO and BO are the bisectors of $\angle A$ and $\angle B$ respectively. Prove that $\angle AOB = \frac{1}{2}(\angle C + \angle D)$.
 - Watch Video Solution

- **8.** In a parallelogram ABCD, the bisectors of $\angle A$ and $\angle B$ intersect each other at point P. Prove that $\angle APB=90^\circ$.
 - Watch Video Solution

9. Find the remaining angle of a parallelogram if one of its angles is 110° .

10. PQRS is a parallelogram such that PQ is parallel to SR and SP is parallel to RQ. The length of side PQ is 20 cm. M is point between P and Q such that the length of PM is 3 cm. N is a points between points S and R. Find the length of SN such that segment MN divides the parallelogram in two regions with equal areas.

A. 15

B.17

C. 16

Answer: B

Watch Video Solution

11. In the given figure, ABCD is a parallelogram in which AN and CP are perpendiculars on diagonal BD. Prove that :

(i)
$$\Delta ADN = \Delta CBP$$

$$(ii)AN = CP$$

Watch Video Solution

12. In quadrilateral ABCD, AB ||CD and AD= BC, prove that /A = /B.

13. In the adjoining figure, $\Box ABCD$ and $\Box APQR$ are two parallelograms. Prove that :

$$\angle C = \angle Q$$
 and $\angle B = \angle R$

14. In the given figure, $\ \square$ ABCD is a parallelogram. If DM $\ \bot$ AC and

BN \perp AC, then show that $\square \, BNDM$ is a parallelogram.

15. The median AD of ΔABC is prodiced upto X such that AD= DX.

Prove that $\ \Box\ ABXC$ is a parallelogram.

16. ABCD is a parallelogram. Tow points P and Q are taken on sides AD and BC respectively such that AP $\frac{1}{3}AD$ and $CQ=\frac{1}{3}BC$. Prove that $\square AQCP$ is a parallelogram.

Watch Video Solution

17. A cyclic polygon has n sides such that each of its interior angle measures 114° . What is the measure of he angle subtended by each of its sides at the geometrical centre of the polygon?

Watch Video Solution

18. The number of diagonals of a regular polygon is 27. Then, find the measure of each of the interior angles of the polygon.

A. 120°		
B. 130°		
C. 150°		
D. 140°		
Answer: D		
Watch Video Solution		

19. P is the mid-point of side AB of parallelogram ABCD. A line drawn from B parallel to PD meets CD at Q and AD produce at R. Prove that:

(i) AR = 2BC (ii) BR = 2BQ

20. E and F are the mid-points of the sides AB and CD of a parallelogram ABCD. Prove that the line segment AF and CE trisects BD in three equal parts.

21. In the adjoining figure D, E and F are the mid-points of the sides BC, CA and AB of the equilateral ΔABC . Prove that ΔDEF is also

an equilateral triangle.

22. In the given figure. ABCD is a trapezium in which AB|| DC and E is the mid-point of AD, if EF||DC, then show that

 $EF = rac{1}{2}(AB + DC).$

23. Prove that the figure formed by joining the mid-points of the pairs of consecutive sides of a quadrilateral is a parallelogram.

24. The diagonals of a quadrilateral ABCD are mutually perpendicular . Prove that the quadrilateral formed by joining the

mid-points of its consecutive sides is a reactangle.

25. Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a rectangle is a rhombus.

26. Show that the lines joining the mid-points of opposite sides of a quadrilateral bisect each other.

27. Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of trapezium and is half of their difference.

28. In the adjoining figure. AD and BE and BE are two medians of ΔANC . if DF||BE, then prove that $CG=rac{1}{4}AC$.

29. In the adjoining figure, PQRS is a parallelogram. A and B are the mid-points of PQ of SR respectively. If PS= BR, then prove that

quadrilateral ADBC is a reactangle.

Problems From Ncert Exemplar

1. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

2. Diagonal AC of a paraleligram ABCD bisects $\angle A$ (sec figure). Show that:

(i) it bisects $\angle C$ also (ii) ABCD is a rhombus.

3. ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as

 $\angle C$. Show that

- (i) ABCD is a square
- (ii) diagonal AD bisects $\angle B$

4. In parallelogram ABCD two points P and Q are taken on diagonal BD such that DP = BQ (set figure). Show that:

 $(i)\Delta APD\cong CQB$ (ii)AP=CQ $(iii)\Delta AQB\cong \Delta CPD$ (iv)AQ=CP Itbegt (v)APCQ is a parallelogram.

5. ABCD is a rhombus and P, Q, R and S are wthe mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Watch Video Solution

7. Throuth A,B and C lines RQ, PR and QP have been drawn, respectively parallel to sides BC. CA and AB of a ΔABC as shown in the given figure. Show that $BC=\frac{1}{2}QR$.

8. In the given figure, P is the mid-point of side BC of a parallelogram ABCD such that $\angle BAP = \angle DAP$. Prove that AD = 2CD.

9. P and Q are the mid-point of the oposite sides AB and CD of a parallelogram ABCD. AQ interects DP at S and BQ interects CP at R.

Show that PQRS is a parallelogram.

10. In the given figure.AB||DE, AB=DE, AC||DF and AC=DF. Then which of the following is correct.

- A. BC||EF|
- B.BC = EF
- $\mathsf{C}.\,BothA$ and B
- D. None

Answer: C

Watch Video Solution

11. Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle.

Exercise 8 A

1. The angles of a quadrilateral are 89° and 113° If the other two angles are equal, find the equal angles.

In

 $\angle A = 100^{\circ}, \angle B = 70^{\circ} \ \ ext{and} \ \ \angle C \colon \angle D = 8 \colon 11, ext{ then find } \ \ \angle D.$

quadrilateral

ABCD,

A. 100°

2.

B. 110°

C. 130°

D. 80°

Answer: B

Watch Video Solution

3. In quadrilateral ABCD, side AB is parallel to side

DC. $IF \angle A: \angle D = 1:2$ and $\angle C: \angle B = 4:5$.

- (i) Calculate wach angle of the quadrilateral.
- (ii) Assign special name to quadrilateral ABCD.

Watch Video Solution

4. Find the values of x and y from adjoining parallelogram.

A.
$$x=4,y=20^{\circ}$$

B.
$$x=3,y=20^\circ$$

C.
$$x=4,y=30^\circ$$

D. None

Answer: B

Watch Video Solution

5. Find x,y and z in each of the following figure:

Watch Video Solution

6. In the given figure, find $(i) \angle XOD(ii) \angle XOC$

A.
$$(i)45^{\circ}$$
 $(ii)53^{\circ}$

B.
$$(i)57^{\circ}$$
 $(ii)33^{\circ}$

C.
$$(i)67^{\circ}$$
 $(ii)31^{\circ}$

D.
$$(i)37^{\circ}$$
 $(ii)23^{\circ}$

Answer: B

Watch Video Solution

7. In the given figure, ABCD is a square and

$$\angle PQR = 90^{\circ}$$
 . $IfPB = QC = DR, \,\, {
m prove \, that}.$

- (i) QB = RC
- (ii) PQ = QR

(iii) $\angle QPR = 45^{\circ}$

8. In a square ABCD, diagonals meet at O. P is point on BC such that

OB = BP.Show that (i)
$$\angle POC = \left(22\frac{1}{2}\right)^{\circ}$$

(ii)
$$\angle BDC = 2 \angle POC$$

(iii)
$$\angle BOP = 3 \angle COP$$

Watch video Solution

9. The give figure shows a square ABCD and an equilayeral teiangle

APB. Calculate:

$$(1)\angle AOB$$
 $(ii)\angle BPC$

A.
$$(i)75^{\circ}$$
 $(ii)75^{\circ}$ $(ii)15^{\circ}$ $(iv)225^{\circ}$

B.
$$(i)55^{\circ}$$
 $(ii)65^{\circ}$ $(ii)35^{\circ}$ $(iv)215^{\circ}$

C.
$$(i)65^{\circ}$$
 $(ii)35^{\circ}$ $(ii)45^{\circ}$ $(iv)220^{\circ}$

D. $(i)45^{\circ}$ $(ii)65^{\circ}$ $(ii)35^{\circ}$ $(iv)125^{\circ}$

Answer: A

Watch Video Solution

10. In the given figure, ABCD is a rohombus with $A=67^{\circ}$. If DEC is an equilateral triangle, calculate

(i) $\angle CBE$

(ii) $\angle DBE$

A.
$$(i)25.5^{\circ}$$
 $(ii)29^{\circ}$

B.
$$(i)24.5^{\circ}$$
 $(ii)40^{\circ}$

C.
$$(i)26.5^{\circ}$$
 $(ii)30^{\circ}$

D.
$$(i)28.5^{\circ}$$
 $(ii)28^{\circ}$

Answer: C

Watch Video Solution

11. If the adjacent angles of a parallelogram are in the ratio $\frac{1}{3}$: $\frac{1}{2}$.

A.
$$72^{\circ}$$
, 108° , 72° , 108°

Find all the angles of parallelogram.

B.
$$70^{\circ}$$
, 110° , 70° , 110°

$$\mathsf{C.\,73}^{\circ},\,107^{\circ},\,73^{\circ},\,107^{\circ}$$

D.
$$74^\circ$$
 , 106° , 74° , 106°

Answer: A

Watch Video Solution

12. Prove that the sum of two consecutive angles of a parallelogram is $180\,^\circ$.

13. One angle of a parallelogram is 60° . Find its remaining angles.

14. One diagonal of a parallelogram biscets its one of the angles. Show tht it will also bisec the opposite angle.

Watch Video Solution

15. The opposite angles of a parallelogram are
$$(3x-2)^{\circ}$$
 and $(150-x)^{\circ}$. Find each angle of the parallelogram.

- A. 110° , 70° , 110° , 70°
- B. 111° , 69° , 111° , 69°
- C. 112° , 68° , 112° , 68°
- D. 109° , 71° , 109° , 71°

Answer: C

16. In the adjoining figure, ABCD is a parallelogram. If

$$\angle ABC = 125^{\circ}$$
,

 $\angle ACD = 28^{\circ}$, then fine $\angle DAC$.

- A. $25^{\,\circ}$
- B. 26°
- C. 27°
- D. 28°

Answer: C

Watch Video Solution

17. In a parallelogram, one angleis twice of its consecutiv angle. Find all the angles of the parallelogram.

18. In a parallelogram ABCD, AX and CY are the bisectors of $\angle A$ and $\angle C$ respectively. Prove that AX||CY.

19. In a parallelogram PQRS, PX and QY are the perpendiculars drawn from P and Q respectively so SR and SR produced. Prove that PX= QY.

20. In a parallelogram ABCD, the bisector of $\angle A$ bisects the line Bcat point X. Prove that AD = 2AB.

21. In a parallelogram ABCD, $\angle BCD=60^\circ$ If the bisectors AP and BP of $\angle A$ and $\angle B$ respectively, meet the side CD at point P, then prove that CP = PD.

22. In the adjoining figure, ΔPQR is formed by the sides PQ, QR and RP which are drawn parallel to sides AB,BC and CA respectively of ΔABC . Prove that

PQ + QR + RP + 2(AB + BC + CA).

23. X and Y are the mid-points of the opposite sides AB and DC of a parallelogram ABCD. Then \Box AXCY is a ?

A. Trapezium

B. Kite

C. Rhombus
D. Parallelogram
A
Answer: D
Watch Video Solution
24. Two points X and Y lie on the diagonal BD of a parallelogram
ABCD such that DX = BT. Prove that $\ \Box\ AXCY$ is a parallelogram.
Watch Video Solution
25. In the adjoining figure, ΔABC is an isosceles triangle in which
AB = AC. Side CP is parallel to AB and AP is the bisector of exterior
angle CAD of Δ ABC. Prove that $\angle PAC = \angle BCA \ ext{and} \ \Box \ ABCP$

is a parallelogram.

26. AB and CD are two parallel lines and a transversal 'l' intersects these lines at X and Y respectively Prove that the bisectors of interior angles from a parallelogram whose each angle is 90° .

27. In the adjoining figure $\square ABCD$ is a parallelogeam. Points X and Y lie on the sides AD and BC respectively and $AX=\frac{1}{4}AD$ and $CY=\frac{1}{4}BC$. Show that $\square XBYD$ is a parallelogram.

Watch Video Solution

28. In the adjoining figure, ABCDEF is a regular hexagon. Prove that

 \square ABDE, \square ACDF and \square AGDH are parallelograms.

Watch Video Solution

29. Two triangles ΔABC and ΔDEF are given such that AB||DE,BC||EF and AB=DE,BC=EF. "Show that "AC"||"DFandAC=DE`

- **1.** The sides AB and AC are equal of an isosceles triangle ABC. D E and F are the mid-points of sides BC, CA and AB respectively. Prove that:
- (i) Line segment AD is perpedicular to line segment EF.
- (ii) Line segment AD bisects the line segment EF.
 - Watch Video Solution

- **2.** Show that the quadrialteral formed by joining the mid-points of the consecutive sides of a rhombus, is a rectangle.
 - Watch Video Solution

3. E is the mid-point of the median AD of ΔABC . Line segment BE meets AC at point F when produce, prove that $AF=rac{1}{3}AC$.

Watch Video Solution

4. Show that the quadrilateral, formed by joining the mid-points of the sides of a square is also a square.

5. Show that, in a parallelogram ABCD, the internal and external bisectors of $\angle A$ and $\angle B$ from a rectangle.

6. Prove that the quadrilateral formed by joining the mid-points of the pairs of consecutive sides of a quadrilateral is a parallelogram.

7. In $\Delta ABC, \angle B=90^{\circ}$. If P is the mid-point of side AC, then

$$PA = PB =$$

- A. AC
- B.3AC
- $C. \frac{1}{2}AC$
- D. 2AC

Answer: C

8. \square PQRS is a reactangle. If A, B and C are the mid-points of PQ,

PS and QR respectively, then prove that

$$AB + AC = \frac{1}{2}(PR + SQ).$$

9. P,Q and R are, respectively, the mid-points of sides BC,CA and AB of a triangle ABC , PR and BQ meet at $X\dot{C}R$ and PQ meet at Y . Prove that $XY=\frac{1}{4}BC$

10. In ΔPQR , Pq=PR and S is the mid-point of PQ. A line drawn from S parallel to QR, intersects the line PR at T. Prove that PS = PT.

11. The points M and N divide the line seqment AB of ΔABC in three equal parts. If MP||NQ||BC and points P and Q lie on line AC, then prove that P and Q trisect the line AC.

12. In the adjoining figure, two points A and B lie on the same side of a line 'l'. C is the mid-point of AB. If AD $\perp l$ and $BE \perp l$, then prove that CD = CE.

13. AB and CD are the parallel sides of a trapeziuml. E is the midpoint of AD. A line through E and parallel to side AB meets the line BC at point F. Prove that F is the mid-point of BC.

14. Prove that a line drawn from the vertex of a triangle to its base is bisected by the line joining the mid points of the remaining two sides of the triangle.

Watch Video Solution

15. In a parallelogram ABCD, E and F are the mid-points of sides BC and AD respectively. Show that the line segment BF and ED trisect the diagonal AC.

Watch Video Solution

Revision Exercise Very Short Answer Questions

1. Three angles of aquadrilateral are respectively $100^\circ, 98^\circ, 92^\circ$.

Find the fourth angle.

Λ	50
Α.	. 11

B. 70°

C. 60°

D. 80°

Answer: B

- **2.** Find the other angles of a parallelogram if its one angle is 60°
 - Watch Video Solution

3. Find the angles of the parallelogram ABCD if $\angle C = \frac{2}{3} \angle D$.

A.
$$\angle A=\angle C=72^\circ$$
 , $\angle B=\angle D=108^\circ$

B.
$$\angle A = \angle C = 70^{\circ}$$
, $\angle B = \angle D = 110^{\circ}$

C.
$$\angle A = \angle C = 69^{\circ}$$
, $\angle B = \angle D = 111^{\circ}$

D.
$$\angle A = \angle C = 68^{\circ}$$
 , $\angle B = \angle D = 112^{\circ}$

Answer: A

Watch Video Solution

4. Find $\angle A$ of the given figure.

A.
$$\angle A=100^{\circ}$$

B.
$$\angle A = 90^{\circ}$$

C.
$$\angle A=70^{\circ}$$

D.
$$\angle A=80^\circ$$

Answer: A

Watch Video Solution

5. In the given figure, if ABCD is a rectangle and $x\!:\!y=2\!:\!7$ find x and y.

A. 10° , 35°

B. 20° , 90°

C. 15° , 35°

D. 20° , 70°

Answer: D

Watch Video Solution

6. In a ΔABC , D, E and F are respectively the mid-points of BC, CA and AB. If the lengths of side AB, BC and CA are 7 cm, 8 cm and 9 cm respectively, find the permeter of ΔDEF .

- A. 13 cm
- $B.\,10\,\mathrm{cm}$
- $\mathsf{C.}\ 12\ \mathsf{cm}$
- D. 11 cm

Answer: C

Watch Video Solution

7. If the bisectors of two adjacent angles $A\ and\ B$ of a quadrilateral ABCD intersect at a point O such that

$$\angle C + \angle D = k \angle AOB$$
, then find the value of k

8. In the given figure PQRS is an isosceles trapezium, fixd x and y.

A.
$$x=45^{\circ}~y=63^{\circ}$$

B.
$$x=50^\circ~y=58^\circ$$

C.
$$x=40^{\circ}~y=68^{\circ}$$

D.
$$x=36^{\circ}~y=72^{\circ}$$

Answer: D

watch video Solution

9. In a rhombus ABCD if $\angle ACB = 40^{\circ}$, then fine $\angle ADC$.

Watch Video Solution

10. The diagonals of a parallelogram ABCD intersect at O. If

$$\angle BOC = 90^{\circ} \text{ and } \angle BDC = 50^{\circ}, \text{find} \angle OAB.$$

A. $50^{\,\circ}$

B. 30°

C. 40°

D. 60°

Answer: C

Watch Video Solution

Revision Exercise Short Answer Questions

1. In an isoscles trapezium, show that the opposite angles are supplementary.

Watch Video Solution

In the given figure ABCD is a parallelogram. 2.

$$AB = (2x + 25)cm, CD = (3x + 14)cm,$$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} B = z^o, egin{aligned} BAC = 24^\circ, egin{aligned} DAC = 3y + 5^\circ \end{aligned} ext{ and } egin{aligned} egin{aligned} DCA = y + 9^\circ, \end{aligned}$$

find the values of x, y and z.

A.
$$x=15, y=11, z=100^\circ$$

B.
$$x = 11, y = 15, z = 106^{\circ}$$

C.
$$x=10,y=12,z=80^\circ$$

D. None

Answer: B

Watch Video Solution

3. ABCD is a parallelogram and AE and CF bisect $\angle A$ and $\angle C$ respectively. Prove that AE||FC.

4. In the given figure, AM bisects angle A and DM bisects angle D of parallelogram ABCD. Prove that $\angle AMD=90^{\circ}$.

Watch Video Solution

5. In the given figure ABCD is a parallelogram. Prove that AB = 2BC.

6. E and F are points on diagonal AC of a parallelogram ABCD such that AE=CF. Show that BFDE is a parallelogram.

7. In a quadrilateral ABCD, AB= AD and CB = CD, prove that AC is perpendicular bisector of BD.

8. In the adjoining figure, ABCD is a rhombus and ABE is an equilateral triangle. If $\angle BCD = 70^{\circ}$, find

 $(a)\angle ADE$ $(b)\angle BDE$ $(c)\angle BED$

- A. $(a)20^{\circ}(b)40^{\circ}(c)30^{\circ}$
- B. $(a)25^{\circ}(b)30^{\circ}(c)35^{\circ}$
- C. $(a)30^{\circ}(b)45^{\circ}(c)15^{\circ}$
- D. $(a)40^{\circ}(b)30^{\circ}(c)20^{\circ}$

Answer: B

Watch Video Solution

9. In a trapezium ABCD, if E and F be the mid-points of diagonal AC and BD respectively. Prove that $EF=rac{1}{2}(AB-CD)$.

10. In a quadrilateral ABCD the linesegment bisecting $\angle C$ and $\angle D$ meet at E. Prove that $\angle A + \angle B = 2 \angle CED$.

1. In the adjoining figure, ABCD and PBCQ are paralelograms. Prove that

$$\Delta ABP\cong \Delta DCQ$$

2. A transverals cuts two parallel lines at A and B. The two interior angles at A are bisected and so are the two interior angles at B, the

four bisectors from a quadrilateral ACBD, prove that ABCD is parallelogram.

3. Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle.

4. In a square ABCD, A is joined to a point X on BC and D is joined to a point Y on AB. If AX = DY, prove that AX is perpendicular to DY.

5. ABCD is a rhombus. RABS is a straight line such that RA = AB = BS. Prove that RD and SC when produced meet at right angles.

