© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

TRIANGLES

1. In the given figure, prove that $A C=B D$.

- Watch Video Solution

2. In the adjoining figure, $A B=C D$ and $A B \| C D$ prove that
(i) $\triangle A O B \cong \triangle D O C$
(ii) $A D$ and $B C$ bisect each other at the point O.

3. The sides $A B$ and $B C$ and the median $A D$ of triangle $A B C$ are equal to the sides $P Q$ and $Q R$ and the median PM of triangle PQR respectively. Prove that the triangles $A B C$ and $P Q R$ are congruent.

- Watch Video Solution

4. In the adjoining figure, $B D=C E$ and
$\angle A D B=\angle A E C=90^{\circ}$, prove that
(i) $\triangle A B D \cong \triangle A C E$ (ii) ABC is an isosceles
triangle.

- Watch Video Solution

5. In the adjoining figure, D is the mid-point of $B C$. If $B M$ and $C N$ are perpendiculars from B and C respectively on $A D$ and $A D$ produced, then prove
that $\mathrm{BM}=\mathrm{CN}$.

D Watch Video Solution

6. Use the information marked to prove :
(i) $\Delta E A C \cong \triangle D B C$ (ii) $E C=D C$

Also state the Euclid's axiom used in proving the
congruency of two triangles.

- Watch Video Solution

7. In the adjoining figure $A B C D$ is a parallelogram,
$A B M$ is a line segment and E is the mid-point of $B C$.

Prove that :
(i) $\Delta D C E \cong \triangle M B e$ (ii) $A B=B M$
(iii) $A M=2 D C$

8. In the given figure, D and E are the points on the base BC of $\triangle A B C$ such that

$$
B D=C E, A D=A E \quad \text { and } \quad \angle A D E=\angle A E D
$$

prove that $\triangle A D B \cong \triangle A E C$.

D Watch Video Solution

9. In the given figure, $P S=P R, \angle T P S=\angle Q P R$.

Prove that $P T=P Q$.

- Watch Video Solution

10. In right triangle $A B C$, right angle at C, M is the mid-point of the hydrotenuse $A B . C$ is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B. Show that
(i) $\triangle A M C \cong \triangle B M D$ (ii) $\angle D B C=\angle A C B$
(iii) $\triangle D B C \cong \triangle A C B$ (iv) $C M=\frac{1}{2} A B$

D Watch Video Solution

11. In the given figure, $A C=A E, A B=A D$ and $\angle B A D=\angle E A C$. Prove that $B C=D E$.

- Watch Video Solution

12. If the bisector of the vertical angle of a triangle bisects the base of the triangle. then the triangle is isosceles. GIVEN : A $A B C$ in which $A D$ is the bisector of $\angle A$ meeting $B C$ in D such that
$B D=D C$. TO PROVE : $A B C$ is an isosceles triangle.

- Watch Video Solution

13. $\triangle A B C$ is an isosceles triangle with $A B=A C$,
side BA is produced to D such that $A B=A D$.

Prove that $\angle B C D$ is a right angle.

- Watch Video Solution

14. If $\triangle A B C$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. Prove that the perpendiculars from the vertices B and C to their opposite sides are equal.

- Watch Video Solution

15. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the
triangle $A B C$ is isosceles.

- Watch Video Solution

16. In the adjoining figure, find the measure of angle

FEB, if the lengths of sides AD, DF and FE are equal
and $\angle A C B=65^{\circ}$.

D Watch Video Solution

17. $A B C$ is a triangle in which $\angle B=2 \angle C \dot{D}$ is a point on $B C$ such that $A D$ bisects $\angle B A C$ and $A B=C D$. Prove that $\angle B A C=72^{\circ}$.
18. In $\triangle A B C, \angle A=100^{\circ}, \angle C=30^{\circ}$. Find
largest side, (ii) smallest side of $\triangle A B C$.

- Watch Video Solution

19. In $\triangle A B C, D$ is any point on side $B C$. Prove that $A B+B C+C A>2 A D$

- Watch Video Solution

20. In the adjoining figure, $A B C D$ is a quadrilateral.

Its diagonals $A C$ and $B D$ intersect at point ' O '. Prove
that :
(a) $A B+B C+C D+D A<2(A C+B D)$
(b) $A B+B C+C D+D A>(A C+B D)$

- Watch Video Solution

21. Show that the difference of any two sides in a triangle is smaller than the third side.
22. In $\triangle A B C, B C=C A$ and $\angle A=40^{\circ}$. Find the largest side of $\triangle A B D$.

- Watch Video Solution

23. In $\triangle A B C, A D$ is the bisector of $\angle A$. Write AB , $B D$ and $D C$ in descending order of their length.

- Watch Video Solution

24. In $\square A B C D, A B$ is the smallest and CD is the
largest side. Prove that :
(i) $\angle B>\angle D$ (ii) $\angle A>\angle C$

D Watch Video Solution

25. If D any point on the $B C$ of an isosceles triangle ABC then prove that $A B>A D$ and $A C>A D$.

- Watch Video Solution

26. In isosceles triangle $A B C, D$ is a point on the base $B C$ produced. Prove that $A D>A B$.

- Watch Video Solution

27. In the adjoining figure, $A B C$ is a triangle and D is any point in its interior. Show that
$B D+D C<A B+A C$.

- Watch Video Solution

28. Prove that the perimeter of any triangle is greater than the sum of three altitudes.
29. $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$ (see figure). If $A D$ is extended to intersect $B C$ at P, show that :
(i) $\triangle A B D \cong \triangle A C D$
(ii) $\triangle A B P \cong \triangle A C P$
(iii) AP bisects $\angle A$ as well as $\angle D$
(iv) $A P$ is the perpendicular bisector of $B C$.

D Watch Video Solution

30. In figure, $\angle B<\angle A$ and $\angle C<\angle D$. Show that
$A D<B C$.
31. S is any point on side QR of a $\triangle P Q R$. Show that $P Q+Q R+R P>2 P S$.

D Watch Video Solution

32. Bisector of the angles B and C of an isosceles triangle $A B C$ with $A b=A C$ intersect each other at O.

Shown that external angle agjacent to $\angle A B C$ is equal to $\angle B O C$.

- Watch Video Solution

33. Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side.

- Watch Video Solution

34. Show that in a quandrilateral $A B C D, A B+B C+C D+D A<2(B D+A C)$.

- Watch Video Solution

Problems From Ncert Exemplar

1. If 3 sides of a triangle are $35 \mathrm{~cm}, 16 \mathrm{~cm}$ and 12 cm , then which type of triangle is this ?
A. Isosceles
B. Equilateral
C. Scalene
D. Not possible

Answer: D

- Watch Video Solution

2. If 3 sides of a triangle are of lengths $12 \mathrm{~cm}, 8 \mathrm{~cm}$ and 17 cm . then which type of triangle is this ?

- Watch Video Solution

3. If 3 sides of a triangle are of length $16 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm , then which type of triangle is this ?

- Watch Video Solution

4. If 3 sides of a triangle are $63 \mathrm{~cm}, 16 \mathrm{~cm}$, and 65 cm ,
then which type of triangle is this ?
5. If 3 sides are of lengths $24 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm , then which type of triangle is this ?

- Watch Video Solution

Exercise 7 A

1. Which of the following pairs of triangles are congruent ? Also state the condition of congruency in each case :
(i)

(iv) In $\triangle A B C$ and $\triangle D E F, A B=E F, B C=D F$ and $\angle B=\angle F$
(v) In $\triangle A B C$ and $\triangle P Q R, A B=Q R, A C=P R$ and $\angle B=\angle R$
(vi) In $\triangle A B C$ and $\triangle P Q R, \angle A=\angle P, A C=P R$ and $A B=P Q$
(vi) In $\triangle A B C$ and $\triangle P Q R, A B=Q R, \angle A=\angle Q$ and $A C=Q P$.

- Watch Video Solution

2. In a $\triangle A B C, D$ in mid-point of BC, AD is produced upto E so that $D E=A D$, prove that :
(i) $\triangle A B D$ and $\triangle E C D$ are congruent (ii) $A B=E C$
(iii) $A B$ is parallel to $E C$.

- Watch Video Solution

3. In the given figure, $A B=D B$ and $A C=D C$. If
$\angle A B D=58^{\circ}, \triangle D B C=2 x-4^{\circ}, \angle A C B=y+15^{\circ}$
and $\angle D C B=63^{\circ}$ find the values of x and y.

A. $x=(16.5)^{\circ}, y=49^{\circ}$
B. $x=(17.5)^{\circ}, y=48^{\circ}$
C. $x=(16.5)^{\circ}, y=48^{\circ}$
D. $x=(13.5)^{\circ}, y=48^{\circ}$
4. $B D$ is the disector of angle $A B C$. From a point P in $B D$, perpendiculars PE and PF are drawn to $A B$ and $B C$ respectively, prove that :
(i) Triangle BEP is conguent to triangle BFP (ii) PE=PF.

- Watch Video Solution

5. Given a $\triangle A B D$ in which $A B=A D$ and $A C$ bisects $B D$. Prove that :

$\triangle A B C \cong \triangle A D C$.

6. In a tringle $A B C, A B=A C$ and bisector of angle A meets BC at D. Prove that :
(i) $\triangle A B D \cong \triangle A C D$ (ii) $A D$ is perpendicular to BC .

- Watch Video Solution

7. In quadrilateral $A B C D, A B=D C$ and $A D=B C$. Prove that the sides $A B$ and $D C$ are parallel to each other.
8. In $\triangle A B C, A B=A C$ and the bisectors of $\angle B$ and $\angle C$ meet $A C$ and $A B$ at point D and E respectively. Prove that $B D=C E$.

- Watch Video Solution

9. In $\triangle A B C, \angle B=\angle C$. Prove the perpendiculars
from the mid-point of $B C$ and $A C$ are equal.

- Watch Video Solution

10. Find the value of x and y in each of the following
figures containing two congruent triangles :
(i) $\left\langle\begin{array}{l}60^{\circ} \\ x+15^{\circ}\end{array}\right.$

- Watch Video Solution

11. In the adjoining figure, $\angle B A C=\angle B D C$ and $\angle A B C=\angle B C D$. Prove that:
(i) $\triangle A B C \cong \triangle D C B$
(ii) $\triangle A B E \cong \triangle D C F$.

D Watch Video Solution

12. In the adjoining figure, $A B C D$ is a quadrilateral. M and N are the points on $A D$ and $C D$ respectively such that

$$
A B=B C, \angle A B M=\angle C B N
$$

$\angle M B D=\angle N B D$. Prove that $B M=B N$.

- Watch Video Solution

13. Given $A D=D C$ and DB biscets $\angle A D C$.
(i) Prove that, $\triangle A D B \cong \triangle C D B$
(ii) If $\angle A B D=48^{\circ}$, find $\angle C B D$.

D Watch Video Solution

14. The adjoining figure shows a square $A B C D$ and an equilateral triangle DEC. Prove that :
(i) $\angle A D E=\angle B C E=30^{\circ}$
(ii) $\Delta \cong \Delta B C E$

D Watch Video Solution

15. Equilateral triangles $A B D$ and $A C E$ are drawn on sides AB and AC respectively of a $\triangle A B C$ outside it.

Prove that :

(i) $\angle D A C=\angle E A B$ (ii) $D C=B E$

- Watch Video Solution

16. The following figure shows a square $A B C D$ and an equilateral triangle DCE. Prove that :
(i) $\angle A D E=\angle B C E=150^{\circ}$
(ii) $\triangle A D E \cong \triangle B C E$
(iii) $A E=B E$

D Watch Video Solution
17. The given figure showns a parallelogram $A B C D$.

Squares $A B P Q$ and $A D R S$ are drawn on sides $A B$ and
$A D$ respectively of the parallelogram $A B C D$. Prove that :
(i) $\angle S A Q=\angle A B C$
(ii) $S Q=A C$

18. In a $\triangle A B C, B D$ is the median to the side Ac, BD

 is produced to E such that $B D=D E$. Prove that $A E$ is parallel to $B C$.
D Watch Video Solution

19. In the given figure, $\angle B D C=\angle B E A$ and $A B=B C$. Show that $\mathrm{AE}=\mathrm{CD}$.

- Watch Video Solution

20. If the diagonals of a quadrilateral bisect each other at right angle, prove that the quadrilateral is a rhombus.
21. In the adjoining figure, $B M$ and $D N$ are the perpendiculars from B and D respectively to $A C$ such that $B M=D N$. Prove that $B O=O D$.

- Watch Video Solution

22. In
the adjoining
figure,
$A B=E F, B C=D E, \angle A B C=\angle F E D=90^{\circ}$, prove that $A D=C F$.

23. In the adjoining figure, $A B C D$ is a parallelogram. If $\angle M B C=\angle N D A$, prove that $A M=N C$.

- Watch Video Solution

24. In the adjoining figure, $Q X$ and $R X$ are the bisectors of the angles Q and R respectively of the
angles Q and R respectively of the triangle $P Q R$. If
$X S \perp P Q$. Prove that :
(i) $\Delta X T Q \cong \triangle X S Q$
(ii) PX bisects angle P .

- Watch Video Solution

25. In the following figure, $O A=O C$ and $A B=B C$.

Prove that :
(i) $\angle A P B=90^{\circ}$
(ii) $\triangle A O D \cong \triangle C O D$
(iii) $A D=C D$

- Watch Video Solution

26. In the adjoining figure, $A B C D$ is a paralogram. The side $A B$ is produced to P such that $A B=B P$ and the
side $A D$ is produced to Q such that $A D=D Q$. Prove that $\mathrm{CP}=\mathrm{CQ}$.

- Watch Video Solution

27. In the following figures, $A B=P Q, A C=P R$ and $A M=P N$. Prove that $\triangle A B C \cong \triangle P Q R$.

- Watch Video Solution

28. Prove that the medians of an equilateral triangle are equal.

- Watch Video Solution

29. $A B C D$ is a square $E F$ is parallel to $B D . R$ is the midpoint of EF. Prove that:
(i) $B E=D F$
(ii) AR bisects angle BAD
(iii) If AR produced it will pass through C.

- Watch Video Solution

30. The following figure shows a triangle $A B C$ in which $A b=A C . M$ is a point on $A B$ and N is a point on
$A C$ such that $B M=C N$. Prove that :
(i) $\mathrm{AM}=\mathrm{AN}$
(ii) $\triangle A M C \cong \triangle A N B$
(iii) $B N=C M$
(iv) $\Delta B M C \cong \triangle C N B$

- Watch Video Solution

31. In the given figure, $A B \| D C$ and $\angle D=\angle C$. Prove that :
(i) $A D=B C$
(ii) $A C=B D$

- Watch Video Solution

32. In the following figure, $A B\|F D, A C\| G E$ and $B D=C E$. Prove that :
(i) $\mathrm{BG}=\mathrm{DF}$
(ii) $\mathrm{CF}=\mathrm{EG}$

D Watch Video Solution
33.

In
the
adjoining
figure,
$\angle A Y Z=\angle B Y X=90^{\circ}, A Y=Y Z$
$X Y=B Y$. Prove that $A B=Z X$.

- Watch Video Solution

34. In the adjoining figure, $A B C D$ is a square and PAB is an equilateral triangle. Find :
(i) $\angle A P D$
(ii) $\angle P D C$
(iii) $\angle D P C$
(iv) Prove that $D P=C P$

35. In the adjoining figure, $\triangle A B C$ is right angled at
C and M is the mid-point of hypotenuse $A B$, If $A C=32$
cm and $\mathrm{BC}=60 \mathrm{~cm}$, then find the length of CM .

- Watch Video Solution

Exercise 7 B

1. In $\triangle A B C, A B=8 \mathrm{~cm}, B C=15 \mathrm{~cm}$ and $A C=17 \mathrm{~cm}$. find the largest angle.
A. $\angle A$
B. $\angle C$
C. $\angle B$
D. None of these

Answer: C
2. In $\triangle A B C, \angle A=50^{\circ}, \angle B=60^{\circ}$. Find the largest side.

A. $A B$

B. $A C$
C. BC
D. all are equal

Answer: A

3. In the adjoining figure, write the sides of $\triangle A B C$

 in descending order of their length.
A. $B C, A B, A C$
B. $B C, A C, A B$
C. $A B, A C, B C$
D. none of these

Answer: A

- Watch Video Solution

4. In the adjoining figure, explain :
(i) which side is the greatest side ?
(ii) which of two sides are equal ?
(iii) which is the smallest side of $\triangle A Q S$?

5. In the adjoining figure,
(i) Which side is smallest ?
(ii) In $\triangle A B C$, what is the nature of $\angle B A C$?

- Watch Video Solution

6. In the adjoining figure, $x>y$, Prove that $A B>A C$

7. In the adjoining figure, $A B>A C$ and the angle bisectors of $\angle B$ and $\angle C$ meet at point P. Prove that $P B>P C$.

- Watch Video Solution

8. Prove that the sum of any two sides of a triangle is greater than two times the median of third side.
9. In the adjoining figure, $P Q=P R$. Show that $P S>P Q$.

D Watch Video Solution

10. Prove that the sum of three altitudes drawn from
the vertices to opposite sides of a triangle is less
than the sum of three sides.
or

Prove that the perimeter of a triangle is greater than the sum of three altitudes drawn from the vertices to opposite of a triangle.

- Watch Video Solution

11. Prove that the sum of the sides of a quadrilateral
is greater than twice of one of its diagonal.

- Watch Video Solution

12. Prove that in a quadrilateral the sum of all the sides is greater than the sum of its diagonals.

- Watch Video Solution

13. In $\triangle A B C$, if $B C>A C>A B$ then :
(i) What is the relation $\angle A$ and $\angle C$?
(ii) What is the relation between the values of
$(A B+A C)$ and $B C$?
(iii) What is the relation between the values of
$(A C-B C)$ and $A B$?
(iv) What is the smallest angle in $\triangle A B C$?
14. In the adjoining figure, line segment $P A, P B$ and $P C$ are drawn from point P to line XY . Here PB is perpendicular to XY .
(i) What is the nature of the angles formed by line segment PA and PC from XY ?
(ii) Which line segment is the smallest in the segment PA, PB and PC ?

(Watch Video Solution

15. Show that in a right angled triangle, the hypotenuse is the longest side.

- Watch Video Solution

Revision Exercise Very Short Answer Questions

1. In an isosceles $\triangle A B C$ if $\angle A=90^{\circ}$ and
$A B=A C$, find $\angle B$ and $\angle C$.
2. In a right triangle $\mathrm{ABC}, \angle B=90^{\circ}$ find the longest side.

- Watch Video Solution

3. Can we construct a triangle ABC in which $A B=3$
$\mathrm{cm}, B C=4 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$?

- Watch Video Solution

4. Is it possible that a triangle has one obtuse and one right angle?
5. In $\triangle X Y Z, \angle X=45^{\circ}, \angle Y=75^{\circ}$ in another triangle $\mathrm{ABC}, \quad \angle A=45^{\circ}, \angle C=60^{\circ} \quad$ and $A C=6 \mathrm{~cm}$. find $X Z$, given that $\Delta X Y Z \cong \triangle A B C$
A. 5 cm
B. 6 cm
C. 7 cm
D. 8 cm

Answer: B
6. Find the greatest and the smallest side of $\triangle A B C$ in the adjoining figure.

P
A. greatest $A C$, smallest $A B$
B. greatest $B C$, smallest $A C$
C. greatest $B C$, smallest $A B$

D. none of these

Answer: C

- Watch Video Solution

7. In the given figure whether $\triangle A B C$ is congruent to $\triangle P Q R$. Mention the condition for congruence.

8. In $\triangle A B C, \angle A=\angle B=30^{\circ}$ name the longest side.

- Watch Video Solution

9. In $\triangle A B C, A B=2.5 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. what is the possible length of $A C$?

- Watch Video Solution

10. In a quadrilateral $A B C D, A B$ is the shortest side
and DC is the longest side. What is the relation
between
(i) $\angle B$ and $\angle D$ (ii) $\angle A$ and $\angle C$.

- Watch Video Solution

Revision Exercise Short Answer Type Question

1. P is any point in the angle $A B C$ such that the perpendiculars drawn from P on $A B$ and $B C$ are equal. Prove that $B P$ bisects angle $A B C$.

D Watch Video Solution

2. The given figure shows a circle with centre O. P is

 mid-point of chord $A B$. Show that $O P$ is perpendicular to $A B$.

- Watch Video Solution

3. In the given figure $A B=D B, A C=D C$ if $\angle A B D=58^{\circ}, \angle D B C=2 x-4^{\circ}, \angle A C B=y+15^{\circ}$ and $\angle D C B=63^{\circ}$, find the values of x and y .

4. In the adjoining figure, $\angle A B D=127^{\circ}$ and $\angle A C E=149^{\circ}$. Prove that $A C>A B$.

- Watch Video Solution

5. In the figure, $A D$ is perpendicular to $B C$, prove that $A B+A C>2 A D$.

D Watch Video Solution

6. In the adjoining figure $A B=C D$ and $A B \| C D$ prove that:
(i) $\triangle A O B \cong \triangle D O G$
(ii) AD and BC bisect each other at point O .

- Watch Video Solution

7. In theadjoining figure, $\angle D A B=\angle A B C$ and $A D=B C$ prove that $B D=A C$.

- Watch Video Solution

8. In the adjoining figure, $A D=D C$ and bisects

$\angle A D C$. Prove that $\triangle A D B \cong \triangle C D B$.

9. In $\triangle A B C, A B=A C$ and D is a point in BC so that $B D=C D$. Prove that AD bisects $\angle B A C$.

- Watch Video Solution

10. In $\triangle P Q R$, if S is any point on side QR , show that $P Q+Q R+R P>2 P S$.

D Watch Video Solution

Revision Exercise Long Answer Type Question

1. In the given figure, if $x=y$ and $A B=C B$, then prove that $A E=C D$.

- Watch Video Solution

2. $A B C$ is a triangle, right angled at B. If $B C D E$ is a square on side $B C$ and $A C F G$ is a square on $A C$, prove that $A D=B F$.

- Watch Video Solution

3. In the given figure, $A B C$ is an equilibrium triangle, $P Q \| A C$ and $A C$ is produced to R such that $C R=B P$.

Prove that QR bisects PC.

- Watch Video Solution

4. The given figure shows a quadrilateral $A B C D$. Prove that:

$A B+B C+C D+D A>A C+B D$

- Watch Video Solution

5. In the adjoining figure, the diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect point O. Prove that :
$A B+B C+C D+D A<2(A C+B D)$

- Watch Video Solution

6. Let O be any point in the interior of $\triangle A B C$, prove that :

$$
A B+B C+C A<2(O A+O B+O C)
$$

- Watch Video Solution

7. In the adjoining figure BO and CO are the bisectors of $\angle C B D$ and $\angle B C E$ respectively. If $A C>A B$, prove that $O B>O C$.

D Watch Video Solution
8. In the following figure, if $A D=D E$. Prove that :
$A B+B C>C E$

- Watch Video Solution

