©゙"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - PEARSON IIT JEE FOUNDATION

ATOMIC STRUCTURE

Example

1. What do you mean by emission and
absorption spectra?

- Watch Video Solution

2. What do you mean by stationary orbit ?

- Watch Video Solution

3. How did sommerfeld explain the fine sturcture of hydrogen spectrum ?
4. Sunny and Bunny have taken spectra for the following transitions .Spectra taken by sunny consited of bright lines on a dark background
.Spectra taken by Bunny consisted of dark lines
on a bright background .Identify the electronic
transitions corrseponding to the spectra
taken by sunny and Bunny .What are those
spectra called?
(i) $\mathrm{n}=5$ to $\mathrm{n}=2$
(ii) $n=3$ to $n=6$
(iii) $n=5$ to $n=7$
(iv) $n=3$ to $n=1$
(v) $n=1$ to $n=2$
(vi) $n=5$ to $n=3$

D View Text Solution
5. Why did Sommerfeld extend Bohr's theory ?

D View Text Solution
6. Velocity of an electron decreases as we go
further from the nucleus. Justify.

- Watch Video Solution

7. Distinguish between orbit and orbital with respect to definition

- Watch Video Solution

8. Why did Sommerfeld introduce azimuthal quantum number?
9. How does de Broglie's theory support Bohr's theory?

D View Text Solution

10. Configurations Designations of sotne orbitals are given below. Identify those configurations that are not possible in an atotn. Arrange the orbitals with possible configurations in the order in which they are
filled with electrons $6 \mathrm{~s}, \mathrm{Sp}, 7 \mathrm{~s}, 4 \mathrm{~d}, 2 \mathrm{p}, 3 \mathrm{~d}, 3 \mathrm{f}, 4 \mathrm{f}$, 1p.

D View Text Solution

11. The valence electronic configuration of an atom is $6 s^{2}$ If d-orbital of the penultimate shell contains two unpaired electrons, calculate the atomic number
12. An atoin of an element has three electrons
in 4 p subshell. Calculate the atomic number of
the element

- Watch Video Solution

13. What is the maximum number of electrons
present in the main energy level in which the
'g' subshell appears for the first time? Find the atomic number of the element to be
discovered in which the differentiating
electron is the only electron in the first ' g ' subshell

D View Text Solution

14. Arrange the following atomic numbers in
the increasing order of number of unpaired electrons
A. 16
B. 32
C. 40
D. 57

Answer:

D View Text Solution

15. Account for the very stable nitrogen atotn
in contrast to its neighbouring carbon and oxygen atoms.

- View Text Solution

Very Short Answer Type Question

1. How are the subatomic particles arranged in an atom according to modern structure of the atom

D Watch Video Solution

2. The region having maximum probability of
finding an electron in space is known as
3. According to de Broglie, what is the relation between the wave length of the wave associated with the moving electron and momentum of the f electron?

- Watch Video Solution

4. Define an atomic orbital

5. What is the shape of an 's' orbital? Draw the

 diagram
D Watch Video Solution

6. What do you mean by degenerate orbitals?

Give examples
(D) Watch Video Solution
7. The valence electronic configuration ofmagnesium is \qquad

- Watch Video Solution

8. How many nodal surface(s) can 5 s orbital have

- Watch Video Solution

9. Magnetic quantum number specifies

D Watch Video Solution

10. In the pictorial representation of an orbital, what is the role of different intensity of shading

- Watch Video Solution

11. In the degenerate orbitals, unpaired electrons have ___ spin

- Watch Video Solution

12. Nitrogen atom has \qquad unpaired electrons according to rule

13. The ratio between the number of neutrons

 present in C^{12} and $S i^{30}$ atoms is(D) Watch Video Solution
14. The electronic configuration of copper is

D Watch Video Solution
15. When a $4 p$ orbital is completely filled then
the next electron goes to

D Watch Video Solution
16. The number ofunpaired electrons present in $F e^{+3}$
(D) Watch Video Solution
17. Which one of the following(a or h) electronic configuration is more stable and why? (a) $3 d^{4} 4 s^{2}$ (b) $3 d^{5} 4 s^{2}$

D Watch Video Solution

Short Answer Type Question

1. What is Heisenberg's uncertainty principal
2. How many nobes are present in $3 \mathrm{~s}, 3 \mathrm{p}$, and 3d orbitals
(Watch Video Solution
3. Calulate the maxium number of electons in 1
st $2 \mathrm{nd}, 3 \mathrm{rd}$ and 4 th shells
(Watch Video Solution

Level 1

1. The dual nature of electron was given by somerfeld

D Watch Video Solution

2. Among $4 p, 4 s, 3 p$ and $3 d$ orbital has the least energy

D Watch Video Solution

3. Azimuthal quantam nuber indicates the angular momentum of an electron

- View Text Solution

4. Any two electron in an atom can have maxium of three quantam numbers same

D View Text Solution

5. Pairing of electron in an degenerate orbitals takes place only when the degenerate orbitals are filled with one eletron each
6. Bohr's theory can explain the spectra of multielec - tron species

D View Text Solution
7. In iron the differentiating electron enters
into the orbitals of a penultimate shell

D View Text Solution
8. For a given value of 'I' the total number of
' m ' values is

- Watch Video Solution

9. If the azimuthal quantam number of an electron is 2 then the shape of orbitals is

D Watch Video Solution

10. The value of planck's constant is

D Watch Video Solution

11. The ratio of energy to frequency of electromagnetic radiation is equal to
(Watch Video Solution
12. The minimum angular momentum of an electron with the magnetic quantum numbers
$-1,0,+1$

- Watch Video Solution

13. Bohar's model introduced the concept of quantisation of

D View Text Solution
14. The ratio of the energies of two different radiation whose frequenceies are $3 \times 10^{14} \mathrm{~Hz}$ and $5 \times 10^{14} \mathrm{~Hz}$ is \qquad

- Watch Video Solution

15. The Bohar's model could successfully explain
A. the stability of the atom
B. the atomic spectra of hydrozen atom

C. the calculation of energy of the electron

 in a particular orbit of hydrogen atomD. all of the above

Answer: D

D View Text Solution

16. Among the following, the orbitals that has
the lowest energy is
A. $5 f$
B. 4 f
C. 6 s
D. $6 p$

Answer: C

D Watch Video Solution

17. What is the maxiumum number of electron , present in an orbit whose angular momentmum is $\frac{2 h}{\pi}$
A. 18
B. 2
C. 32
D. 8

Answer: C

D Watch Video Solution

18. The simultaneus location of both the position and the velocity of an electron in
motion cannot be found with desired accuary '
This was proposed by
A. Bohr
B. Heisenberg
C. Sommerfeld
D. de Broglie

Answer: B
(Watch Video Solution
19. Which of the following sets of quantam numbers represent electron in hydrozen atom
A. 1,1,0 $+(1 / 2)$
B. $1,0,0,+(1 / 2)$
C. $3,0,0-(1 / 2)$
D. $4,2,1-(1 / 2)$

Answer: B

- Watch Video Solution

20. The eloctronic configureation of chromium
is
A. $[A r] 3 d^{5} 4 s^{1}$
B. $3 d^{5} 4 s^{1}$
C. $[A r] 3 d^{4} 4 s^{2}$
D. $3 d^{4} 4 s^{2}$

Answer: A

D Watch Video Solution
21. The electronic configureation in which Pauli's exclusion principal or Hund's rule is not violated is
A.

(a) $\frac{\square \uparrow \downarrow}{2 \mathrm{~s}}$ | $\uparrow \downarrow$ | \uparrow | |
| :---: | :---: | :---: |
| $2 p_{x}$ | $2 p_{y}$ | $2 p_{z}$ |

B.
(b) $\frac{\square \uparrow \downarrow}{2 \mathrm{~s}}$

$\uparrow \downarrow$	\uparrow	\uparrow
$2 p_{x}$	$2 p_{y}$	$2 p_{z}$

$C^{(\mathrm{c})}$| $\underset{\uparrow \downarrow}{ }$ |
| :---: |
| 2 s |

$\uparrow \uparrow$	\uparrow	\uparrow
$2 p_{x}$	$2 \mathrm{p}_{\mathrm{y}}$	$2 \mathrm{p}_{z}$

D
(d) $\frac{\square \uparrow \downarrow}{2 s}$

Answer: B

D View Text Solution
22. In the following pairs, identify the pair having a different $(\mathrm{n}+\mathrm{l})$ value
A. $4 s^{\prime} 3 p$
B. $3 \mathrm{~d}, 4 \mathrm{p}$
C. $4 \mathrm{~s}, 3 \mathrm{~d}$
D. $4 \mathrm{~d}, 5 \mathrm{p}$

Answer: C

- Watch Video Solution

23. The maxium value of I for $n=4$ is

A. 2
B. 4
C. 3
D. 5

Answer: C

D Watch Video Solution
24. The maxium number of electron that electron that can be accomodated in p subshell in 3rd orbital
A. 2
B. 4
C. 6
D. 10

Answer: C

- Watch Video Solution

25. Which of the following sets of quantam numbers is correct for an electron in 3d orbitals
A. $3,0,0,+(1 / 2)$
B. $3,1,1,-(1 / 2)$
C. $3,2,1,+(1 / 2)$
D. $3,2,3,-(1 / 2)$

Answer: C

- Watch Video Solution

26. Probilty of finding a $d_{y z}$ electron is zero along the
A. x-axis
B. y-axis
C. z-axis
D. all of these

Answer: D

- View Text Solution

27. Heisenberg's uncertainty principal is not applicable to
A. all the bodies moving with high speed
B. protons
C. electrons
D. all the microparticales moving with high
speed

Answer: A

- View Text Solution

28. If 20 electrons are present in the 4 th orbit then the atomic number of that element is
A. 58
B. 59
C. 56
D. 60

Answer: B

D View Text Solution
29. Zeeman and Stark effects can be explained by _ quantam number
A. principal

B. azimuthal

C. magnetic

D. spin

Answer: C

D View Text Solution

30. Discovries of isotopes and isobars
contradict some of the postulates of _ atomic theory

A. Bohr's

B. Dalton's
C. Rutherford's
D. Thomson's

Answer:

D View Text Solution
31. According to ____ atomic model
positive charge is thinly spread throghout the
atom
A. Bohr's
B. Dalton's
C. Rutherford's
D. Thomson's

Answer:

D View Text Solution
32. Which of the following statements is false
A. Bohr's theory explains only the spectra of single electron specis
B. The energy of an electron remains
constant during electronic transition
C. The angular momentum of an electron is
quantised
D. According to Bohr's theory , electron revolve around the nucels in circular

orbits

Answer:

D View Text Solution

33. The difference in energy of radition emitted (or) absorted during electronic transition is
A. directly proportional to frequency
B. directly proportional to wavelenght

C. inversely proportional to frequency

D. inversely proportional to velocity of light

Answer:

D Watch Video Solution

34. Which of the following statements regarding orbit -als is false
A. 1s orbitals has one nodal region
B. 2 s orbitals is spherical with one nodal
region
C. $2 p x$ orbital is dumb bell with one nodel plane
D. 3d orbitals has two nodal planes

Answer:

D View Text Solution
35. Quantam theory of radiation was proposed by
A. Pauli
B. Planck
C. Hund
D. Aufbau

Answer:

D Watch Video Solution
36. The azimuthal quantam number of an electron is zero, then the shape of its orbitals will be
A. circular
B. spherical
C. elliptical
D. dumbbell

Answer:

37. The number of nodes of an s-orbitals increases with
A. the increases in n value
B. the decreases in n value
C. the increases in 1 value
D. the decreases in 1 value

Answer:

D View Text Solution
38. The statement given below are the postulates of various atomic models. Arrange
them in their chronological order

Fine structure is due to the presence of subshells in the main energy level

The size of an atom is much larger than the size of its nucleus

As long as the electron is present in a particular orbit, its energy remains constant

Negative charged particals are uniformly spread in the lump of positive charge
A. 4,3,2,1
B. 2,3,4,1
C. $4,2,3,1$
D. $3,4,2,1$

Answer:

D View Text Solution

39. (1) As long as an electron revolves in a particular orbit, the electron does not lose its energy Therefore, these orbits are called
stationary orbits and the electrons are said to
be in station-ary energy state
(2) Each orbit or shell is associated with a definite amount of energy. Hence, these are also called energy levels

An electron jumps from a lower energy level to
a higher energy level, by absorting energy. It
jumps from a higher energy to a lower level by emmitting energy in the form of electromagnetic radiation

Electrons move around the nucels in specified circular paths called orbits or shells or energy levels and are designated as K,L,M and N shells
respectively

Arrange the above postulates of Bohr's theory in a correct sequence
A. $4,1.3,2$
B. 4,2,1,3
C. 4,1,2,3
D. 2,4,1,3

Answer:

D View Text Solution
40. (1) The probability of finding an electron is maxium at certain places in space
(2) Energy change takes place only during excitation or deexcitation of electron
(3) Electron has both particle and wave nature
(4) Angular momentum of the electron revolving in different ellipticals orbits is quantised

Arrange the above statements of different models or principals in the chronological order , which ultimately led to the development of modern structure of the atom
A. 1,2,3,4
B. 2,4,3,1
C. $4,3,2,1$
D. 2,3,1,4

Answer:

D View Text Solution

41. Energy of an electron in a particular orbit of single electron species of beryllium is the same as the energy of an electron in the

orbit of beryllium

A. 1
B. 2
C. 3
D. 4

Answer:
(D) View Text Solution
42. The difference between the angular momentum of two orbits of $H e^{+2}$ is $\frac{2 h}{\pi}$ The energy of an electron present in the higher orbit is $\mathbf{- 1 . 5 1 ~ e V}$. Identify the lower orbit
A. 1
B. 2
C. 3
D. 4

Answer:

43. Velocity of the electron in electron microscope is $1.6 \times 106 \mathrm{~m} / \mathrm{s}$. What would be the wavelenght of the electron
A. $5.39 \AA$
B. $4.55 \AA$
C. $3.54 \AA$
D. $6.78 \AA^{\circ}$

Answer:
44. An atom of an element has nine electrons with $\mathrm{l}=0$ value 18 electrons with $\mathrm{I}=1$ value and 10 electrons with $\mathrm{I}=2$ value . Calculate the atomic nuber of the element
A. 37
B. 41
C. 38
D. 39

Answer:

- Watch Video Solution

Level 2

1. p ' orbital has a nodal plane while 's' orbital
has a nodal region. Elaborate with the help of
a diagram

- View Text Solution

2. What is the common nodal plane of $d_{x y}$ and $d_{z x}$

- View Text Solution

3. The number of nodal regions for an 's' orbital is given by ($n-1$). How do you account for this

D View Text Solution
4. Compare the energy released during direct electronic transition from 4th orbit to Ist orbit with the energy released during successive electronic transi tions between the same orbits in H -atom. Is the energy of all successive transitions between the 4th orbit and 1st orbit equal
5. Wave nature of matter is applicable only for
sub- atomic particles and not for larger objects. justify this statement.

D View Text Solution

6. Are the magnetic quantum number and angular momentum of an electron related to each other? Explain
7. What is the maximum number of electrons present in the main energy level in which the g subshell appears for the first time? Find the atomic number of the element to be discovered in which the dif- ferentiating electron is the only electron in the first ' g ' subshell.

D View Text Solution

8. If the angular momentum of an electron is
$3.16 \times 10^{-34} \mathrm{kgm}^{2} / \mathrm{s}$ and the radius and
energy of an orbit in which the above electron
is present is $0.6 \times 10^{-10} \mathrm{~m}$ and 2.4×10^{-18} respectively then eal-culate the radius and energy of $2 n d$ orbit of that atom.

D View Text Solution

9. When the electrons are successively filled in
the orbitals of same shell, orbital, Which is
filled at the end, requires less energy to remove electron. Justify.
10. Atomic number of an element is 42 . Find out the number of electrons present in the valence shell.

D Watch Video Solution

11. Arrange the following ions in the increasing order of unpaired electrons
$\mathrm{Na}{ }^{+}, \mathrm{Cu} u^{+1}, \mathrm{~N}^{-3}, \mathrm{O}^{-}, \mathrm{P}$ and Cr
12. Arrange the following orbitals in the order in which they are filled with electrons and justify the order: 6s, 5d, 6p, 75, Sf.

- Watch Video Solution

13. Given that the N shell of an element contains 10 electrons, write the electronic configuration of the stable ion.
14. If an atom of an element has eight electrons in a subshell having five orientations of 4th energy level, write the electronic configuration of the element and four quantum numbers for valence electrons

D View Text Solution

15. The energy of an electron in a particular orbit of $L i^{+2}$ is -30.6 eV . What is the energy of an electron in the same orbit of $B e^{+3}$?
16. The angular momentum of an electron in a particular orbit of H atom is
$5.27310^{-34} \mathrm{kgm}^{2} / \mathrm{s}$. Calculate the radius of
the particular orbit of lithium.

D View Text Solution
17. How did Sommerfeld explain the fine structure of hydrogen spectrum?
18. Electrons occupy the degenerate orbitals with par allel spins. How can you justify this statement with respect to stability

D View Text Solution

19. ' p '- orbital hasa nodal plane while 's'- orbital
hasa nodal region. Elaborate with the help of a diagram
20. he atomic number of an atom A is x.

Valence elec tronic configuration of another atom B is $6 s^{25} d^{3}$ and its atomic number is $(\mathrm{x}+$ 5). Write the elec-tronic configuration of A.

D View Text Solution

21. The ratio of atomic numbers of two elements X and Y is $1: 7$. Radius of 5 th orbit ofsingle electron species of X is $3.3 \AA$. Write
the electronic con figuration of Y and four quantum numbers for the valence electrons

D View Text Solution

22. An electron is revolving in an orbit with a veloc- ity of $5.46 \times 107 \mathrm{cms}^{-1}$. Calculate the wave length associated with the electron.

D Watch Video Solution

23. A spherical orbital has three nodal regions
and it contains a pair ofelectrons. If this is the only orbital that is occupied with electrons in that main energy level, and the penultimate shell is completely filled, calculate its atomic number

D View Text Solution

24. The sum of all the quantum numbers of all
the A valence electrons of an atom of an inert

gas is 22. Identify the inert gas

D View Text Solution

Level 3

1. Energy of an electron increases with increase in distance from the nucleus.

Comment on the change in kinetic energy and potential energy.

D View Text Solution

2. Do all the single electron species of various ele- ments possess same energy for the electron in the ground state? Give reason.

D View Text Solution

3. Two electronic transitions were found to take place in a single electron species. One is deactivation of electron from the $5^{\text {th }}$ shell to
the $4^{\text {th }}$ shell and the other is from the $2^{n d}$ nd shell to the $l^{s t}$ shell. Do the energies emitted
due to the above transitions have the same wavelength? justify

D View Text Solution

4. An electron is present in a hydrogen atom in the ground state and another electron is present in a smgle electron species of beryllium. In both the species the distance between the nucleus and electren 18 same.

Calculate the difference in their energies.

D View Text Solution

5. One electron is made to revolve around a pro ton and it possesses the least possible energy and another electron is made to revolve around an α-particle with the same energy. Calculate the ratio of the distances of the electrons from the respective species

D View Text Solution

6. The principal and azimuthal quantum numbers associated with a subshell are a and
a 4, respec tively. Predict the shape of that
subshelli f the shape of another subshell
having azimuthal .quantum number a-5 is spherical. If that subshell is half filled, predict the atomic number of the element

D View Text Solution

7. Are the magnetic quantum number and angular momentum of an electron related to each other? Explain.

D View Text Solution

8. The larger the value of ' 1 ' belonging to the same main energy, higher is the energy associated with it' Comment on this statement.

D View Text Solution

